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Abstract

This book is devoted to the study of a partial differential equation with p-Laplacian and
nonlinearity of Emden-Fowler type. The equations with p-Laplacian arise in several problem
in mathematical physics, such as glaciology, the study of non–Newtonian fluids and slow
diffusion problems.

This book collects author’s results in the oscillation theory of partial differentaial equa-
tions and gives an unified approach to these results. While most papers devoted to the
oscillain theory of PDE’s are based on an idea to replace a partial differetial equation by
its radially symmetric majorant and solve the problem in the scope of theory of ordinary
differential equations, the results in this book are somewhat different and more general. In
the presented results we try to take into consideration some effects which may appear for
partial equations, like non-radial criteria and oscillation on general domains.

The book consists of five chapters. In the first chapter we introduce the basic form of
the half-linear PDE with p-Laplacian, explain some basic facts and introduce the notation
common for all chapters. Three following chapters are devoted to three different equations
(starting from the simplest equation to more general) and the last chapter contains shorter
investigations on other related differential equations and inequalities.

Each chapter is a self-contained part of text. For this reason the numbering of equations
and theorems is also independent in each chapter and any number of theorem or equation
refers to the theorem or equation in actual chapter (unless stated explicitly otherwise).

An absolute majority of the presented results have been obtained with support of the
Czech Grant Agency. The last results concerning oscillation of the partial differential
equation in the scope of the oscillation theory for ordinary differential equations as well as
the preparation of this book were supported by the Grant 201/07/0145 of the Czech Grant
Agency.

Keywords: partial differential equation, second order differential equation, p-Laplacian,
oscillation theory
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Chapter 1

Introduction

1 Half-linear PDE with p-Laplacian

In this book we study the partial differential equation with p−Laplacian and the nonlinearity
of Emden-Fowler type

div
(
‖∇u‖p−2∇u

)
+ c(x)Φ(u) = 0 (1.1)

and several its generalizations introduced in subsequent chapters. Here p > 1, Φ is signed
power function Φ(u) = |u|p−2u = |u|p−1 sgnu, x = (x1, x2, . . . , xn), the vector norm ‖ ·‖
is the usual Euclidean norm in Rn, ∇ =

(
∂
∂x1

, . . . , ∂
∂xn

)
is the usual nabla operator and

div(·) =
∑n

i=1
∂(·)i
∂xi

is the usual divergence operator. The sets Ω(a), Ω(a, b) and S(a) are
sets in Rn defined as follows:

Ω(a) =
{
x ∈ Rn : a ≤ ‖x‖

}
,

Ω(a, b) =
{
x ∈ Rn : a ≤ ‖x‖ ≤ b

}
,

S(a) =
{
x ∈ Rn : ‖x‖ = a

}
.

The function c(x) is assumed to be integrable on every compact subset of Ω(1). It is worth
to mention that we do not assume anything concerning either the fixed sign or the radial
symmetry of the potential c(x). The solution of Eq. (1.1) we understand every differentiable
function u : Ω(1) → R such that ‖∇u‖p−2 ∂u

∂xi
is differentiable with respect to xi and u

satisfies Eq. (1.1) on Ω(1).
The number q is the conjugate number to p, i.e., q = p

p−1 . Among others, q > 1,
1
p + 1

q = 1 and (p − 1)(q − 1) = 1 hold. The number ωn is the surface area of the unit
sphere in Rn and the vector ~ν(x) is the normal unit vector to the sphere S(‖x‖) oriented
outwards, i.e. ~ν(x) = (x1, . . . , xn)‖x‖−1. Integration over the domain Ω(a, b) is performed
introducing hyperspherical coordinates (r, θ), i.e.

∫
Ω(a,b)

f(x) dx =
∫ b

a

∫
S(r)

f
(
x(r, θ)

)
dσ dr ,

where dσ is the integral element of the surface of the sphere S(r).
If p = 2, then Eq. (1.1) reduces to the linear Schrödinger equation

∆u+ c(x)u = 0, (1.2)
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where ∆u =
n∑
i=1

∂2u

(∂xi)2
, and if n = 1 then (1.1) reduces to the half–linear ordinary

differential equation(
Φ(u′)

)′
+ c(x)Φ(u) = 0. ′ =

d
dx

(1.3)

For the basic references about the half–linear equation (1.3) see the monograph by Došlý
and Řehák (2005) and papers [Elbert, 1979; Kusano, Naito, Ogata, 1994; Kusano, Naito,
1997; Lomtatidze, 1996; Došlý, 1998; Kandelaki, Lomtatidze, Ugulava, 2000; Došlý, 2000;
Došlý, Lomtatidze, 2006].

