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REAL STORY

A talk with the man at a copy center where | ordered to make hardcopies of my master thesis.

| have seen many Bessel functions
in your thesis. | am also a math-
ematician. | wrote my thesis about I_QG_P\( Qt]JItL/
Riccati equation. It is a kind of use-
less differential equation. There are

no applications. \/ @
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THE AIM OF THE TALK

The aim of the talk is to convince the audience that
the worker from the copy center was wrong.
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OUTLINE OF THE TALK
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Part 1

Second order linear differential equation

e Riccati equation method for second order linear ODE e Important pairs of points
e Zero interlacing theorem e Sturm majorant theorem e Oscillation criteria
e Principal solutions




RICCATI EQUATION METHOD FOR SECOND ORDER LINEAR ODE
w=x"/x
X" +e()x=0 | | w' 4 c(t) +w? =0
x = exp(f w)

IMPORTANT PAIRS OF POINTS

e b is the first focal point to t = a e solution given by w(a) = 0 exists on (a,b)
and w(b—) = —o0
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o b is the first conjugate pointto t =a e solution given by w(a+) = oo exists on
(a,b) and w(b—) = —o0
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ZERO INTERLACING THEOREM

The following cannot occur due to unique solv-
ability of IVP for Riccati equation

® X1, Xp solutions of the same equation

e x1 >00n (a,b), x(a) =0=x(b)

e x; >0on [a,b]

The following cannot occur due to comparison
theorem for first order differential inequalities

e x1 solution of x” +¢(t)x =0

e x1 >0o0n (a,b), x(a) =0 = x(b)

e xo solution of x” + C(t)x =0,
C(t) = c(t)

e x> 0on [a,D]

(a/z +C(x) + w3 = 0)
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OSCILLATION THEORY

X" +c(H)x=0

o Oscillatory if some solution (and thus all solutions) have zeros in every neighborhood
of oo.

o Nonoscillatory otherwise (there exists a solution positive in some neighborhood of c0).

(NON-)OSCILLATION IN TERMS OF RICCATI EQUATION —

X" 4 c(t)x =0 w ety +uw? =0
e equation is nonoscillatory o equation has solution on [T, c0) for large T
e equation is oscillatory e equation has no solution on [T, %), no mat-

ter how large T is
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OSCILLATION CRITERIA

Oscillation of
X" +c(H)x=0

is ensured if c(t) is large enough. For example in one of the following sense

pointwise criteria simplest possibility, from comparison with suitable equation,

1
e.g.: X" +kt2x = 0 is nonoscillatory iff k < 1
1
x" 4+ ¢(t)x = 0 is oscillatory if c(t) > (Z + e) t=2 for large t
1
and nonoscillatory if ¢(t) < Zt_z for large ¢

integral criteria can be used if ¢(t) is not large enough for every t but its mean value is large

[ee]
e.g. / c(t) dt = oo is sufficient for oscillation

series of conjugacy criteria can be used if the mean value of ¢() is small, but there is a
series of subintervals where ¢(f) is large enough to bend every solution to zero. Certain
lower bound for mean value of ¢(¢) is required if we wish to eliminate this possibility
how the equation can be turned to oscillation, e.g. in nonoscillation criteria.
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PRINCIPAL SOLUTIONS

" +c(t)x =0
Leighton, Morse: Let u and v be nontrivial solutions of nonoscillatory
equation. The following conditions are equivalent and each can be used
to determine principal solution u (unique up to a constant multiple) and
nonprincipal solution v (linearly independent on principal solution).

e lim & =0
t—o0 U(t)
! /
o ¥ () < A0 in a neighborhood of oo




Part 2

Half-linear ODE

e Half-linear ODE e Generalized Riccati equation e Use of linear transformation theory
e Linear transformation theory in the terms of Riccati equation
e Half-linear substitute for missing transformation theory e Modified Riccati equation
e Available estimates for H function e Theorem samples (principal solution)
e Theorem samples (perturbed Euler equation)
e Theorem samples (Nehari-type nonoscillation criterion)




HALF-LINEAR ODE

/
(r(h@(x)) +c(yo(x) =0, (*)
where
@,(x) = [x[F%x, p>1
and if the subscript is missing, we assume it to be p, i.e. ®(x) := ®p(x).

