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Real story

A talk with the man at a copy center where I ordered to make hardcopies of my master thesis.

I have seen many Bessel functions
in your thesis. I am also a math-
ematician. I wrote my thesis about
Riccati equation. It is a kind of use-
less differential equation. There are
no applications.

The aim of the talk

The aim of the talk is to convince the audience that
the worker from the copy center was wrong.
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Part 1

Second order linear differential equation

• Riccati equation method for second order linear ODE • Important pairs of points
• Zero interlacing theorem • Sturm majorant theorem • Oscillation criteria

• Principal solutions



Riccati equation method for second order linear ODE

x′′ + c(t)x = 0 w′ + c(t) + w2 = 0
w = x′/x

x = exp(
∫

w)

Important pairs of points

• b is the first focal point to t = a • solution given by w(a) = 0 exists on (a, b)
and w(b−) = −∞

• b is the first conjugate point to t = a • solution given by w(a+) = ∞ exists on
(a, b) and w(b−) = −∞



Zero interlacing theorem

The following cannot occur due to unique solv-
ability of IVP for Riccati equation

• x1, x2 solutions of the same equation

• x1 > 0 on (a, b), x(a) = 0 = x(b)

• x2 > 0 on [a, b]
Ne
ver
ha
pp
en
s!

Sturm majorant theorem

The following cannot occur due to comparison
theorem for first order differential inequalities

• x1 solution of x′′ + c(t)x = 0

• x1 > 0 on (a, b), x(a) = 0 = x(b)

• x2 solution of x′′ + C(t)x = 0,
C(t) ≥ c(t)

• x2 > 0 on [a, b]

Ne
ver
ha
pp
en
s!

w′1 + c(x) + w2
1 = 0

w′2 + c(x) + w2
2 ≤ 0(

w′2 + C(x) + w2
2 = 0

)



Oscillation theory

x′′ + c(t)x = 0

• Oscillatory if some solution (and thus all solutions) have zeros in every neighborhood
of ∞.

• Nonoscillatory otherwise (there exists a solution positive in some neighborhood of ∞).

(Non-)oscillation in terms of Riccati equation

x′′ + c(t)x = 0 w′ + c(t) + w2 = 0

• equation is nonoscillatory • equation has solution on [T, ∞) for large T

• equation is oscillatory • equation has no solution on [T, ∞), no mat-
ter how large T is



Oscillation criteria

Oscillation of
x′′ + c(t)x = 0

is ensured if c(t) is large enough. For example in one of the following sense

pointwise criteria simplest possibility, from comparison with suitable equation,

e.g.: x′′ + kt−2x = 0 is nonoscillatory iff k ≤ 1
4

x′′ + c(t)x = 0 is oscillatory if c(t) ≥
(

1
4
+ ε

)
t−2 for large t

and nonoscillatory if c(t) ≤ 1
4

t−2 for large t

integral criteria can be used if c(t) is not large enough for every t but its mean value is large

e.g.:
∫ ∞

c(t)dt = ∞ is sufficient for oscillation

series of conjugacy criteria can be used if the mean value of c(t) is small, but there is a
series of subintervals where c(t) is large enough to bend every solution to zero. Certain
lower bound for mean value of c(t) is required if we wish to eliminate this possibility
how the equation can be turned to oscillation, e.g. in nonoscillation criteria.



Principal solutions

x′′ + c(t)x = 0
Leighton, Morse: Let u and v be nontrivial solutions of nonoscillatory
equation. The following conditions are equivalent and each can be used
to determine principal solution u (unique up to a constant multiple) and
nonprincipal solution v (linearly independent on principal solution).

• lim
t→∞

u(t)
v(t)

= 0

• u′(t)
u(t)

<
v′(t)
v(t)

in a neighborhood of ∞

•
∫ ∞ 1

u2(t)
dt = ∞,

∫ ∞ 1
v2(t)

dt < ∞



Part 2

Half-linear ODE

• Half-linear ODE • Generalized Riccati equation • Use of linear transformation theory
• Linear transformation theory in the terms of Riccati equation

• Half-linear substitute for missing transformation theory • Modified Riccati equation
• Available estimates for H function • Theorem samples (principal solution)

• Theorem samples (perturbed Euler equation)
• Theorem samples (Nehari-type nonoscillation criterion)



Half-linear ODE

(
r(t)Φ(x′)

)′
+ c(t)Φ(x) = 0, (*)

where
Φp(x) = |x|p−2x, p > 1

and if the subscript is missing, we assume it to be p, i.e. Φ(x) := Φp(x).

