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Part 1

Half-linear ODE, oscillation theory

• Half-linear second order differential equation • Oscillation theory



Half-linear second order differential equation(
r(t)Φ

(
x′(t)

))′
+ c(t)Φ

(
x(t)

)
= 0, Φ(x) := |x|p−2x, p > 1 (*)

• The differential operator is scalar p-Laplacian (Allegretto, Drábek, Jaroš, Kusano, Maná-
sevich, Mawhin, del Pino, Usami, Yoshida)

• Equation (*) has been introduced in 70’s by Mirzov and Elbert. This and related equa-
tions have been later studied by many authors (including Došlá, Došlý, Drábek, Fiš-
narová, Hasil, Hata, Jaroš, Kong, Kusano, Li, Lomtatidze, Manojlovič, Mariċ, Marini,
Matsumura, Matucci, Naito, Ogata, Onitsuka, Řehák, Sugie, Sun, Tanigawa, Usami,
Veselý, Wang, Xu, Yamaoka, Yoshida).

• Equation (*) preserves many properties of linear equation (p = 2)
• Some of the results known for linear equations can be smoothly extended to (*)

(oscillation theory with zero-interlacing-like and majorant-like theorems).
• Some of the “linear” methods have to be modified for (*) (there is no transfor-

mation theory).
• Some of the “linear” results fail (Wronskian).

Oscillation theory

• Equation is oscillatory if some (and thus all) solutions have zeros
in every neighborhood of ∞.

• Equation is nonoscillatory otherwise (there exists a solution positive
in some neighborhood of ∞).



Oscillation criteria

Oscillation of
x′′ + c(t)x = 0

is ensured if c(t) is large enough. For example in one of the following sense.

pointwise criteria simplest possibility, from comparison with suitable equation,

e.g.: x′′ +
k
t2 x = 0 is nonoscillatory iff k ≤ 1

4
,

x′′ + c(t)x = 0 is oscillatory if c(t) ≥
(

1
4
+ ε

)
t−2 for large t

and nonoscillatory if c(t) ≤ 1
4

t−2 for large t

integral criteria can be used if c(t) is not large enough for every t but its mean value is large

e.g.:
∫ ∞

c(t)dt = ∞ is sufficient for oscillation

series of conjugacy criteria can be used if the mean value of c(t) is small, but there is a
series of subintervals where c(t) is large enough to bend every solution to zero. Certain
lower bound for mean value of c(t) is required if we wish to eliminate this possibility
how the equation can be turned to oscillation, e.g. in nonoscillation criteria.



Basic oscillation/nonoscillation criteria

x′′ + c(t)x = 0

C(t) =
1
t

∫ t

1

∫ s

1
c(ξ)dξ ds

Hartman, Wintner: If

−∞ < lim inf
t→∞

C(t) < lim sup
t→∞

C(t) ≤ ∞,

or
lim
t→∞

C(t) = ∞,

then the equation is oscillatory.

Observation:

lim
t→∞

∫ t
c(s)ds = ∞ =⇒ lim

t→∞
C(t) = ∞

g(t) = t
∫ ∞

t
c(s)ds

g∗ = lim inf
t→∞

t
∫ ∞

t
c(s)ds

g∗ = lim sup
t→∞

t
∫ ∞

t
c(s)ds

Hille: c(t) ≥ 0

If g∗ >
1
4

, then the equation is oscillatory.

If g∗ > 1, then the equation is oscillatory.

If g∗ <
1
4

, then the equation is nonoscillatory.

