Ordinary differential equations in the oscillation theory of

 partial half-linear differential equation
Robert Mařǐk

Dpt. of Mathematics, Mendel University (Brno, CZ)

$$
\begin{equation*}
\operatorname{div}\left(A(x)\|\nabla u\|^{p-2} \nabla u\right)+\left\langle\vec{b}(x),\|\nabla u\|^{p-2} \nabla u\right\rangle+c(x)|u|^{p-2} u=0 \tag{E}
\end{equation*}
$$

- $x=\left(x_{1}, \ldots, x_{n}\right)_{i=1}^{n} \in \mathbb{R}^{n}$,
- $A(x)$ is elliptic $n \times n$ matrix with differentiable components,
- $c(x)$ is Hölder continuous function,
- $\vec{b}(x)=\left(b_{1}(x), \ldots, b_{n}(x)\right)$ is continuous n-vector function,
- $\nabla=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)_{i=1}^{n}$ is the usual nabla operator,
- $\operatorname{div}=\frac{\partial}{\partial x_{1}}+\cdots+\frac{\partial}{\partial x_{n}}$ is the usual divergence operator,
- q is a conjugate number to the number p, i.e., $q=\frac{p}{p-1}$,
- $\langle\cdot, \cdot\rangle$ is the usual scalar product in \mathbb{R}^{n},
- $\|\cdot\|$ is the usual norm in \mathbb{R}^{n},
- solution of (E) in $\Omega \subseteq \mathbb{R}^{n}$ is a differentiable function $u(x)$ such that $A(x)\|\nabla u(x)\|^{p-2} \nabla u(x)$ is also differentiable and u satisfies (E) in Ω

$$
\operatorname{div}\left(A(x)\|\nabla u\|^{p-2} \nabla u\right)+\left\langle\vec{b}(x),\|\nabla u\|^{p-2} \nabla u\right\rangle+c(x)|u|^{p-2} u=0
$$

Concept of oscillation

Equation (E) is said to be oscillatory if for every nontrivial solution $u(x)$ and every number t^{*} there exists x^{*} with properties $u\left(x^{*}\right)=0$ and $\left\|x^{*}\right\|>t^{*}$.

RADIAL CASE, $A=I, \vec{b}=\vec{o}$
If the function $c(x)$ is radial, i.e. $c(x)=\widetilde{c}(\|x\|)$, then the equation for radial solution $u(x)=\widetilde{u}(\|x\|)$ of

$$
\begin{equation*}
\operatorname{div}\left(\|\nabla u\|^{p-2} \nabla u\right)+c(x)|u|^{p-2} u=0 \tag{1}
\end{equation*}
$$

is

$$
\begin{equation*}
\left(r^{n-1}\left|\widetilde{u}^{\prime}\right|^{p-2} \widetilde{u}^{\prime}\right)^{\prime}+r^{n-1} \widetilde{c}(r)|\widetilde{u}|^{p-2} \widetilde{u}=0 . \quad \prime=\frac{\mathrm{d}}{\mathrm{~d} r} \tag{2}
\end{equation*}
$$

If (2) is oscillatory, then (1) is also oscillatory.
Detection of oscillation from ODE, $A=I, \vec{b}=\vec{o}$
Oscillation of partial differential equation can be detected from oscillation of ordinary differential equation.

Theorem A (O. Došlý (2001)). Equation

$$
\begin{equation*}
\operatorname{div}\left(\|\nabla u\|^{p-2} \nabla u\right)+c(x)|u|^{p-2} u=0 \tag{3}
\end{equation*}
$$

is oscillatory, if the ordinary differential equation

$$
\begin{equation*}
\left(r^{n-1}\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+r^{n-1}\left(\frac{1}{\omega_{n} r^{n-1}} \int_{S(r)} c(x) \mathrm{d} x\right)|u|^{p-2} u=0 \tag{4}
\end{equation*}
$$

is oscillatory. The number ω_{n} is the surface area of the unit sphere in \mathbb{R}^{n}.
J. Jaroš, T. Kusano and N. Yoshida proved independently similar result (for $A(x)=a(\|x\|) I, a(\cdot)$ differentiable).