Equation (*) has been introduced in 70's by Mirzov and Elbert. Equation (*) and related
equations have been later studied by many authors (including Dosl4, Dosly, Drabek, Fisnarova,
Hasil, Hata, Jaros, Kong, Kusano, Li, Lomtatidze, Manojlovi¢, Mari¢, Marini, Matsumura,
Matucci, Naito, Ogata, Onitsuka, Rehak, Sugie, Sun, Tanigawa, Vesely, Wang, Usami, Xu,
Yamaoka, Yoshida)

GENERALIZED RICCATI EQUATION

w=rd(x'/x) / -
(r()@(x)) +c(H)@(x) =0 — | W +c(h) Jr_(z DA~9()|w| =0
P E— 9= 2o
X = ef q)il(w/r) ’

(i.e. essentially the same as in the linear case)




USE OF LINEAR TRANSFORMATION THEORY

1. .
c(t) = a2 s critical case

1

Kneser: x”+c(t)x=0 < oscillatory if liminf#*c(t) > ~
t—o0 4 1
nonoscillatory if limsup t2c(t) < =
t—o0 4

Refinement (e.g. Hartman's book):

(ty') +td(H)y =0 T = (), yls) = x(0)
x"+[41tZ+d } J_ Viy i+ t2d(t)y(s) =0

1
itical case: t2d(t) = d(t) = ——
Critical case: +°d(t) 2 = (1) L
oscillatory if liminf {2 In?(£)d(t) > E
t—ro0 4 1
" nonoscillatory if limsup 2 In?(£)d(t) < =
¥ g 0] =0 msup 1 (1)d(1) < g

d(t) =

m is critical case — another transformation ...

This approach does not have known extension to half-
linear ODE’s (lack of transformation formula).
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LINEAR TRANSFORMATION THEORY IN THE TERMS OF RICCATI EQUATION

We use two different languages to describe one thing (dependent variable transformation).

Lix]:== (r(H)x") +c()x=0 | —————— ' +c(t)+r (Hw? =0

I |

logaritmic derivative W
x(t) = h(t)y(t — o= (w— _
) () and new notation 0 =1 (w=wy), wy "n
!/ yl J,
(R(t)y') +C(hyy =0 v=R
N / 12
R(t) = T’(f)hz(t) v+ C(H)+ R (Hv" =0
C(t) = h(t)L[R](¢)
B / h/ yl 2y 2 x/ h/ yl s x/ h/
x=h(t)y = — ﬁ+—:>rh —h(r;—rﬁ):R?_h (r__rﬁ>




HALF-LINEAR SUBSTITUTE FOR MISSING TRANSFORMATION THEORY

w = r®(x'/x)

/—> W +c(t) + (p— 1)r(t)|w|? = 0

; v =hP(w—wy,)

Lix] == (r()®(x")) + c(H)D(x) = T wy = r®(h'/h)

E+ LI+ (p - Q) H(0/6) =0 |

Q(t) = r()|H' (1) ,
Hv)=|v+1T—qv—-1=9q (@ —(v+1)+ %) >0, G(t) = r(t)h(t)D(H (1))

(note slightly different notation than usually found in papers)




MODIFIED RICCATI EQUATION

w— r@(x//m w 4 c(t) + (p—1)r9(8)|w|7=0

Ex] = (r(t)cb(x’))/ +c(H)®(x) = 0‘\ Z()QZ)hi(ZVU(5IZ)']1(1)|”

Hw)=|lv+1/7—qv—1
G = rh®(h')

missing transformation theory if p # 2

T

Modified Riccati equation:
o' +h(t)L[H](t) + (p —1)Q(t)H(v/G) =

L[t] = (ra()®a(x')) + ca(t)Pu(x) =

} or Hv/G) > - - H(v/G) < f(t)[o]P

! . 1-8 B
classical methods 0 +cat) + (e — Dy "(t)[o]” <0

Existence of positive solution of L[x] = 0 implies existence of positive solution Ly [x] = 0.
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AVAILABLE ESTIMATES FOR H FUNCTION

q
H(v):|v+1|’7—qv—1=q<@—(v+l)+%> >0

H(v) =~ q(qT_l)vz for small v, H(v) = |v| for large v

30
F GLOBAL LOWER ESTIMATES FOR H\D
— HW
iy —  QUADRATIC ESTIMATE
HIGHER POWER ESTIMATE




Global estimates

.H(U)ngz (forpSZ) H(’U):|'y+1|q_q'o_1

q
:q(M_(v+1)+l> >0
e H(v) > gvz (for p > 2) q p

e H(v) < Bo* (for p <2, & € [2,4], suitable B, missing sharp effective formula for )
e H(v) > go* (for p > 2, & € [g,2], suitable B, missing sharp effective formula for )
LIS R i

o?—t-FES —t—i—% (if B<q)

Local estimates

o K1v? < H(v) < Kpv? (for suitable K7, K; and on compact interval)

o H(v) = ’7(’72_ D2(1401))  (aso—0)

|t|P 1_p-1 [|t|’7 1}. :
o —t+— < —— | — —t+ —|(ifeither < gandt >T1orf >qgand t € (1—¢1])
p x—gq-114¢q P( p=a



THEOREM SAMPLES (PRINCIPAL SOLUTION)