Further authors: Leighton, Nehari, Kamenev, Philos



Part 2

Nonoscillation criteria
for half-linear ODE

• Lomtatidze’s extension of Hille and Nehari criteria • Half-linear Riccati equation
• Nonoscillatory criteria (guessing solution)



Lomtatidze’s extension of Hille and Nehari criteria

x′′ + c(t)x = 0
(no sign restrictions on c(t), half-linear version also exists)

C0 := lim
t→∞

C(t) = lim
t→∞

1
t

∫ t

1

∫ s

1
c(ξ)dξ ds

Q(t) = t
(

C0 −
∫ t

1
c(s)ds

)
=

(
if lim

t→∞

∫ t

1
c(s)ds exists

)
= g(t)

H(x) =
1
t

∫ t

1
s2c(s)ds

Q∗ = lim inf
t→∞

Q(t)

Q∗ = lim sup
t→∞

Q(t)

H∗ = lim inf
t→∞

H(t)

H∗ = lim sup
t→∞

H(t)

Sufficient conditions for oscillation:

• Q∗ >
1
4

• H∗ >
1
4

• 0 ≤ Q∗ ≤
1
4

and H∗ >
1
2
(1+

√
1− 4Q∗)

• 0 ≤ H∗ ≤
1
4

and Q∗ >
1
2
(1+
√

1− 4H∗)

Sufficient conditions for nonoscillation:

• −3
4
< Q∗ and Q∗ <

1
4

• −∞ < Q∗ ≤ −
3
4

and Q∗ < Q∗ − 1 +
√

1− 4Q∗

(i.e. −3
4

< Q∗ can be broken, but the

upper bound for Q∗ must be decreased)



Region of (non-)oscillation in Q∗Q∗-plane

Sufficient conditions for oscillation:

• Q∗ >
1
4

• H∗ >
1
4

• 0 ≤ Q∗ ≤
1
4

and H∗ >
1
2
(1+

√
1− 4Q∗)

• 0 ≤ H∗ ≤
1
4

and Q∗ >
1
2
(1+
√

1− 4H∗)

Sufficient conditions for nonoscillation:

• −3
4
< Q∗ and Q∗ <

1
4

• −∞ < Q∗ ≤ −
3
4

and Q∗ < Q∗ − 1 +
√

1− 4Q∗

(i.e. −3
4

< Q∗ can be broken, but the

upper bound for Q∗ must be decreased)



Half-linear Riccati equation

L[x] := (r(t)Φ(x′))′ + c(t)Φ(x) = 0

R[w] := w′ + c(t) + (p− 1)r1−q(t)|w|q = 0
q =

p
p− 1

w = rΦ(x′/x)

x = exp(
∫

Φ−1(w/r))

Nonoscillation criteria: Show that

R[w] ≤ 0

has a solution in a neighborhood of infinity.

Oscillation criteria: Show that

R[w] = 0

does not have solution defined in a neighbor-
hood of infinity.



Nonoscillatory criteria (guessing solution)

In order to prove nonoscillation of

x′′ + c(t)x = 0 (*)

it is sufficient to prove that the Riccati inequality

w′ + c(t) + w2 ≤ 0 (**)

has a solution on the interval [t0, ∞) for some t0.

Example (proof of Hille’s criterion):
Consider

w(t) =
∫ ∞

t
c(s)ds +

1
4t

, w′ = −c(t)− 1
4t2 .

The function w satisfies (**) iff w2 ≤ 1
4t2 (direct substitution to (**)), i.e. iff |w| ≤ 1

2t
.

To ensure this condition it is sufficient to suppose that

−3
4
< lim inf

t→∞
t
∫ ∞

t
c(s)ds︸ ︷︷ ︸

g∗

≤ lim sup
t→∞

t
∫ ∞

t
c(s)ds︸ ︷︷ ︸

g∗

<
1
4

.

(Really, just put the definition of w(t) into |w| ≤ 1
2t

, multiply by t and subtract
1
4

.)