If the function c(x) is radial, i.e. c(x) = c̃
(
‖x‖
)
, then the equation for radial solution

u(x) = ũ
(
‖x‖
)

of Eq. (1.1) becomes(
rn−1Φ(ũ′)

)′
+ rn−1c̃(r)Φ(ũ) = 0, ′ =

d
dr

(1.4)

where r = ‖x‖ and this equation can be transformed into (1.3) by introducing new inde-
pendent variable s = r(p−n)/(p−1).

If we put both n = 1 and p = 2, then (1.1) reduces to the ordinary differential equation

u′′ + c(x)u = 0 (1.5)

which has been studied extensively by many authors.
The p-Laplacian is known to be a convenient tool to describe several physical and

biological phenomena, see [Dı́az, 1985] for more details.

2 Basic facts from oscillation theory

One of the pioneering works in the comparison theory of elliptic partial differential equations
is the work of Hartman and Wintner (1955). Probably the first general oscillation criterion for
partial differential equations was obtained by Glazman (1958). Oscillation and comparison
theory of second order elliptic linear partial differential equation and related equations has
been further elaborated in the literature in 60’s and 70’s in works of Clark, Headley, Kreith,
Noussair, Swanson, Travis and others, see [Clark, Swanson, 1965; Headley, Swanson, 1968;
Swanson, 1968; Headley, 1970; Kreith, Travis, 1972; Kreith, 1974; Noussair, Swanson,
1979; Swanson, 1979; Noussair, Swanson, 1980; Swanson, 1983; Kreith, 1984] and the
references therein.

Many of the oscillation criteria in the literature are based on radialization techniques
which convert the problem in n variables into a problem in one variable and thus convert,
in some sense, the partial differential equation into ordinary differential equation. Hence
many of the methods and results for ordinary differential equations can be applied also for
partial differential equations, see for example papers [Fiedler, 1988; Kusano, Naito, Ogata,
1994; Kusano, Naito, 1997] and also Chapter 4 of this thesis. Atakaryev and Toraev [Toraev,
1985; Atakarryev, Toraev, 1986] used direct variational technique rather than radialization
methods and obtained oscillation criteria on various types of unbounded domain. Besides
the variational technique, Riccati equation and Picone identity are useful tools in comparison
and oscillation theory. For references about Riccati type substitution in partial differential
equations see e.g. [Noussair, Swanson, 1980; Schminke, 1989; Došlý, Mařı́k, 2001], for
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Picone identity see e.g. [Kreith, 1984; Allegretto, Huang, 1998; Jaroš, Kusano, Yoshida,
2000; Došlý, Mařı́k, 2001].

For further references concerning oscillatory properties of linear elliptic PDE and several
its generalizations see e.g. [Müller–Pfeiffer, 1980; Schminke, 1989; Naito, Naito, Usami,
1997; Mařı́k, 20001; Mařı́k, 20002; Mařı́k, 20003] and the references therein.1 The reader
can see also the papers of Z. Xu and his coauthors [Xing, Xu, 2003; Xing, Xu, 2005; Xu,
2005; Xu, 20061; Xu, 20062; Xu, 2007; Xia, Xu, 2007] as an up-to-date reference and last
progress in this field.

Remark 2.1 (two types of oscillation). A well-known linear oscillation theory is established
for Eq. (1.2) . According to this theory, there are two different concepts of oscillation – weak
oscillation and strong (nodal) oscillation. Equation (1.2) is said to be weakly oscillatory if
every its solution has a zero outside of every ball in Rn and strongly oscillatory if every
solution has a nodal domain2 outside of every ball in Rn. Allegretto (1974) proved that both
definitions are equivalent if the function c(x) is sufficiently smooth. Moss and Piepenbrick
(1978) improved Allegretto’s result and relaxed the conditions on the function c(x) – weak
and strong oscillations are equivalent if the function c(x) is locally Hölder continuous. As
far as the author knows, the possible equivalence between both types of oscillation remains
an open question for (1.1). In this book the weak oscillation is examined.