Dosly and Elbert via global quadratic estimate of H:
1

>2: uis principal N =
p>2: uis principa 2/ r()u ()| (t)|P~2 ”

0 1
1,2]: dt = = u is principal
pe (12 / 200w ()] 2 o u is principa

FiSnarova and Mafrik via global power-like estimate of H:

. *© 1
The integral / OO dt can be replaced by

/°° dt
P (e () o (O] P D) 7
where « € [q,2] if p>2and a € [2,9] if p <2. (g is a conjugate number to p)

I, :=

Example: The latter condition (F-M) allows to detect u(t) = 1 — 1/t as principal solution

of
Ny 15t7372 B B
(q>(x )) + mq>(x) =0, p=3/2, t>1,

the former (D-E) fails.
ELE IV SR gy



THEOREM SAMPLES (PERTURBED EULER EQUATION)

Dosly, Fi$narova, Maiik (J. Math. Anal. Appl. 2013): Let h(t) > 0, K'(t) > 0,
h(t)Ly(h)(t) > 0 and either

limsup r(t)h(t)®(H (t)) < oo and /00 ATI(HRI(8) dt = oo

t—o0

or
lim 7(£)h()(H (1)) = oo and / (2P () dt = co.
—00

( - 1) r(t)W'P(t) + c(t)hP (t)

) 4+ b(£)Pp(x) = 0 is also

Denote

alt) = (%)1_“r<t>h“—q<“—1><t>|h’<t>|—“+P, b(t) = W0 (1) [

If « > p and Ly[x] = 0 is nonoscillatory, then (®,(a(t)x
nonoscillatory.

S~ ™IS

Sugie and Yamaoka (Acta Math. Hungar. 2006) — a special case of the previous result:

If « > p and - ) b1
(@, (x)) + 7P (ijl) 1 (%) 5(t

~—

D,(x) =0
is nonoscillatory, then

(@a(2)) + 170 _("‘ - 1>“ 4 (“ - 1>M é(t): By (x) = 0

4 4

is also nonoscillatory.
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THEOREM SAMPLES (NEHARI-TYPE NONOSCILLATION CRITERION)
Lix] := (r(t)CID(x'))/ +c(t)®(x) =0  (under examination) (*)
Lix] == (r()@(x')) +e(#)@(x) =0  (nonoscillatory)

Dosly (J. Math. Anal. Appl. 2006): Let i1 € C! be a positive function such that 1/ (t) > 0

t ds
for large f, say t > T. Denote G(t) := /T G (0 (5) )72

lim G(£)r(Wh(D(H (1) = oo, and  lim Gr(t)h*(H)('(+))P~2L[H](t) = 0.

t—o0

If /oo[c(t) —E&BHP (1) dt < o and

and suppose that

. f ds o _ 1
hl;isogp T r(s)h2(s)(h’(s))p*2/t (c(s) —c(s))hP(s) ds < 2’

ot ds o0 . 3
i | SR ), () T ) s>

then (*) is nonoscillatory.

Special cases of this theorem produce efficient and sharp
oscillation criteria. The result of the effort to improve fur-
ther the constants on right-hand sides will be presented
(among others) in the talk at RIMS Kyoto, Nov 4, 2014,




Part 3

Half-linear PDE

e Elliptic half-linear PDE e Generalized Riccati equation e Concept of oscillation
e Known result — detection of oscillation from ODE
e Observation and curious question 1/2 e Answer 1/2 — nonradial oscillation criteria
e Known result — linear oscillation criterion e Observation and curious question 2/2
e Answer 2/2 — sublinear versus general




FELLIPTIC HALF-LINEAR PDE

div(A(x)||Vu||”_2Vu) +c(xX)|ulP"2u =0 *)

A(x) is either scalar function or elliptic matrix with maximal and minimal eigenvalues Amax ()
and Amin(x).

Alegretto, delPino, Drabek, Jaro$, Kusano, Mawhin, Naito, Usami, Xu, Yohsida

GENERALIZED RICCATI EQUATION

div (A )| [Vul |72 + e(x)|ulP~2u = 0

VullP-2v scalar function A
matrix function A w= A””“j”
|u|P=2u
divw+e(x) +(p—1)--- <0 divaw + c(x) + (p — 1) A (x)|[w]| = 0

e Can be used to derive oscillation criteria (the inequality if A is a matrix does not matter)

e We (almost) miss nonoscillation criteria — from the solvability of Riccati equation we
cannot (without additional assumptions) deduce, that (*) has a positive solution.

CONCEPT OF OSCILLATION

Eq. (*) is said to be oscillatory if it possesses no solution u(x) which is positive for large || x]|.
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KNOWN RESULT — DETECTION OF OSCILLATION FROM ODE
Dosly (2001): Equation
div(||Vul[P~2Vu) + c(x)|ulP2u =0

is oscillatory, if the ordinary differential equation

!
(r”_1|u’|”_2u’) +r”_1< ! /H H c(x) da) lulP=2u =0 (*)

wni’”fl

is oscillatory. The number w, is the surface area of the unit sphere in R".

e Usami (1998) proved essentialy equivalent version of this theorem formulating the
conclusion in terms of associated Riccati equation rather than half-linear ODE (*).

e Jaros, Kusano and Yoshida (2000) proved independently similar result (for A(x) =
a(||x|)I and differentiable a(-)).

OBSERVATION AND CURIOUS QUESTION 1/2

Oscillation criteria depend in fact on the mean value of c(x) over spheres centered in the
origin. Is it possible to detect oscillation of

div(A(:c)||Vu||7’_2Vu) +e(@)|ulP~2u =0

in such an extreme case as

/II . c(z)do =0?
LRIV A wgrraey



ANSWER 1/2 — NONRADIAL OSCILLATION CRITERIA

Let Q) be unbounded simply connected domain in IR”, with smooth boundary 9Q).
Let k € (1,00) real number and & be nonnegative smooth function satisfying

(i) a(x) =0iff x £ O,

(ii) /1 (/ a(x) dO‘) dt = oo
iR i

i [ 0l (@) = gy IVeI ) dr = o0

1< [x|<t
xeQ)

then the equation

div (|| Vul|"2Vu) + e(@)ul’2u = 0

is oscillatory.

(Assuming that the integrals are well defined.)




COROLLARY: OSCILLATION IN UPPER HALF-PLANE

For n = 2 consider the equation

Au+c(x)u=0 *

lim —/ / r, @) sin?(@)de dr > g, (**)

t—oo Int

where ¢(7, ) is ¢(x) in polar coordinates, then (*) is oscillatory.

A
Example. The potential c(r, ¢) = sm(p satisfies

27 T 4
/ sinpde =0 and / sin® pdg :§>0
0 0

Thus the oscillation of (*) cannot be detected by any criterion based
on the mean value of ¢ over the whole sphere centered in the origin,
but the oscillation is guaranteed by (**) for sufficiently large A.




KNOWN RESULT — LINEAR OSCILLATION CRITERION

Xu (2006): Let 6 € C!([rg, 0], RT), m > 1, A € C([rg,c0), RY). If

2
lim 6(1xl)e(e) - A(ll2l) ™ E U | 40 —
=00 Jro<||x||<r 4 0(x])
and
1
lim/ —————————dx =00, where A\(7) > max A T
B, o <iieti<r OCTRDACTETD (r) 2 max Amax(w)

then div(A(:c)Vu) +ec(x)u=0 | is oscillatory.

OBSERVATION AND CURIOUS QUESTION 2 /2

The oscillation is ensured if ¢(x) is large enough and A (x) small enough.
The measure of this “smallness” in the linear case is Amax. There is a
bunch of similar half-linear oscilation theorems, where the measure for

/\ﬁ]ax

the “smallness” of A is . Why such a discrepancy appears?

min

max
—1
. min
worse than linear even in the case when p = 2!)

(Note that Amax <

and thus the half-linear approach is




Let

and either

or

is oscillatory, then

is also oscillatory.

ANSWER 2/2 — SUBLINEAR VERSUS GENERAL
b(r) =/ c(x)do,
[Ixl1=r
1<p<2 and a(r) :/H H Amax(x) do
X||=r

1<p and a(r):/HH Mrax(X)ALP (1) dor.
X||=r

(ar)@()) +b(r)@(w) = 0

div(A(x)||w||P—2w) +e(x)|ulP2u = 0.




DETAILED COMPARISON OF SUB/SUPPER—LINEAR CASES

w(x) = A(x)

p > 1 arbitrary:

[V u(0)l|P~?Vu(x)

|u(x) [P~ 2u(x)

A||Vu|P=2Vu, Vu)

divw+c+(p—1)<

divw+c+ (p

1
- 1)Amin)\q_

[w]|T <0

max

=0

’ HwH < Amax

[Vul!
Julp=!

1<p<2
2-p
divw+c+(p—1) <w,A*1w> %
1
A7lw) > ||lw|?~—
(w0 A w) > ol —

2—p
|Vl
|uf>=»

Hw”(%p)/(pfl)

Ag;xp)/(%l)

Explanation of the difference: The inequality for ||w|| is powered
to (2—p)/(p—1) if p € (1,2], which is not possible if p > 2.
If p > 2, then ||w|| is powered to g > (2—p)/(p —1).
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Part 4

Summary
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Conclusion: Riccati equation provides tool for simple proof of Sturmian com-
parison theorems (even for half-linear equations), can be used as
a half-linear replacement for missing transformation theory of
half-linear equations, can be used to formulate nonradial oscillation
criteria of half-linear PDE's.
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