Nonoscillation criteria (perturbation of nonoscillatory equation)

L[x] :=
(
r(t)Φ(x′)

)′
+ c(t)Φ(x) = 0 (under examination) (*)

L̃[x] :=
(
r(t)Φ(x′)

)′
+ c̃(t)Φ(x) = 0 (nonoscillatory)

Theorem A (Došlý, Řezníčková). Let h ∈ C1 be a positive function such that h′(t) > 0 for
large t, say t > T. Suppose . . . (assumptions on h: the function h is close to certain solution
of L̃[x] = 0). If

lim sup
t→∞

∫ ∞

t

ds
r(s)h2(s)(h′(s))p−2

∫ t

T

(
c(s)− c̃(s)

)
hp(s)ds <

1
2q

,

lim inf
t→∞

∫ ∞

t

ds
r(s)h2(s)(h′(s))p−2

∫ t

T

(
c(s)− c̃(s)

)
hp(s)ds > − 3

2q

for some T ∈ R sufficiently large, then (*) is nonoscillatory.

Observation: note bounds for c(t)− c̃(t) rather that for c(t), as in the linear case. Due
transformation, there is no loos of generality in the linear case to consider c̃(t) = 0.

Proof: Denote R := rh2|h′|p−2, w = wh + h−pv, where wh = r
Φ(h′)
Φ(h)

and

v(t) = − 1
2q

(∫ ∞

t
R−1(s)ds

)−1
−
∫ t(

c(s)− c̃(s)
)
hp(s)ds.

The function w is solution of the inequality which arises from the associated Riccati equation
by replacing “=” with “≤”.



Simple corollary

Corollary. If

lim sup
t→∞

1
ln t

∫ t
c(s)sp−1 ln2 s ds <

1
2

(
p− 1

p

)p−1

lim inf
t→∞

1
ln t

∫ t
c(s)sp−1 ln2 s ds > −3

2

(
p− 1

p

)p−1

then (
Φ(x′)

)′
+

[(
p− 1

p

)p
t−p + c(t)

]
Φ(x) = 0

is nonoscillatory.

Proof. Special case of the previous theorem for(
Φ(x′)

)′
+

(
p− 1

p

)p
t−pΦ(x) = 0 and h(t) = t(p−1)/p ln2/p t.

Why c̃(t) =

(
p − 1

p

)p

t−p? (
Φ(x′)

)′
+ kt−pΦ(x) = 0

is oscillatory iff k >

(
p− 1

p

)p
and this equation is on the border line between oscillation

and nonoscillation.



Nonoscillation criteria (perturbation of nonosc. equation 2)

L[x] :=
(
r(t)Φ(x′)

)′
+ c(t)Φ(x) = 0 (under examination) (*)

L̃[x] :=
(
r(t)Φ(x′)

)′
+ c̃(t)Φ(x) = 0 (nonoscillatory)

Theorem 1. Let h be a function such that h(t) > 0 and h′(t) 6= 0, both for large t. Suppose
. . . (technical assumptions on h).
If

lim sup
t→∞

∫ ∞

t

ds
r(s)h2(s)|h′(s)|p−2

∫ t (
c(s)− c̃(s)

)
hp(s)ds <

1
q

(
−α +

√
2α
)

,

lim inf
t→∞

∫ ∞

t

ds
r(s)h2(s)|h′(s)|p−2

∫ t (
c(s)− c̃(s)

)
hp(s)ds >

1
q

(
−α−

√
2α
)

for some α > 0, then equation (*) is nonoscillatory.

Remark: For α =
1
2

we have Theorem by Došlý and Řezníčková.

Proof. Denote R := rh2|h′|p−2, w = wh + h−pv, where wh = r
Φ(h′)
Φ(h)

and

v(t) = −α

q

(∫ ∞

t
R−1(s)ds

)−1
−
∫ t(

c(s)− c̃(s)
)
hp(s)ds.

The function w is solution of the inequality which arises from the associated Riccati equation
by replacing “=” with “≤”.



What is the role of parameter α?