Spectral norm:

$$
\|A\|=\sup \left\{\|A x\|: x \in \mathbb{R}^{n} \text { with }\|x\|=1\right\}=\lambda_{\max }
$$

Frobenius norm:

$$
\begin{aligned}
& \|A\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}} \\
& \|A\| \leq\|A\|_{F} \leq \sqrt{n}\|A\|
\end{aligned}
$$

SETS IN \mathbb{R}^{n}

$$
\begin{aligned}
\Omega(a, b) & =\left\{x \in \mathbb{R}^{n}: a \leq\|x\| \leq b\right\} \\
\Omega(a) & =\left\{x \in \mathbb{R}^{n}: a \leq\|x\|\right\} \\
S(a) & =\left\{x \in \mathbb{R}^{n}:\|x\|=a\right\}
\end{aligned}
$$

$\vec{v}(x)$ is the normal unit vector to the sphere $S(\|x\|)$ oriented outwards

Theorem B (Xu(2006)). $\theta \in C^{1}\left(\left[r_{0}, \infty\right], \mathbb{R}^{+}\right), m>1, \lambda \in C\left(\left[r_{0}, \infty\right), \mathbb{R}^{+}\right)$. If

$$
\lim _{r \rightarrow \infty} \int_{\Omega\left(r_{0}, r\right)}\left[\theta(\|x\|) c(x)-\lambda(\|x\|) \frac{m}{4} \frac{\theta^{\prime 2}(\|x\|)}{\theta(\|x\|)}\right] \mathrm{d} x=\infty
$$

and

$$
\lim _{r \rightarrow \infty} \int_{\Omega\left(r_{0}, r\right)} \frac{1}{\theta(\|x\|) \lambda(\|x\|)} \mathrm{d} x=\infty, \quad \text { where } \lambda(r) \geq \max _{x \in S(r)} \lambda_{\max }(x)
$$

then $\operatorname{div}(A(x) \nabla u)+c(x) u=0$ is oscillatory.
Theorem C (Xu, Xing (2005)). Suppose $\phi, k \in C^{1}\left(\left[r_{0}, \infty\right), \mathbb{R}^{+}\right)$
(i) $H(r, r)=0$ and $H(r, s)>0$ for $r>s \geq r_{0}$, $\partial H(r, s) / \partial s$ is continuous and nonpositive,
(ii)

$$
\begin{aligned}
& h(r, s):=-\frac{\partial}{\partial s}[H(r, s) k(s)]-H(r, s) k(s) \frac{\phi^{\prime}(s)}{\phi(s)} \\
& \int_{r_{0}}^{r} H^{1-p}(r, s)|h(r, s)|^{p} \mathrm{~d} s<\infty
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \limsup _{r \rightarrow \infty} \frac{1}{H\left(r, r_{0}\right)} \\
& \quad \int_{a}^{r}\left\{H(r, s) k(s) \phi(s) \int_{S(s)} c(x) \mathrm{d} \sigma\right. \\
&\left.-\frac{1}{p^{p}}[H(r, s) k(s)]^{1-p} \Theta_{X u}(s) \phi(s)|h(r, s)|^{p}\right\} \mathrm{d} s=\infty,
\end{aligned}
$$

where

$$
\Theta_{X u}(s)=\rho(s) \omega_{n} s^{n-1} \quad \text { and } \quad \rho(s) \geq \max _{x \in S(s)} \frac{\|A(x)\|_{F}^{p}}{\lambda_{\min }^{p-1}(x)}
$$

Then $\operatorname{div}\left(A(x)\|\nabla u\|^{p-2} \nabla u\right)+c(x)|u|^{p-2} u=0$ is oscillatory.

The method used to prove most of oscillation criteria for half-linear PDE
(i) Start with a proof of oscillation criterion for ODE.
(ii) Suppose by contradiction that the PDE is nonoscillatory and possesses eventually positive solution.
(iii) Using transformation $\vec{w}(x)=A(x) \frac{\|\nabla u(x)\|^{p-2} \nabla u(x)}{|u(x)|^{p-2} u(x)}$ convert positive solutions of

$$
\operatorname{div}\left(A(x)\|\nabla u\|^{p-2} \nabla u\right)+c(x)|u|^{p-2} u=0
$$

into

$$
\begin{equation*}
\operatorname{div} \vec{w}+c(x)+(p-1)\left\langle\vec{w}, \frac{\nabla u(x)}{u(x)}\right\rangle=0 . \tag{5}
\end{equation*}
$$

(iv) Integrating (5) over spheres and using standard tools (such as eigenvalues, Schwarz and Hölder inequalities) derive a Riccati type inequality which is similar to the inequality from the proof of onedimensional criterion.
(v) Repeat steps from the proof of oscillation criterion for ODE which yield a contradiction.

Questions

- Is it possible to replace all these steps (i)-(v) by method suggested in Theorem A? Is it possible to deduce oscillation of

$$
\operatorname{div}\left(A(x)\|\nabla u\|^{p-2} \nabla u\right)+\left\langle\vec{b}(x),\|\nabla u\|^{p-2} \nabla u\right\rangle+c(x)|u|^{p-2} u=0
$$

from oscillation of certain ODE?

