TANGENT, LINEAR APPROXIMATION, TAYLOR APPROXIMATION

Robert Mařík

January 21, 2006

Contents

1 Tangent 2

2 Linear approximation 9

3 Higher order approximation 15
The derivative of the function $f(x)$ at a point x_0 is the slope of the tangent to the graph of the function f at the point x_0. Having the slope $f'(x_0)$ and one point of the line (the point $[x_0, f(x_0)]$), it is easy to write the point-slope form of the tangent as

$$y = f'(x_0)(x - x_0) + f(x_0).$$
Find tangent to the graph of \(y = \frac{1}{\sqrt{1 - x}} \) at the point \(x_0 = 0 \).

The best linear approximation for small \(x \):

\[
y \approx \frac{1}{\sqrt{1}} + \frac{1}{2} \cdot \frac{1}{\sqrt{1}} x
\]
Find tangent to the graph of \(y = \frac{1}{\sqrt{1-x}} \) at the point \(x_0 = 0 \).

general formula: \[y = y'(x_0) \cdot (x - x_0) + y(x_0) \]

We start with the general formula for the tangent.
Find tangent to the graph of \(y = \frac{1}{\sqrt{1-x}} \) at the point \(x_0 = 0 \).

general formula: \(y = y'(x_0) \cdot (x - x_0) + y(x_0) \)

\[y(x_0) = \frac{1}{\sqrt{1-0}} = 1 \]

We evaluate the function at the point under consideration.
Find tangent to the graph of \(y = \frac{1}{\sqrt{1-x}} \) at the point \(x_0 = 0 \).

general formula: \(y = y'(x_0) \cdot (x - x_0) + y(x_0) \)

\[
y(x_0) = \frac{1}{\sqrt{1-0}} = 1
\]

\[
y'(x) = \left((1-x)^{-\frac{1}{2}} \right)' = -\frac{1}{2} (1-x)^{-\frac{3}{2}} (-1)
\]

We differentiate.
Find tangent to the graph of \(y = \frac{1}{\sqrt{1-x}} \) at the point \(x_0 = 0 \).

general formula: \(y = y'(x_0) \cdot (x - x_0) + y(x_0) \)

\[
y(x_0) = \frac{1}{\sqrt{1-0}} = 1
\]

\[
y'(x) = \left((1-x)^{-\frac{1}{2}}\right)' = -\frac{1}{2}(1-x)^{-\frac{3}{2}}(-1) \left|_{x=x_0} \right. = \frac{1}{2}
\]

We evaluate the derivative at the point under consideration.
Find tangent to the graph of \(y = \frac{1}{\sqrt{1-x}} \) at the point \(x_0 = 0 \).

general formula: \(y = y'(x_0) \cdot (x - x_0) + y(x_0) \)

\[
y(x_0) = \frac{1}{\sqrt{1-0}} = 1
\]

\[
y'(x) = \left((1-x)^{-\frac{1}{2}}\right)' = -\frac{1}{2}(1-x)^{-\frac{3}{2}}(-1)
\]

\[
\bigg|_{x=x_0} = \frac{1}{2}
\]

tangent: \(y = \frac{1}{2} \cdot (x - 0) + 1 = 1 + \frac{1}{2}x \)

The best linear approximation for small \(x \): \(\frac{1}{\sqrt{1-x}} \approx 1 + \frac{1}{2}x \)

We use the general formula and find the tangent, which is the best local linear approxiamtion for the function.
2 Linear approximation

The tangent is the best linear approximation to the function. This approximation can be used to replace some complicated and inconvenient formulas by simpler ones.
The function can be replaced by its tangent for small x.

\[
\frac{1}{\sqrt{1-x}} \approx 1 + \frac{1}{2}x
\]
We start with Einstein formula for total energy of a moving body.

\[
\frac{1}{\sqrt{1 - x}} \approx 1 + \frac{1}{2} x
\]

\[
E = mc^2
\]
\[\frac{1}{\sqrt{1-x}} \approx 1 + \frac{1}{2}x \]

\[E = mc^2 = m_0c^2 \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \]

The mass is an increasing function of the velocity, as the formula shows.
\[
\frac{1}{\sqrt{1-x}} \approx 1 + \frac{1}{2}x
\]

\[
E = mc^2 = m_0c^2 \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}
\]

\[
\approx m_0c^2 \left(1 + \frac{1}{2} \left(\frac{v}{c}\right)^2\right)
\]

The formula contains our function for \(x = \left(\frac{v}{c}\right)^2 \). We replace it by its tangent. This can be done if the velocity is many times smaller than \(c \), the velocity of the light in vacuum.
After some algebraic modifications we get the part of the rest mass energy (not connected with any motion) and the part which includes the velocity and thus connected with the motion. This part corresponds with the formula for kinetic energy known from Newtonian mechanics.
Chapter 3 Higher order approximation

The linear approximation is usually limited to a narrow neighborhood only. If the range of variables is greater than this neighborhood and the linear approximation does not give satisfactory results, it is possible to use higher order approximation by higher order Taylor polynomial.
We find higher order approximation for the Einstein’s formula from the preceeding chapter. We differentiate up to third order derivative.
\[y = \frac{1}{\sqrt{1-x}} \quad y(0) = 1 \]
\[y' = \frac{1}{2} (1-x)^{-3/2} \quad y'(0) = \frac{1}{2} \]
\[y'' = \frac{3}{4} (1-x)^{-5/2} \quad y''(0) = \frac{3}{4} \]
\[y''' = \frac{15}{8} (1-x)^{-7/2} \quad y'''(0) = \frac{15}{8} \]

We evaluate the function and its derivatives at zero.
\[y = \frac{1}{\sqrt{1 - x}} \quad y(0) = 1 \]
\[y' = \frac{1}{2} (1 - x)^{-3/2} \quad y'(0) = \frac{1}{2} \]
\[y'' = \frac{3}{4} (1 - x)^{-5/2} \quad y''(0) = \frac{3}{4} \]
\[y''' = \frac{15}{8} (1 - x)^{-7/2} \quad y'''(0) = \frac{15}{8} \]

\[\frac{1}{\sqrt{1 - x}} \approx 1 + \frac{1}{2} x + \frac{3}{4} \frac{1}{2!} x^2 + \frac{15}{8} \frac{1}{3!} x^3 + \cdots \]

We write the Taylor polynomial.
\[y = \frac{1}{\sqrt{1-x}} \quad y(0) = 1 \]
\[y' = \frac{1}{2} (1-x)^{-3/2} \quad y'(0) = \frac{1}{2} \]
\[y'' = \frac{3}{4} (1-x)^{-5/2} \quad y''(0) = \frac{3}{4} \]
\[y''' = \frac{15}{8} (1-x)^{-7/2} \quad y'''(0) = \frac{15}{8} \]

\[
\frac{1}{\sqrt{1-x}} \approx 1 + \frac{1}{2} x + \frac{3}{4} \frac{1}{2!} x^2 + \frac{15}{8} \frac{1}{3!} x^3 + \cdots \\
\approx 1 + \frac{1}{2} x + \frac{3}{8} x^2 + \frac{5}{16} x^3 + \cdots
\]

We simplify.
\[
\frac{1}{\sqrt{1 - x}} \approx 1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{5}{16}x^3 + \cdots
\]
Higher order approximation of the Einstein’s formula for energy of moving object.
Futher reading