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div
(

A(x)‖∇u‖p−2∇u
)
+

〈
~b(x),‖∇u‖p−2∇u

〉
+c(x)|u|p−2u = 0

(E)

• x = (x1, . . . , xn)n
i=1 ∈R

n ,

• A(x) is elliptic n ×n matrix with differentiable components,

• c(x) is Hölder continuous function,

• ~b(x) =
(
b1(x), . . . ,bn (x)

)
is continuous n-vector function,

• ∇=
(

∂

∂x1
, . . . ,

∂

∂xn

)n

i=1

is the usual nabla operator,

• div =
∂

∂x1
+·· ·+

∂

∂xn
is the usual divergence operator,

• q is a conjugate number to the number p, i.e., q =
p

p −1
,

• 〈·, ·〉 is the usual scalar product in R
n ,

• ‖·‖ is the usual norm in R
n ,

• solution of (E) in Ω ⊆ R
n is a differentiable function u(x) such that

A(x)‖∇u(x)‖p−2∇u(x) is also differentiable and u satisfies (E) in Ω
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(
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)
+

〈
~b(x),‖∇u‖p−2∇u

〉
+c(x)|u|p−2u = 0

(E)

Concept of oscillation

Equation (E) is said to be oscillatory if for every nontrivial solution u(x) and
every number t∗ there exists x∗ with properties u(x∗) = 0 and ‖x∗‖ > t∗.

Radial case, A = I , ~b =~o

If the function c(x) is radial, i.e. c(x) = c̃(‖x‖), then the equation for radial
solution u(x) = ũ(‖x‖) of

div
(
‖∇u‖p−2∇u

)
+c(x)|u|p−2u = 0 (1)

is

(
r n−1|ũ′|p−2ũ′

)′
+ r n−1 c̃(r ) |ũ|p−2ũ = 0. ′ =

d

dr
(2)

If (2) is oscillatory, then (1) is also oscillatory.

Detection of oscillation from ODE, A = I , ~b =~o

Oscillation of partial differential equation can be detected from oscillation of
ordinary differential equation.

Theorem A (O. Došlý (2001)). Equation

div(‖∇u‖p−2∇u)+c(x)|u|p−2u = 0 (3)

is oscillatory, if the ordinary differential equation

(
r n−1|u′|p−2u′

)′
+ r n−1

(
1

ωnr n−1

∫

S(r )
c(x) dx

)
|u|p−2u = 0 (4)

is oscillatory. The number ωn is the surface area of the unit sphere in R
n .

J. Jaroš, T. Kusano and N. Yoshida proved independently similar result (for
A(x) = a(‖x‖)I , a(·) differentiable).



Matrix norms

Spectral norm:

‖A‖ = sup
{
‖Ax‖ : x ∈R

n with ‖x‖= 1
}
=λmax

Frobenius norm:

‖A‖F =

√√√√
n∑

i=1

n∑

j=1

a2
i j

‖A‖ ≤ ‖A‖F ≤
p

n‖A‖

Sets in R
n

Ω(a,b) = {x ∈R
n : a ≤‖x‖ ≤ b}

Ω(a) = {x ∈R
n : a ≤‖x‖}

S(a) = {x ∈R
n : ‖x‖ = a}

~ν(x) is the normal unit vector to the sphere S(‖x‖) oriented outwards



Known results (specified for ~b =~o)

Theorem B (Xu (2006)). θ ∈C 1([r0,∞],R+), m > 1, λ ∈C ([r0,∞),R+). If

lim
r→∞

∫

Ω(r0,r )

[
θ(‖x‖)c(x)−λ(‖x‖)

m

4

θ′2(‖x‖)

θ(‖x‖)

]
dx =∞

and

lim
r→∞

∫

Ω(r0,r )

1

θ(‖x‖)λ(‖x‖)
dx =∞, where λ(r ) ≥ max

x∈S(r )
λmax(x)

then div
(

A(x)∇u
)
+c(x)u = 0 is oscillatory.

Theorem C (Xu, Xing (2005)). Suppose φ, k ∈C 1([r0,∞),R+)

(i) H (r,r ) = 0 and H (r, s) > 0 for r > s ≥ r0,

∂H (r, s)
/
∂s is continuous and nonpositive,

(ii)

h(r, s) :=−
∂

∂s

[
H (r, s)k(s)

]
−H (r, s)k(s)

φ′(s)

φ(s)∫r

r0

H 1−p (r, s)|h(r, s)|p ds <∞

(iii)

limsup
r→∞

1

H (r,r0)

∫r

a

{
H (r, s)k(s)φ(s)

∫

S(s)
c(x)dσ

−
1

pp

[
H (r, s)k(s)

]1−p
ΘXu(s)φ(s)|h(r, s)|p

}
ds =∞,

where

ΘXu(s) = ρ(s)ωn sn−1 and ρ(s) ≥ max
x∈S(s)

‖A(x)‖p

F

λ
p−1

min
(x)

Then div
(

A(x)‖∇u‖p−2∇u
)
+c(x)|u|p−2u = 0 is oscillatory.



Sketch of proof

The method used to prove most of oscillation criteria for half-linear PDE

(i) Start with a proof of oscillation criterion for ODE.
(ii) Suppose by contradiction that the PDE is nonoscillatory and possesses

eventually positive solution.

(iii) Using transformation ~w(x) = A(x)
‖∇u(x)‖p−2∇u(x)

|u(x)|p−2u(x)
convert positive

solutions of

div
(

A(x)‖∇u‖p−2∇u
)
+c(x)|u|p−2u = 0

into

div ~w +c(x)+ (p −1)

〈
~w ,

∇u(x)

u(x)

〉
= 0. (5)

(iv) Integrating (5) over spheres and using standard tools (such as eigenval-
ues, Schwarz and Hölder inequalities) derive a Riccati type inequality
which is similar to the inequality from the proof of onedimensional
criterion.

(v) Repeat steps from the proof of oscillation criterion for ODE which yield
a contradiction.

Questions

• Is it possible to replace all these steps (i)–(v) by method suggested in
Theorem A? Is it possible to deduce oscillation of

div
(

A(x)‖∇u‖p−2∇u
)
+

〈
~b(x),‖∇u‖p−2∇u

〉
+c(x)|u|p−2u = 0

from oscillation of certain ODE?

• Function λ(r ) ≥ max
x∈S(r )

λmax(x) plays a crucial role in the linear case and

ρ(r ) ≥ max
x∈S(r )

‖A(x)‖p

F

λ
p−1

min
(x)

plays similar role if p > 1. This phenomenon can

be oserved also in other oscillation criteria than Theorems B and C. We
know that ρ(r ) ≥λ(r ). Why such a discrepancy appears?



Main result

Theorem 1. For a real number l > 1 define

a(r ) = (l∗)p−1

∫

S(r )
‖A(x)‖pλ

1−p

min
(x)dσ ,

b(r ) =
∫

S(r )

[
c(x)−

l p−1

λ
p−1

min
(x)

‖~b(x)‖p

pp

]
dσ ,

l∗ =
{

1 if ‖~b(x)‖ = 0,
l

l−1
otherwise.

If
(
a(r )|u′|p−2u′

)′
+b(r )|u|p−2u = 0 is oscillatory, then (E) is also oscillatory.

Proof.

~w(x) = A(x)
‖∇u(x)‖p−2∇u(x)

|u(x)|p−2u(x)

div ~w +c(x)−
(

l

λmin

)p−1 1

pp
‖~b‖p + (p −1)λmin

1

l∗
‖∇u‖p

|u|p
≤ 0

W (r ) =
∫

S(r )
〈~w ,~ν〉 dσ =⇒ W ′+b(r )+ (p −1)a1−q (r )|W |q ≤ 0

Modified version

Theorem 1A. Let ρ ∈C 1(Ω(1),R+). Theorem 1 remains valid, if a(r ), b(r )

and l∗ are replaced by

a(r ) = (l∗)p−1

∫

S(r )
ρ(x)‖A(x)‖pλ

1−p

min
(x)dσ ,

b(r ) =
∫

S(r )
ρ(x)

[
c(x)−

l p−1

ppλ
p−1

min
(x)

∥∥∥~b(x)−
∇ρ(x)

ρ(x)
A(x)

∥∥∥
p
]

dσ ,

l∗ =
{

1 if ‖ρ(x)~b(x)−∇ρ(x)A(x)‖ = 0,
l

l−1
otherwise.

Proof. Consider ~wρ(x) = ρ(x)~w(x) instead of ~w(x).



Main result improved for 1 < p ≤ 2

Theorem 2. Let 1 < p ≤ 2. For a real number l > 1 define

a(r ) = (l∗)p−1

∫

S(r )
λmax(x)dσ ,

b(r ) =
∫

S(r )

[
c(x)−

l p−1

pp
λmax(x)

∥∥∥~b(x)A−1(x)
∥∥∥

p
]

dσ ,

l∗ =
{

1 if ‖~b(x)‖ = 0,
l

l−1
otherwise.

If
(
a(r )|u′|p−2u′

)′
+b(r )|u|p−2u = 0 is oscillatory, then (E) is also oscillatory.

Proof.

~w(x) = A(x)
‖∇u(x)‖p−2∇u(x)

|u(x)|p−2u(x)

div w +c(x)−
l p−1

pp
λmax‖~b A−1‖p + (p −1)

1

l∗
λ

1−q
max‖~w‖q ≤ 0.

W (r ) =
∫

S(r )
〈~w ,~ν〉 dσ =⇒ W ′+b(r )+ (p −1)a1−q (r )|W |q ≤ 0

Example

Corollary 1. The function

ΘXu(s) = ρ(s)ωn sn−1, ρ(s) ≥ max
x∈S(s)

‖A(x)‖p

F
λ

1−p

min
(x)

from Theorem C can be repaced by smaller function

Θ(s) =





∫

S(s)
‖A(x)‖pλ

1−p

min
(x)dσ if p > 2,

∫

S(s)
λmax(x)dσ if 1 < p ≤ 2.



The difference between p > 2 and 1 < p ≤ 2

~w(x) = A(x)
‖∇u(x)‖p−2∇u(x)

|u(x)|p−2u(x)

p > 1 arbitrary

div ~w +c +
〈
~b,

‖∇u‖p−2∇u

|u|p−2u

〉
+ (p −1)

〈
A‖∇u‖p−2∇u,∇u

〉

|u|p
= 0

div ~w +c +
〈
~b,

‖∇u‖p−2∇u

|u|p−2u

〉
+ (p −1)λmin

‖∇u‖p

|u|p
≤ 0

div ~w +c +
〈
~b,

‖∇u‖p−2∇u

|u|p−2u

〉
+ (p −1)

(
1

l
+

1

l∗

)
λmin

‖∇u‖p

|u|p
≤ 0

div ~w +c −
(

l

λmin

)p−1 1

pp
‖~b‖p + (p −1)λmin

1

l∗
‖∇u‖p

|u|p
≤ 0

‖~w‖ ≤ ‖A‖
‖∇u‖p−1

|u|p−1
=⇒

‖∇u‖p

|u|p
≥

‖~w‖q

‖A‖q

div ~w +c −
(

l

λmin

)p−1 1

pp
‖~b‖p + (p −1)λmin

1

l∗‖A‖q
‖~w‖q ≤ 0

1 < p ≤ 2

div ~w +c +
〈
~b, A−1

~w
〉
+ (p −1)

〈
~w , A−1

~w
〉 ‖∇u‖2−p

|u|2−p
= 0

〈
~w , A−1

~w
〉
≥ ‖~w‖2 1

λmax

‖~w‖ ≤ ‖A‖
‖∇u‖p−1

|u|p−1
=⇒

‖∇u‖2−p

|u|2−p
≥

‖~w‖(2−p)/(p−1)

‖A‖(2−p)/(p−1)

div ~w +c +
〈
~b A−1, ~w

〉
+ (p −1)λ

1−q
max‖~w‖q ≤ 0

div ~w +c +
〈
~b A−1, ~w

〉
+ (p −1)

(
1

l
+

1

l∗

)
λ

1−q
max‖~w‖q ≤ 0

div w +c −
l p−1

pp
λmax‖~b A−1‖p + (p −1)

1

l∗
λ

1−q
max‖~w‖q ≤ 0