- Function $\lambda(r) \geq \max _{x \in S(r)} \lambda_{\max }(x)$ plays a crucial role in the linear case and $\rho(r) \geq \max _{x \in S(r)} \frac{\|A(x)\|_{F}^{p}}{\lambda_{\min }^{p-1}(x)}$ plays similar role if $p>1$. This phenomenon can be oserved also in other oscillation criteria than Theorems B and C. We know that $\rho(r) \geq \lambda(r)$. Why such a discrepancy appears?

Theorem 1. For a real number $l>1$ define

$$
\begin{aligned}
a(r) & =\left(l^{*}\right)^{p-1} \int_{S(r)}\|A(x)\|^{p} \lambda_{\min }^{1-p}(x) \mathrm{d} \sigma, \\
b(r) & =\int_{S(r)}\left[c(x)-\frac{l^{p-1}}{\lambda_{\min }^{p-1}(x)} \frac{\|\vec{b}(x)\|^{p}}{p^{p}}\right] \mathrm{d} \sigma, \\
l^{*} & = \begin{cases}1 & \text { if }\|\vec{b}(x)\|=0, \\
\frac{l}{l-1} & \text { otherwise. }\end{cases}
\end{aligned}
$$

If $\left(a(r)\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+b(r)|u|^{p-2} u=0$ is oscillatory, then (E) is also oscillatory.
Proof.

$$
\begin{aligned}
& \vec{w}(x)=A(x) \frac{\|\nabla u(x)\|^{p-2} \nabla u(x)}{|u(x)|^{p-2} u(x)} \\
& \operatorname{div} \vec{w}+c(x)-\left(\frac{l}{\lambda_{\min }}\right)^{p-1} \frac{1}{p^{p}}\|\vec{b}\|^{p}+(p-1) \lambda_{\min } \frac{1}{l^{*}} \frac{\|\nabla u\|^{p}}{|u|^{p}} \leq 0 \\
& W(r)=\int_{S(r)}\langle\vec{w}, \vec{v}\rangle \mathrm{d} \sigma \quad \Longrightarrow \quad W^{\prime}+b(r)+(p-1) a^{1-q}(r)|W|^{q} \leq 0
\end{aligned}
$$

Theorem 1A. Let $\rho \in C^{1}\left(\Omega(1), \mathbb{R}^{+}\right)$. Theorem 1 remains valid, if $a(r), b(r)$ and l^{*} are replaced by

$$
\begin{aligned}
a(r) & =\left(l^{*}\right)^{p-1} \int_{S(r)} \rho(x)\|A(x)\|^{p} \lambda_{\text {min }}^{1-p}(x) \mathrm{d} \sigma, \\
b(r) & =\int_{S(r)} \rho(x)\left[c(x)-\frac{l^{p-1}}{p^{p} \lambda_{\min }^{p-1}(x)}\left\|\vec{b}(x)-\frac{\nabla \rho(x)}{\rho(x)} A(x)\right\|^{p}\right] \mathrm{d} \sigma, \\
l^{*} & = \begin{cases}1 & \text { if }\|\rho(x) \vec{b}(x)-\nabla \rho(x) A(x)\|=0, \\
\frac{l}{l-1} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Proof. Consider $\vec{w}_{\rho}(x)=\rho(x) \vec{w}(x)$ instead of $\vec{w}(x)$.

Theorem 2. Let $1<p \leq 2$. For a real number $l>1$ define

$$
\begin{aligned}
\bar{a}(r) & =\left(l^{*}\right)^{p-1} \int_{S(r)} \lambda_{\max }(x) \mathrm{d} \sigma, \\
\bar{b}(r) & =\int_{S(r)}\left[c(x)-\frac{l^{p-1}}{p^{p}} \lambda_{\max }(x)\left\|\vec{b}(x) A^{-1}(x)\right\|^{p}\right] \mathrm{d} \sigma, \\
l^{*} & = \begin{cases}1 & \text { if }\|\vec{b}(x)\|=0, \\
\frac{l}{l-1} & \text { otherwise. }\end{cases}
\end{aligned}
$$

If $\left(a(r)\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+b(r)|u|^{p-2} u=0$ is oscillatory, then (E) is also oscillatory.
Proof.

$$
\begin{aligned}
& \vec{w}(x)=A(x) \frac{\|\nabla u(x)\|^{p-2} \nabla u(x)}{|u(x)|^{p-2} u(x)} \\
& \operatorname{div} w+c(x)-\frac{l^{p-1}}{p^{p}} \lambda_{\max }\left\|\vec{b} A^{-1}\right\|^{p}+(p-1) \frac{1}{l^{*}} \lambda_{\max }^{1-q}\|\vec{w}\|^{q} \leq 0 . \\
& W(r)=\int_{S(r)}\langle\vec{w}, \vec{v}\rangle \mathrm{d} \sigma \Rightarrow W^{\prime}+\bar{b}(r)+(p-1) \bar{a}^{1-q}(r)|W|^{q} \leq 0
\end{aligned}
$$