Definition 2.1 (oscillation). The function u defined on Ω(1) is said to be oscillatory, if the
set of the zeros of the function u is unbounded with respect to the norm, i.e. the function u
has a zero in Ω(t) for every t ≥ 1. Eq. (1.1) is said to be oscillatory if every its solution
defined on Ω(1) is oscillatory. Conversely, the equation is said to be nonoscillatory, if it is
not oscillatory.

Definition 2.2 (oscillation in Ω). Let Ω be an unbounded domain in Rn. The function u
defined on Ω(1) is said to be oscillatory in the domain Ω, if the set of zeros of the function
u which belong to the closure Ω is unbounded with respect to the norm. Equation (1.1) is
said to be oscillatory in the domain Ω if every its solution defined on Ω(1) is oscillatory in
Ω. The equation is said to be nonoscillatory in Ω if it is not oscillatory in Ω.

Due to the homogeneity of the set of solutions, it follows from the definition that the
equation which possesses a solution on Ω(1) is nonoscillatory, if it has a solution u which
is positive on Ω(T ) for some T > 1 and oscillatory otherwise. Further, the equation is
nonoscillatory in Ω if it has a solution u such that u is positive on Ω∩Ω(T ) for some T > 1
and oscillatory otherwise.

Remark 2.2. The classical oscillation and comparison theory states that Eq. (1.5) is
oscillatory if the function c(x) is sufficiently large. This covers the following cases:

(i) The c(x) is sufficiently large for large x – Kneser and Kneser-type oscillation criteria)

(ii) The interval (1,∞) is allowed to contain parts with small values of the function c(x)
in every neighborhood of∞, but the integral of the function c(x)3 is sufficiently large
– Hartman-Wintner, Nehari, Hille, Kamenev and similar oscillation criteria.

1The results in [Schminke, 1989] are expressed in spectral terms, concerning the lower spectrum of
Schrödinger operator.

2A bounded domain Ω ⊆ Rn is said to be the nodal domain of a nontrivial solution u of (1.2), if u|∂Ω = 0.
3or, more generally, some integral involving this function
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(iii) The integral of the function c(x) is allowed to be small, but there is a sequence
of intervals (ai, bi) with property limi→∞ ai = ∞ such that the function c(x) is
sufficiently large on these intervals – interval-type criteria.

It is known that these classical results can be extended to Eq. (1.1) and thus Eq. (1.1)
is oscillatory if the function c(x) is sufficiently large. Most authors keep the terminology
explained in this remark4 also for Eq. (1.1), the only difference is that c(x) is replaced by
integral mean value of the function c(x) over spheres centered in the origin.

Remark 2.3 (radial and nonradial criteria). The function c(x) is usually included in the
integrals over spheres in absolute majority of oscillation criteria. Let us introduce the
following classification of these criteria.

(i) In many cases the oscillation criteria in fact depend on the mean value over spheres
centered in the origin only, i.e. on the function g(r) =

∫
S(r) c(x) dσ . The criteria

of this group5 will be called radial oscillation criteria. As a consequence of the fact
that the radial criteria depend on the integral of the potential function over the sphere
only it follows that though these criteria are proved to be sharp in the cases when the
function c(x) is radially symmetric, these criteria may fail to detect the contingent
oscillation of the equation in the cases when the mean value of the function c(x) over
the balls centered in the origin is small.

(ii) To remove the disadvantage of radial criteria we derive also several oscillation results
in which the distribution of the potential c(x) over spheres is also allowed to play a
role. These criteria will be called nonradial oscillation criteria.

Let us emphasize that following the nonradial approach we obtain oscillation criteria which
are applicable also to the cases when the equation is strongly asymmetric with respect to
origin and the mean value of the potential c(x) is small. The possible applications include
for example criteria which depend on the function g(r) =

∫
S(r) ρ(x)c(x) dσ , where ρ(x)

is n-variable function (which does not depend on ‖x‖ only). The oscillation criteria of
this type are applicable also in such extreme cases when

∫
S(r) c(x) dS = 0 and these

criteria can be used also to detect oscillation over more general exterior domains, than the
exterior of a ball. The author believes that nonradial criteria are more natural for partial
differential equations and provide deeper insight into the oscillation properties specific for
partial differential equations. Moreover, the oscillation of radially symmetric PDE’s can be
studied in the scope of ODE’s (see Eq. (1.4)) and oscillation of PDE’s with “sufficiently
large” mean value of the potential function can be detected via oscillation of certain ordinary
differential equation, as has been proved independently in [Jaroš, Kusano, Yoshida, 2000]
and [Došlý, Mařı́k, 2001].6

Remark that there are only few results in the literature concerning the oscillation on
other types of unbounded domains, than an exterior of a ball. Let us mention the paper
[Atakarryev, Toraev, 1986], where Kneser–type oscillation criteria for various types of
unbounded domains were derived for the linear equation

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
+ p(x)u = 0.

4like Kneser, Nehari, Kamenev type criteria
5This group covers absolute majority of known results.
6The results from [Jaroš, Kusano, Yoshida, 2000] and [Došlý, Mařı́k, 2001] are cited and extended in Chapter

4 of this thesis.
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The forced superlinear equation

n∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ c(x)|u|β−1u = f(x), β > 1

is studied in the paper [Jaroš, Kusano, Yoshida, 2001] via the Picone identity and the results
concerning oscillation on the domains with piecewise smooth boundary are established.

The methods presented in this thesis are often applicable also to several similar equations,
like (for p = 2) the nonlinear equation

∆u+ c(x)f(u) = 0, (2.1)

where the continuous function f satisfies sign condition uf(u) > 0 for u 6= 0 and f ′(u) >
µ > 0 for some µ ∈ R and every u > 0. However, in order to keep our ideas transparent,
we use the term c(x)Φ(u) rather than replacing this term by a term of the type c(x)f(u)
and hence consider the simpler Eq. (1.1) only. Several authors consider even more general
quasilinear equation

div
(
‖∇u‖p−2∇u

)
+B(x, u) = 0, (2.2)

where B(x, u) satisfies, roughly speaking, some conditions which imply that (2.2) is a ma-
jorant (in the sense of Sturmian theory) for (1.1). Some generalizations of this type are
introduced in Chapter 5, see also Remark 2.2 on page 61.

3 Riccati transformation

First we introduce main ideas of Riccati technique, which is the main tool in most our
results. It is well known that the Riccati differential equation

w′ + w2 + c(x) = 0 (3.1)

plays an important role in the study of the second order linear differential equation

u′′ + c(x)u = 0. (3.2)

In fact, if (3.2) has a positive solution u on an interval I , then the function w = u′/u is a
solution of (3.1), defined on I . Conversely, if the Riccati inequality

w′ + w2 + c(x) ≤ 0

has a solution w, defined on I , then (3.2) has a positive solution on I . Another important
aspect which concerns the substitution w = u′/u and terms from Riccati equation is that
these terms are embedded into the Picone identity which forms the link between the so-
called Riccati technique and variational technique in the oscillation theory of Eq. (3.2) (and
its generalizations).

It is also well known that the Riccati type substitution can be extended to several other
types of second order differential equations and inequalities, which include the selfadjoint
second order differential equation, the half-linear differential equation , the Schrödinger
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equation and also Eq. (1.1). See for example [Swanson, 1968; Swanson, 1979; Noussair,
Swanson, 1980; Schminke, 1989; Kandelaki, Lomtatidze, Ugulava, 2000].7

The main idea of the Riccati technique is contained in the following Lemma.

Lemma 3.1. Let u be solution of (1.1) positive on the domain Ω. The vector function ~w(x)
defined by

~w(x) =
‖∇u(x)‖p−2∇u(x)
|u(x)|p−2u(x)

(3.3)

is well defined on Ω and satisfies the Riccati equation

div ~w + c(x) + (p− 1)‖~w‖q = 0 (3.4)

for every x ∈ Ω.

Proof. From (3.3) it follows (the dependence on the variable x is suppressed in the notation)

div ~w =
div
(
‖∇u‖p−2∇u

)
|u|p−2u

− (p− 1)
‖∇u‖p

|u|p

on the domain Ω. Since u is a positive solution of (1.1) on Ω it follows

div ~w = −c− (p− 1)
‖∇u‖p

|u|p
.

Application of (3.3) gives div ~w = −c− (p− 1)‖~w‖q on Ω. Hence (3.4) follows.

Sometimes it is convenient to use a modified Riccati substitution multiplied by a smooth
function in one variable (see e.g. (1.5) on page 74)

~w(x) = −α(‖x‖)‖∇u(x)‖p−2∇u(x)
Φ(u(x))

, α ∈ C1([a0,∞),R+),

or n variables (see e.g. (4.4) on page 24)

~w(x) = ρ(x)
‖∇u(x)‖p−2∇u(x)

Φ(u(x))
, ρ ∈ C1(Ω(1),R+),

or by a n× n matrix (see e.g. (2.3) on page 59)

~w(x) = A(x)
‖∇u(x)‖p−2∇u(x)

Φ(u(x))
, A(x) = (aij(x)), aij ∈ C1(Ω(1),R+).

7Concerning the Riccati-equation methods in the oscillation theory of PDE’s, [Noussair, Swanson, 1980]
used the transformation

~w(x) = −α(‖x‖)
ϕ(u)

(A∇u)(x)

to detect nonexistence of eventually positive solution of the semilinear inequality

nX
i,j=1

∂

∂xi

„
aij(x)

∂u

∂xj

«
+ p(x)ϕ(u) ≤ 0,

which seems to be one of the first papers dealing with the transformation of PDE into the Riccati type equation.
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Chapter 2

Two terms PDE with p-Laplacian

1 Introduction

In this chapter we consider the two terms half-linear partial differential equation with
p-Laplacian in the form

div
(
‖∇u‖p−2∇u

)
+ c(x)Φ(u) = 0. (1.1)

As we pointed out in the previous chapter, if the function u(x) is a function which has
no zero on the domain Ω, then the substitution ~w = ‖∇u‖p−2∇u

Φ(u) converts (1.1) into vector
equation

div ~w + c(x) + (p− 1)‖~w‖q = 0, (1.2)

where q is a conjugate number to the number p.
The results from the first part of this chapter are motivated by the papers [Chantladze,

Kandelaki, Lomtatidze, 1999; Kandelaki, Lomtatidze, Ugulava, 2000] and [Schminke,
1989], where the Riccati technique is used to establish new oscillation criteria for the
half–linear ordinary differential equation(

Φ(u′)
)′

+ c(x)Φ(u) = 0, ′ =
d

dx

and the linear Schrödinger equation

∆u+ c(x)u = 0, (1.3)

respectively. In the first parts of this chapter we present an extension of Hartman–Wintner,
Hille and Nehari type oscillatin ocriteria, proved in [Mařı́k, 20002; Mařı́k, 20003]. The
results in the last three parts of this chapter are based on an idea to use Philos’s type
averaging function H(t, x) in oscillation criteria. It is worth to mention that the idea to use
this approach to detect oscillation of partial differential equations in more general domains
than exterior of a ball is new even in the linear case (1.3)

The behavior of the following function Cp(t) in a neighborhood of infinity plays a crucial
role in the oscillation theory of (1.1)

Cp(t) =
p− 1
tp−1

∫ t

1
sp−2

∫
Ω(1,s)

‖x‖1−nc(x) dx ds .
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It turns out to be useful to distinguish two complementary cases (see also [Chantladze,
Kandelaki, Lomtatidze, 1999; Kandelaki, Lomtatidze, Ugulava, 2000]). In the first case the
finite limit

lim
t→∞

Cp(t)

fails to exist and in the second case this limit exists as a finite number C0, i.e.

lim
t→∞

Cp(t) =: C0. (1.4)

It can be proved that Eq. (1.1) is oscillatory in the first case (see Theorem 2.1 below).
In the second case, following [Chantladze, Kandelaki, Lomtatidze, 1999; Kandelaki,

Lomtatidze, Ugulava, 2000], we formulate oscillation criteria for Eq. (1.1) in terms of the
functions Cp(t), Q(t), H(t) and numbers Q∗, Q∗, H∗, H∗, A and B defined as follows:

Q(t) = tp−1

(
C0 −

∫
Ω(1,t)

‖x‖1−nc(x) dx

)
;

H(t) =
1
t

∫
Ω(1,t)

‖x‖p−n+1c(x) dx ;

Q∗ = lim inf
t→∞

Q(t), Q∗ = lim sup
t→∞

Q(t);

H∗ = lim inf
t→∞

H(t), H∗ = lim sup
t→∞

H(t).

If Q∗ ≤
∣∣∣p−np ∣∣∣p ωn

p−1 , then the equation

(p− 1)ω−q/pn |x|q + (n− p)x+ (p− 1)Q∗ = 0 (1.5)

has two zeros (including multiplicity, see Lemma 3.1 below). We denote byA the smaller of
them. Similarly, if H∗ ≤

∣∣∣p−np ∣∣∣p ωn, then B denotes the larger of the zeros of the equation

(p− 1)ω−q/pn |x|q + (n− p)x+H∗ = 0. (1.6)

First let us explain the role which the above defined functions play in the oscillation
theory of Sturm–Liouville ODE

u′′ + c(x)u = 0. (1.7)

The function Cp(t) reads for p = 2, n = 1 as follows

C2(t) =
1
t

∫ t

1

∫ s

1
c(ξ) dξ ds

and it is well known from the Hartman–Wintner oscillation criterion.