The value α =
1
2

has been used by D+Ř, since it produces maximum in the expression

involving lim sup. Is it reasonable to choose general α 6= 1
2

?
Yes, we obtain similar extension, as extension of Hille’s criteria obtained by Lomtatidze et al.

g(t) =
∫ ∞

t

ds
r(s)h2(s)|h′(s)|p−2

∫ t(
c(s)− c̃(s)

)
hp(s)ds

g∗ = lim inf
x→∞

g(t)

g∗ = lim sup
x→∞

g(t)

Regions of nonoscillation:

D+Ř:


g∗ <

1
2q

g∗ > −
3
2q

F+M:


g∗ <

1
q
(
−α +

√
2α
)

g∗ >
1
q
(
−α−

√
2α
)



Summary of nonoscillation criteria

• Replacing a fixed constant in the proof of nonoscillation criteria by
a parameter we succeeded to find a parametric curve which forms
a boundary of the region where nonoscillation is ensured.

• The results correspond to the Lomtatidze’s extension of Hille
nonoscillation criteria (we just obtained parametric curve rather
than analytic formula).

• We have several modification of the expression which is tested on
lim inf and lim sup, depending on the convergence/divergence of
some integrals arising from r and h and depending on the fact
whether we use c− c̃ or L[h] in the expression to be tested. (Some
of the results were new even in the linear case.)



Part 3

Neutral half-linear differential equations

• Half-linear Euler equation • Motivation (a known result to be examined in details)
• Neutral differential equation • Comparison method • Riccati transformation
• Suggested enhancements to both methods • Main results (comparison method)

• Main results (Riccati method) • Comparison of available methods



Half-linear Euler equation

[
Φ
(

x′(t)
)]′

+
β

tp Φ
(

x(t)
)
= 0

The equation is oscillatory if and only if

β >

(
p− 1

p

)p
=: Γp.

If p = 2, then β > 1/4 is necessary and sufficient for oscillation of x′′ +
β

t2 x = 0.

Motivation (a known result to be examined in details)
(Sun, Li, Han, Li; 2012)[

Φ
((

x(t) + b(t)x(λ1t)
)′)]′

+
β

tp Φ
(
x(λ2t)

)
= 0 (*)

with 0 ≤ b(t) ≤ b0 < ∞, p ≥ 2, β > 0, λ1 ∈ (0, 1).

• If 0 < λ2 ≤ λ1, then (*) is oscillatory if β > Γp
2p−2

λ
p−1
2

(
1 +

bp−1
0
λ1

)
.

• If λ2 ∈ [λ1, ∞), then (*) is oscillatory if β > Γp
2p−2

λ
p−1
1

(
1 +

bp−1
0
λ1

)
.

• If formally λ1 = λ2 = 1 and b(t) ≡ 0, the equation becomes Euler equation, but the
oscillation constant is worse by a multiplicative factor 2p−2. Brief sketch of literature
reveled that this factor appears frequently in the oscillation criteria for (*).



Neutral differential equation

(
r(t)Φ

(
z′(t)

))′
+ c(t)Φ

(
x
(
σ(t)

))
= 0

z(t) = x(t) + b(t)x(τ(t))

Assumptions: • σ(t) ≤ τ(t) ≤ t, lim
t→∞

σ(t) = ∞.

• σ(τ(t)) = τ(σ(t))

• r(t) > 0,
∫ ∞

r1−q(t)dt = ∞, c(t) ≥ 0

• τ′(t) ≥ τ0 > 0, b(t) ≤ b0

• p ≥ 2 (i.e. Φ(x) is a convex function)

Terminology: • Solution = Classical solution which is not eventually constant

• Oscillatory equation = All solutions are oscillatory (no eventually
positive solution exist)



Comparison method
(Baculíková, Džurina, Rogovchenko)

• Consider the original equation and the equation shifted from t to τ(t) and multiplied[
r(t)Φ(z′(t))

]′
+ c(t) Φ(x(σ(t))) = 0

bp−1
0

τ′(t)

[
r(τ(t))Φ(z′(τ(t)))

]′
+ c(τ(t)) bp−1

0 Φ(x(σ(τ(t)))) = 0

• Consider new variable y(t) = r(t)z′(t) +
bp−1

0
τ0

r(τ(t))z′(τ(t)). This variable satisfies

y′(t) + min{c(t), c(τ(t))}
[
Φ
(

x(σ(t))
)
+ Φ

(
b0x(σ(τ(t)))

)]
≤ 0

• Under appropriate assumptions we get

y′ + min{c(t), c(τ(t))} 22−pΦ(z(σ(t))) ≤ 0

y′ + min{c(t), c(τ(t))} 22−p
[∫ σ(t)

t0

r1−q(s)ds
]p−1

τ0

τ0 + bp−1
0

y(τ−1(σ(t))) ≤ 0

• The previous steps can be performed also for quasilinear equation(
r(t)Φα

(
z′(t)

))′
+ c(t)Φβ

(
x
(
σ(t)

))
= 0

but we end up with nonlinear inequality.



First order delay differential inequality
(Chanturia, Kitamura, Koplatadze, Kusano)

Let q(t) ≥ 0.

(i) If σ(t) < t and

lim inf
t→∞

∫ t

σ(t)
q(s)ds >

1
e

,

then

y′(t) + q(t)y(σ(t)) ≤ 0

has no eventually positive solution.

(ii) If σ(t) > t and

lim inf
t→∞

∫ σ(t)

t
q(s)ds >

1
e

,

then

y′(t)− q(t)y(σ(t)) ≥ 0

has no eventually positive solution.

(iii) Let σ(t) < t, α ∈ (0, 1). If∫ ∞

t0

q(s)ds = ∞,

then

y′(t) + q(t)yα(σ(t)) ≤ 0

has no eventually positive solution.

(iv) Let σ(t) > t, α ∈ (1, ∞). If∫ ∞

t0

q(s)ds = ∞,

then

y′(t)− q(t)yα(σ(t)) ≥ 0

has no eventually positive solution.



Riccati transformation
(Bohner, Džurina, Rogovchenko, Stavroulakis, Li)

• Classical Riccati transformation:

If (rx′)′ + qx = 0, then w = ρ
rx′

x
satisfies w′ =

ρ′

ρ
w− ρq− 1

ρr
w2.

• For ω(t) = ρ(t)
r(t)Φ(z′(t))
Φ(z(σ(t)))

and v(t) = ρ(t)
r(τ(t))Φ(z′(τ(t)))

Φ(z(σ(t)))
we obtain Riccati-

like inequalities.

• We combine them like in the comparison method. Among others, we use similar in-
equalities and estimates.

• Proceed like in Riccati method for ordinary differential equation.

Observation common to both methods

The oscillation criteria are expressed in terms
of min{c(t), c(τ(t))} and contain constant 22−p

(which has no analogy in the case without delay).



Suggested enhancements to both methods

Idea 1 (power of 2)

Inequality

xp−1
1 + xp−1

2 ≥ 22−p(x1 + x2)
p−1

causes undesired constant 2p−2. The con-
stant 22−p is optimal in this inequality,
however writing the inequality in the form

1
2

xp−1
1 +

1
2

xp−1
2 ≥

(
1
2

x1 +
1
2

x2

)p−1

we see that it is just the immediate conse-
quence of convexity of xp−1.

Suggestion: What about to use general
convex linear combination with coeffi-
cients

1
l

,
1
l∗

rather than
1
2

?

Expectation: We hope that the con-
stant 22−p will be replaced by some-
thing more convenient when choosing
optimal l and l∗.

Idea 2 (minimum)

To write the term

c(t)xp−1(t) + c(τ(t))xp−1(τ(t))

in the form of product

(”factor”)
[
xp−1(t) + xp−1(τ(t))

]
we have to introduce common multiplica-
tive factor, i.e. we have to replace both c(t)
and c(τ(t)) by min

{
c(t), c(τ(t))

}
. Here

we loose.