Example

Corollary 1. The function

$$
\Theta_{X_{u}}(s)=\rho(s) \omega_{n} s^{n-1}, \quad \rho(s) \geq \max _{x \in S(s)}\|A(x)\|_{F}^{p} \lambda_{\min }^{1-p}(x)
$$

from Theorem C can be repaced by smaller function

$$
\Theta(s)= \begin{cases}\int_{S(s)}\|A(x)\|^{p} \lambda_{\min }^{1-p}(x) \mathrm{d} \sigma & \text { if } p>2, \\ \int_{S(s)} \lambda_{\max }(x) \mathrm{d} \sigma & \text { if } 1<p \leq 2 .\end{cases}
$$

$\vec{w}(x)=A(x) \frac{\|\nabla u(x)\|^{p-2} \nabla u(x)}{|u(x)|^{p-2} u(x)}$

$p>1$ arbitrary

$$
\begin{aligned}
& \operatorname{div} \vec{w}+c+\left\langle\vec{b}, \frac{\|\nabla u\|^{p-2} \nabla u}{|u|^{p-2} u}\right\rangle+(p-1) \frac{\left\langle A\|\nabla u\|^{p-2} \nabla u, \nabla u\right\rangle}{|u|^{p}}=0 \\
& \operatorname{div} \vec{w}+c+\left\langle\vec{b}, \frac{\|\nabla u\|^{p-2} \nabla u}{|u|^{p-2} u}\right\rangle+(p-1) \lambda_{\min } \frac{\|\nabla u\|^{p}}{|u|^{p}} \leq 0 \\
& \operatorname{div} \vec{w}+c+\left\langle\vec{b}, \frac{\|\nabla u\|^{p-2} \nabla u}{|u|^{p-2} u}\right\rangle+(p-1)\left(\frac{1}{l}+\frac{1}{l^{*}}\right) \lambda_{\min } \frac{\|\nabla u\|^{p}}{|u|^{p}} \leq 0 \\
& \operatorname{div} \vec{w}+c-\left(\frac{l}{\lambda_{\min }}\right)^{p-1} \frac{1}{p^{p}}\|\vec{b}\|^{p}+(p-1) \lambda_{\min } \frac{1}{l^{*}} \frac{\|\nabla u\|^{p}}{|u|^{p}} \leq 0 \\
& \|\vec{w}\| \leq\|A\| \frac{\|\nabla u\|^{p-1}}{|u|^{p-1}} \Longrightarrow \frac{\|\nabla u\|^{p}}{|u|^{p}} \geq \frac{\|\vec{w}\|^{q}}{\|A\|^{q}} \\
& \operatorname{div} \vec{w}+c-\left(\frac{l}{\lambda_{\min }}\right)^{p-1} \frac{1}{p^{p}}\|\vec{b}\|^{p}+(p-1) \lambda_{\min } \frac{1}{l^{*}\|A\|^{q}}\|\vec{w}\|^{q} \leq 0
\end{aligned}
$$

$1<p \leq 2$

$$
\begin{aligned}
& \operatorname{div} \vec{w}+c+\left\langle\vec{b}, A^{-1} \vec{w}\right\rangle+(p-1)\left\langle\vec{w}, A^{-1} \vec{w}\right\rangle \frac{\|\nabla u\|^{2-p}}{|u|^{2-p}}=0 \\
& \left\langle\vec{w}, A^{-1} \vec{w}\right\rangle \geq\|\vec{w}\|^{2} \frac{1}{\lambda_{\max }}
\end{aligned}
$$

$$
\|\vec{w}\| \leq\|A\| \frac{\|\nabla u\|^{p-1}}{|u|^{p-1}} \Longrightarrow \frac{\|\nabla u\|^{2-p}}{|u|^{2-p}} \geq \frac{\|\vec{w}\|^{(2-p) /(p-1)}}{\|A\|^{(2-p) /(p-1)}}
$$

$$
\operatorname{div} \vec{w}+c+\left\langle\vec{b} A^{-1}, \vec{w}\right\rangle+(p-1) \lambda_{\max }^{1-q}\|\vec{w}\|^{q} \leq 0
$$

$$
\operatorname{div} \vec{w}+c+\left\langle\vec{b} A^{-1}, \vec{w}\right\rangle+(p-1)\left(\frac{1}{l}+\frac{1}{l^{*}}\right) \lambda_{\max }^{1-q}\|\vec{w}\|^{q} \leq 0
$$

$$
\operatorname{div} w+c-\frac{l^{p-1}}{p^{p}} \lambda_{\max }\left\|\vec{b} A^{-1}\right\|^{p}+(p-1) \frac{1}{l^{*}} \lambda_{\max }^{1-q}\|\vec{w}\|^{q} \leq 0
$$