Theorem A (Hartman–Wintner). If

−∞ < lim inf
t→∞

C2(t) < lim sup
t→∞

C2(t) ≤ ∞, or lim
t→∞

C2(t) =∞,

then Eq. (1.7) is oscillatory.
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In the following theorems it is assumed that c(x) is a positive function and the integral∫ ∞
1

c(x) dx

exists. If it does not, (1.7) is known to be oscillatory [Leighton 1950].
If c(t) ≥ 0, n = 1 and p = 2, then

Q(t) = t

∫ ∞
t

c(ξ) dξ

which is the function from the following Hille oscillation criterion (see [Swanson, 1968,
Theorem 2.1]).

Theorem B (Hille). Let c(x) be positive. The conditions

lim inf
t→∞

t

∫ ∞
t

c(x) dx ≤ 1
4

lim sup
t→∞

t

∫ ∞
t

c(x) dx ≤ 1

are necessary conditions for (1.7) to be nonoscillatory.

In our notation, Hille proved that Eq. (1.7) is oscillatory if c(x) is positive and either
Q∗ >

1
4 , or Q∗ > 1.

Nehari (1957) proved the following oscillation criterion.

Theorem C (Nehari). Let c(x) be positive. The condition

lim sup
t→∞

1
t

∫ t

1
x2c(x) dx > 1

is sufficient for Eq. (1.7) to be oscillatory.

For n = 1, p = 2, c(x) ≥ 0 the Nehari’s sufficient condition for oscillation of ordinary
linear differential equation (1.7) can be written as H∗ > 1.

In this sense the criteria including the functionsH(t),Q(t) and limes inferior (superior)
of them will be referred as Hille and Nehari type.

2 Hartman–Wintner type oscillation criteria

We start with investigations of nonoscillatory equation and provide an integral characteri-
zation of the fact that finite limit (1.4) exists.

Lemma 2.1. Let ~w be the solution of Riccati equation (1.2) defined on Ω(a) for some a > 1.
The following statements are equivalent:

(i) ∫
Ω(a)
‖x‖1−n‖~w‖q dx <∞; (2.1)

(ii) there exists a finite limit (1.4)
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(iii)

lim inf
t→∞

Cp(t) > −∞. (2.2)

Proof. We multiply the Riccati equation (1.2) by ‖x‖1−n and integrate on Ω(a, t). Appli-
cation of the identity

‖x‖1−n div ~w = div(‖x‖1−n ~w)− (1− n)‖x‖−n 〈~w, ~ν〉 ,

and Gauss divergence theorem yield∫
S(t)
‖x‖1−n 〈~w, ~ν〉 dσ −

∫
S(a)
‖x‖1−n 〈~w, ~ν〉 dσ

− (1− n)
∫

Ω(a,t)
‖x‖−n 〈~w, ~ν〉 dx + (p− 1)

∫
Ω(a,t)

‖x‖1−n‖~w‖q dx

+
∫

Ω(a,t)
‖x‖1−nc(x) dx = 0. (2.3)

We prove three implications: “(i)=>(ii)”, “(ii)=>(iii)” and “(iii)=>(i)”.
“(i)=>(ii)” Suppose that (2.1) holds. The Hölder inequality implies

∫
Ω(a,t)

‖x‖1−n| 〈~w, ~ν〉 | dx ≤

(∫
Ω(a,t)

‖x‖1−n‖~w‖q dx

)1/q (∫
Ω(a,t)

‖x‖1−n−p dx

)1/p

≤

(∫
Ω(a)
‖x‖1−n‖~w‖q dx

)1/q (
ωn

∫ t

a
s−p ds

)1/p

.

Hence∫
Ω(a)
‖x‖−n 〈~w, ~ν〉 dx ≤ ∞. (2.4)

Denote

Ĉ = −(p− 1)
∫

Ω(a)
‖x‖1−n‖~w‖q dx +

∫
S(a)
‖x‖1−n 〈~w, ~ν〉 dσ

+ (1− n)
∫

Ω(a)
‖x‖−n 〈~w, ~ν〉 dσ +

∫
Ω(1,a)

‖x‖1−nc(x) dx .

We will show that Ