

OSCILLATION DEDUCED FROM $c(x)|_{x \in \Omega}$

 $\alpha(x) > 0$

 $\alpha(x) = 0$

Theorem 1. Let Ω be unbounded simply connected domain in \mathbb{R}^n , with smooth boundary $\partial \Omega$ and meas $(\Omega \cap S(t)) > 0$ for t > 1. Let $k \in (1, \infty)$ real number and $\alpha \in C^1(\Omega \cap \Omega(1), \mathbb{R}^+) \cap C_0(\Omega, \mathbb{R})$ function satisfying Ω

(i)
$$\alpha(x) = 0$$
 iff $x \notin \Omega \cap \Omega(1)$,
(ii) $\int_{1}^{\infty} \left(\int_{\Omega \cap S(t)} \alpha(x) \, d\sigma \right)^{1-q} dt = \infty$.

$$\lim_{t \to \infty} \int_{\Omega \cap \Omega(1,t)} \alpha(x) \left(c(x) - \frac{k}{(p\alpha(x))^{p}} \|\nabla \alpha(x)\|^{p} \right) \, dx = \infty$$

then the equation

$$\operatorname{div}\left(\|\nabla u\|^{p-2}\nabla u\right)+c(x)|u|^{p-2}u=0$$

is oscillatory.

lf

Corollary 1. *If* n = 2 *and*

$$\lim_{t \to \infty} \frac{1}{\ln t} \int_{1}^{t} r \int_{0}^{\pi} c(r, \phi) \sin^{2}(\phi) \,\mathrm{d}\phi \,\,\mathrm{d}r > \frac{\pi}{2},\tag{2}$$

then the equation $\Delta u + c(x)u = 0$ is oscillatory.

The function $c(r, \phi) = \frac{A}{r^2} \sin \phi$ satisfies $\int_{S(r)} c(x) d\sigma = 0$ and the oscillation cannot be deduced from "usual" oscillation criteria. However, condition (2) can be used for A sufficiently large.

$$-\frac{1}{p^{\rho}}\left[H(r,s)k(s)\right]^{1-\rho}\Theta(s)\phi(s)|h(r,s)|^{\rho}\right\} ds = \infty,$$

where

$$\Theta(s) = \begin{cases} \int_{S(s)} \lambda_{\min}^{1-p}(x) ||A(x)||^{p} d\sigma & \text{if } p > 2, \\ \int_{S(s)} \lambda_{\max}(x) d\sigma & \text{if } 1$$

Then div
$$\left(A(x) \|\nabla u\|^{p-2} \nabla u\right) + c(x) |u|^{p-2} u = 0$$
 is oscillatory.

Remark. It holds

$$\lambda_{\min}^{1-\rho}(x) \|A(x)\|^{\rho} = \left(\frac{\lambda_{\max}(x)}{\lambda_{\min}(x)}\right)^{\rho-1} \lambda_{\max}(x) \ge \lambda_{\max}(x)$$

and hence the case 1 is sharper than the general case <math>p > 1. Corollary 2 is sharper than corresponding result published by Xu, Xing (2005).

POSSIBLE EXTENSIONS

The above suggested approach can be used whenever the study of an equation can be restricted to the partial differential equation (1) (or the corresponding inequality with = replaced by \leq). This covers for example the equation with *mixed* nonlinearities such as

$$\operatorname{div}\left(A(x)\|\nabla u\|^{p-2}\nabla u\right) + \left\langle \vec{b}(x), \|\nabla u\|^{p-2}\nabla u\right\rangle + c(x)|u|^{p-2}u + \sum_{i=1}^{m} c_{i}(x)|u|^{p_{i}-2}u = 0.$$

Brno 2009

Equadiff 12