Equation (*) has been introduced in 70’s by Mirzov and Elbert. Equation (*) and related
equations have been later studied by many authors (including Došlá, Došlý, Drábek, Fišnarová,
Hasil, Hata, Jaroš, Kong, Kusano, Li, Lomtatidze, Manojlovič, Mariċ, Marini, Matsumura,
Matucci, Naito, Ogata, Onitsuka, Řehák, Sugie, Sun, Tanigawa, Veselý, Wang, Usami, Xu,
Yamaoka, Yoshida)

Generalized Riccati equation

(r(t)Φ(x′))′ + c(t)Φ(x) = 0
w′ + c(t) + (p− 1)r1−q(t)|w|q = 0

q =
p

p− 1

w = rΦ(x′/x)

x = e
∫

Φ−1(w/r)

(i.e. essentially the same as in the linear case)



Use of linear transformation theory

Kneser: x′′ + c(t)x = 0


c(t) =

1
4t2 is critical case

oscillatory if lim inf
t→∞

t2c(t) >
1
4

nonoscillatory if lim sup
t→∞

t2c(t) <
1
4

Refinement (e.g. Hartman’s book):

x′′ +
[

1
4t2 + d(t)

]
x = 0

(ty′)′ + td(t)y = 0

ÿ + t2d(t)y(s) = 0x =
√

ty

s = ln(t), y(s) = x(t)

Critical case: t2d(t) =
1

4s2 ⇐⇒ d(t) =
1

4t2 ln2 t

x′′+
[

1
4t2 + d(t)

]
x = 0


oscillatory if lim inf

t→∞
t2 ln2(t)d(t) >

1
4

nonoscillatory if lim sup
t→∞

t2 ln2(t)d(t) <
1
4

d(t) =
1

4t2 ln2(t)
is critical case =⇒ another transformation . . .

This approach does not have known extension to half-
linear ODE’s (lack of transformation formula).



Linear transformation theory in the terms of Riccati equation

We use two different languages to describe one thing (dependent variable transformation).

L[x] := (r(t)x′)′ + c(t)x = 0 w′ + c(t) + r−1(t)w2 = 0

x(t) = h(t)y(t) v = h2(w− wh), wh = r
h′

h

(
R(t)y′

)′
+ C(t)y = 0

R(t) = r(t)h2(t)
C(t) = h(t)L[h](t)

v′ + C(t) + R−1(t)v2 = 0

logaritmic derivative

and new notation

w = r
x′

x

v = R
y′

y

x = h(t)y =⇒ x′

x
=

h′

h
+

y′

y
=⇒ rh2 y′

y
= h2

(
r

x′

x
− r

h′

h

)
=⇒ R

y′

y
= h2

(
r

x′

x
− r

h′

h

)



Half-linear substitute for missing transformation theory

L[x] := (r(t)Φ(x′))′ + c(t)Φ(x) = 0

w′ + c(t) + (p− 1)r1−q(t)|w|q = 0

v′ + h(t)L[h](t) + (p− 1)Q(t)H(v/G) = 0

w = rΦ(x′/x)

v = hp(w− wh)
wh = rΦ(h′/h)

Q(t) = r(t)|h′(t)|p

H(v) = |v + 1|q − qv− 1 = q
(
|v + 1|q

q
− (v + 1) +

1
p

)
≥ 0, G(t) = r(t)h(t)Φ(h′(t))

(note slightly different notation than usually found in papers)



Modified Riccati equation

L[x] :=
(

r(t)Φ(x′)
)′

+ c(t)Φ(x) = 0

w′ + c(t) + (p− 1)r1−q(t)|w|q = 0

Modified Riccati equation:

v′ + h(t)L[h](t) + (p− 1)Q(t)H(v/G) = 0

v′ + cα(t) + (α− 1)r1−β
α (t)|v|β ≤ 0

Lα[x] :=
(

rα(t)Φα(x′)
)′

+ cα(t)Φα(x) = 0

w = rΦ(x′/x)

v = hp(w− wh)
Q(t) = r(t)|h′(t)|p
H(v) = |v + 1|q − qv− 1
G = rhΦ(h′)

H(v/G) ≤ f (t)|v|βor H(v/G) ≥ · · ·

classical methods

missing transformation theory if p 6= 2

Existence of positive solution of L[x] = 0 implies existence of positive solution Lα[x] = 0.



Available estimates for H function

H(v) = |v + 1|q − qv− 1 = q
(
|v + 1|q

q
− (v + 1) +

1
p

)
≥ 0

H(v) ≈ q(q− 1)
2

v2 for small v, H(v) ≈ |v|q for large v



Global estimates

H(v) = |v + 1|q − qv− 1

= q
(
|v + 1|q

q
− (v + 1) +

1
p

)
≥ 0

• H(v) ≤ q
2

v2 (for p ≤ 2)

• H(v) ≥ q
2

v2 (for p ≥ 2)

• H(v) ≤ βvα (for p ≤ 2, α ∈ [2, q], suitable β, missing sharp effective formula for β)

• H(v) ≥ βvα (for p ≥ 2, α ∈ [q, 2], suitable β, missing sharp effective formula for β)

• |t|
β

β
− t +

1
α
≤ |t|

q

q
− t +

1
p

(if β ≤ q)

Local estimates

• K1v2 ≤ H(v) ≤ K2v2 (for suitable K1, K2 and on compact interval)

• H(v) =
q(q− 1)

2
v2(1 + o(1)) (as v→ 0)

• |t|
β

β
− t +

1
α
≤ β− 1

q− 1

[
|t|q
q
− t +

1
p

]
(if either β ≤ q and t ≥ 1 or β ≥ q and t ∈ (1− ε, 1])



Theorem samples (principal solution)

Došlý and Elbert via global quadratic estimate of H:

p ≥ 2 : u is principal =⇒
∫ ∞ 1

r(t)u2(t)|u′(t)|p−2 dt = ∞

p ∈ (1, 2] :
∫ ∞ 1

r(t)u2(t)|u′(t)|p−2 dt = ∞ =⇒ u is principal

Fišnarová and Mařík via global power-like estimate of H:

The integral
∫ ∞ 1

r(t)u2(t)|u′(t)|p−2 dt can be replaced by

Iα :=
∫ ∞ dt

rα−1(t)uα(t)|u′(t)|(p−1)(α−q)
,

where α ∈ [q, 2] if p ≥ 2 and α ∈ [2, q] if p ≤ 2. (q is a conjugate number to p)

Example: The latter condition (F-M) allows to detect u(t) = 1− 1/t9 as principal solution
of (

Φ(x′)
)′

+
15t−3/2

(t9 − 1)1/2 Φ(x) = 0, p = 3/2, t > 1,

the former (D-E) fails.



Theorem samples (perturbed Euler equation)

Došlý, Fišnarová, Mařík (J. Math. Anal. Appl. 2013): Let h(t) > 0, h′(t) > 0,
h(t)Lp(h)(t) ≥ 0 and either

lim sup
t→∞

r(t)h(t)Φ(h′(t)) < ∞ and
∫ ∞

r1−q(t)h−q(t)dt = ∞

or
lim
t→∞

r(t)h(t)Φ(h′(t)) = ∞ and
∫ ∞

r−1(t)h−2(t)h′2−p(t)dt = ∞.

Denote

a(t) =
(

q
β

)1−α

r(t)hα−q(α−1)(t)|h′(t)|−α+p, b(t) = hq(1−α)(t)
[(

q
β
− 1
)

r(t)h′p(t) + c(t)hp(t)
]

If α > p and Lp[x] = 0 is nonoscillatory, then (Φα(a(t)x′))′ + b(t)Φα(x) = 0 is also
nonoscillatory.

Sugie and Yamaoka (Acta Math. Hungar. 2006) – a special case of the previous result:
If α > p and

(Φp(x′))′ + t−p

[(
p− 1

p

)p
+

(
p− 1

p

)p−1
δ(t)

]
Φp(x) = 0

is nonoscillatory, then

(Φα(x′))′ + t−α

[(
α− 1

α

)α

+

(
α− 1

α

)α−1
δ(t)

]
Φα(x) = 0

is also nonoscillatory.



Theorem samples (Nehari-type nonoscillation criterion)

L[x] :=
(
r(t)Φ(x′)

)′
+ c(t)Φ(x) = 0 (under examination) (*)

L̃[x] :=
(
r(t)Φ(x′)

)′
+ c̃(t)Φ(x) = 0 (nonoscillatory)

Došlý (J. Math. Anal. Appl. 2006): Let h ∈ C1 be a positive function such that h′(t) > 0

for large t, say t > T. Denote G(t) :=
∫ t

T

ds
r(s)h2(s)(h′(s))p−2 and suppose that

lim
t→∞

G(t)r(t)h(t)Φ(h′(t)) = ∞, and lim
t→∞

G2r(t)h3(t)(h′(t))p−2 L̃[h](t) = 0.

If
∫ ∞

[c(t)− c̃(t)]hp(t)dt < ∞ and

lim sup
t→∞

∫ t

T

ds
r(s)h2(s)(h′(s))p−2

∫ ∞

t

(
c(s)− c̃(s)

)
hp(s)ds <

1
2q

,

lim inf
t→∞

∫ t

T

ds
r(s)h2(s)(h′(s))p−2

∫ ∞

t

(
c(s)− c̃(s)

)
hp(s)ds > − 3

2q
,

then (*) is nonoscillatory.

Special cases of this theorem produce efficient and sharp
oscillation criteria. The result of the effort to improve fur-
ther the constants on right-hand sides will be presented
(among others) in the talk at RIMS Kyoto, Nov 4, 2014.



Part 3

Half-linear PDE

• Elliptic half-linear PDE • Generalized Riccati equation • Concept of oscillation
• Known result – detection of oscillation from ODE

• Observation and curious question 1/2 • Answer 1/2 – nonradial oscillation criteria
• Known result – linear oscillation criterion • Observation and curious question 2/2

• Answer 2/2 – sublinear versus general



Elliptic half-linear PDE

div
(

A(x)||∇u||p−2∇u
)
+ c(x)|u|p−2u = 0 (*)

A(x) is either scalar function or elliptic matrix with maximal and minimal eigenvalues λmax(x)
and λmin(x).

Alegretto, delPino, Drábek, Jaroš, Kusano, Mawhin, Naito, Usami, Xu, Yohsida

Generalized Riccati equation

div
(

A(x)||∇u||p−2∇u
)
+ c(x)|u|p−2u = 0

div w + c(x) + (p− 1)A1−q(x)||w||q = 0div w + c(x) + (p− 1) · · · ≤ 0

w = A
||∇u||p−2∇u
|u|p−2u

scalar function A
matrix function A

• Can be used to derive oscillation criteria (the inequality if A is a matrix does not matter)

• We (almost) miss nonoscillation criteria – from the solvability of Riccati equation we
cannot (without additional assumptions) deduce, that (*) has a positive solution.

Concept of oscillation

Eq. (*) is said to be oscillatory if it possesses no solution u(x) which is positive for large ‖x‖.



Known result – detection of oscillation from ODE

Došlý (2001): Equation

div(‖∇u‖p−2∇u) + c(x)|u|p−2u = 0

is oscillatory, if the ordinary differential equation(
rn−1|u′|p−2u′

)′
+ rn−1

(
1

ωnrn−1

∫
||x||=r

c(x) dσ

)
|u|p−2u = 0 (*)

is oscillatory. The number ωn is the surface area of the unit sphere in Rn.

• Usami (1998) proved essentialy equivalent version of this theorem formulating the
conclusion in terms of associated Riccati equation rather than half-linear ODE (*).
• Jaroš, Kusano and Yoshida (2000) proved independently similar result (for A(x) =

a(‖x‖)I and differentiable a(·)).

Observation and curious question 1/2

Oscillation criteria depend in fact on the mean value of c(x) over spheres centered in the
origin. Is it possible to detect oscillation of

div
(
A(x)‖∇u‖p−2∇u

)
+ c(x)|u|p−2u = 0

in such an extreme case as ∫
||x||=r

c(x)dσ = 0?



Answer 1/2 – nonradial oscillation criteria

Let Ω be unbounded simply connected domain in Rn, with smooth boundary ∂Ω.
Let k ∈ (1, ∞) real number and α be nonnegative smooth function satisfying

(i) α(x) = 0 iff x 6∈ Ω,

(ii)
∫ ∞

1

(∫
||x||=t
x∈Ω

α(x) dσ

)1−q

dt = ∞.

If

lim
t→∞

∫
1≤||x||≤t

x∈Ω

α(x)
(
c(x)− k

(pα(x))p ‖∇α(x)‖p
)

dx = ∞,

then the equation

div
(
‖∇u‖p−2∇u

)
+ c(x)|u|p−2u = 0

is oscillatory.

(Assuming that the integrals are well defined.)



Corollary: oscillation in upper half-plane

For n = 2 consider the equation

∆u + c(x)u = 0 (*)

If

lim
t→∞

1
ln t

∫ t

1
r
∫ π

0
c(r, ϕ) sin2(ϕ)dϕ dr >

π

2
, (**)

where c(r, ϕ) is c(x) in polar coordinates, then (*) is oscillatory.

Example. The potential c(r, ϕ) =
A
r2 sin ϕ satisfies∫ 2π

0
sin ϕ dϕ = 0 and

∫ π

0
sin3 ϕ dϕ =

4
3
> 0

Thus the oscillation of (*) cannot be detected by any criterion based
on the mean value of c over the whole sphere centered in the origin,
but the oscillation is guaranteed by (**) for sufficiently large A.



Known result – linear oscillation criterion

Xu (2006): Let θ ∈ C1([r0, ∞], R+), m > 1, λ ∈ C([r0, ∞), R+). If

lim
r→∞

∫
r0≤||x||≤r

[
θ(‖x‖)c(x)− λ(‖x‖)m

4
θ′2(‖x‖)
θ(‖x‖)

]
dx = ∞

and

lim
r→∞

∫
r0≤||x||≤r

1
θ(‖x‖)λ(‖x‖) dx = ∞, where λ(r) ≥ max

||x||=r
λmax(x)

then div
(
A(x)∇u

)
+ c(x)u = 0 is oscillatory.

Observation and curious question 2/2

The oscillation is ensured if c(x) is large enough andA(x) small enough.
The measure of this “smallness” in the linear case is λmax. There is a
bunch of similar half-linear oscilation theorems, where the measure for

the “smallness” of A is
λ

p
max

λ
p−1
min

. Why such a discrepancy appears?

(Note that λmax ≤
λ

p
max

λ
p−1
min

and thus the half-linear approach is

worse than linear even in the case when p = 2!)



Answer 2/2 – sublinear versus general

Let
b(r) =

∫
||x||=r

c(x)dσ ,

and either
1 < p ≤ 2 and a(r) =

∫
||x||=r

λmax(x)dσ

or
1 < p and a(r) =

∫
||x||=r

λ
p
max(x)λ1−p

min (x)dσ .

If (
a(r)Φ(u′)

)′
+ b(r)Φ(u) = 0

is oscillatory, then
div
(

A(x)‖∇u‖p−2∇u
)
+ c(x)|u|p−2u = 0.

is also oscillatory.



Detailed comparison of sub/supper-linear cases

w(x) = A(x)
‖∇u(x)‖p−2∇u(x)
|u(x)|p−2u(x)

, ‖w‖ ≤ λmax
‖∇u‖p−1

|u|p−1

p > 1 arbitrary:

div w + c + (p− 1)

〈
A‖∇u‖p−2∇u,∇u

〉
|u|p = 0

div w + c + (p− 1)λmin
‖∇u‖p

|u|p ≤ 0

‖∇u‖p

|u|p ≥ ‖w‖
q

λ
q
max

div w + c + (p− 1)λmin
1

λ
q
max
‖w‖q ≤ 0

1 < p ≤ 2:

div w + c + (p− 1)
〈

w, A−1w
〉 ‖∇u‖2−p

|u|2−p = 0

〈
w, A−1w

〉
≥ ‖w‖2 1

λmax

‖∇u‖2−p

|u|2−p ≥ ‖w‖
(2−p)/(p−1)

λ
(2−p)/(p−1)
max

div w + c + (p− 1)λ1−q
max‖w‖q ≤ 0

Explanation of the difference: The inequality for ‖w‖ is powered
to (2− p)/(p− 1) if p ∈ (1, 2], which is not possible if p > 2.
If p > 2, then ‖w‖ is powered to q > (2− p)/(p− 1).



Part 4

Summary



...

Riccati equation in lin-
ear theory

.
Riccati equa-
tion in half-
linear theory

.
Modified Riccati
equation

.

Riccati equation
forPDE

.

Nonradial oscilla-
tion criteria

Conclusion: Riccati equation provides tool for simple proof of Sturmian com-
parison theorems (even for half-linear equations), can be used as
a half-linear replacement for missing transformation theory of
half-linear equations, can be used to formulate nonradial oscillation
criteria of half-linear PDE’s.