Suggestion: What about to try not to
loose so much and arrange thing so
that min

{
c(t), ϕc(τ(t))

}
appears in-

stead of min
{

c(t), c(τ(t))
}

?

Expectation: We hope that the fac-
tor ϕ allows to make c(t) closer to
ϕc(τ(t)) than to c(τ(t)) .



Main results (comparison method)

Classical approach:

y′ + min{c(t), c(τ(t))}
[∫ σ(t)

t1

r1−q(s)ds
]p−1

22−p τ0

τ0 + pp−1
0

y(τ−1(σ(t))) ≤ 0

Improved approach: for η(t) ≤ σ(t) we have

y′ + min{c(t), ϕc(τ(t))}
[∫ η(t)

t1

r1−q(s)ds
]p−1(

1 + (ϕ/τ0)
1/α p0

)1−p
y(τ−1(η(t))) ≤ 0

Theorem 2. Suppose that there exists number ϕ > 0 and a function η(t) satisfying
η(t) ≤ σ(t) and lim

t→∞
η(t) = ∞ such that η(t) < τ(t) ≤ t and for every T there exists

t1 > T such that

lim inf
t→∞

∫ t

τ−1(η(t))
Cη(s; ϕ, t1)ds >

1
e

,

where

Cη(t; ϕ, t1) := min{c(t), ϕc(τ(t))}
[∫ η(t)

t1

r1−q(s)ds
]p−1(

1 + (ϕ/τ0)
1/α p0

)1−p
.

Then
(

r(t)Φ
(
z′(t)

))′
+ c(t)Φ

(
x
(
σ(t)

))
= 0 is oscillatory.



Main results (Riccati method)

Theorem 3. If there exist positive mutually conjugate numbers l, l∗ and positive functions
ρ(t), ϕ(t) such that

lim sup
t→∞

∫ t

t0

ρ(s)C(s)− 1
pp

ρ(s)r(σ(s))
(σ′(s))p−1[

lp−2
(

ρ′+(s)
ρ(s)

)p

+ (l∗)p−2 bp−1
0 ϕ(s)

τ0

ρ′(s)
ρ(s)

+

(
bp−1

0 ϕ(s)
τ0

)′
τ0

bp−1
0 ϕ(s)

p

+

]
ds = ∞,

where
C(t) = min

{
c(t), ϕ(t)c(τ(t))

}
,

then (
r(t)Φ

(
z′(t)

))′
+ c(t)Φ

(
x
(
σ(t)

))
= 0

is oscillatory.



Example

[
Φ
((

x(t) + b0x(λ1t)
)′)]′

+
β

tp Φ
(
x(λ2t)

)
= 0

0 ≤ b0 < ∞, p ≥ 2, β > 0, 0 < λ2 ≤ λ1 < 1, Γp :=
(

p
p− 1

)p

Lower bound for oscillation

Sun, Li, Han, Li (2012) β > Γp
1

λ
p−1
2

2p−2

(
1 +

bp−1
0
λ1

)

Fišnarová, Mařík (2014) Riccati method β > Γp
1

λ
p−1
2

(
1 + b0λ1

)p−1

comparison method β >
1
e

1

λ
p−1
2

(1 + b0λ1)
p−1

log(λ1/λ2)



Comparison of available methods

[
x(t) + 0.5x(0.75t)

]′′
+

β

tp x(λ2t) = 0



Summary on neutral equation

• Introducing parameters in the existing oscillation criteria for neutral
half-linear and quasilinear equation we generalized existing results.
We have shown that this extension is not empty, but significant.

• The method removes undesired expressions heavily used in the os-
cillation criteria in the literature (2p−2 and min{c(t), c(τ(t))}),
improves the estimates used in the proofs and naturally produces
better results.

• The improvement is in basic steps used in most oscillation criteria
and thus a vast number of results can be improved in this direction.



Part 4

Summary
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Two success stories based on examination of widely used inequalities
and using them in another way than usual have been presented.


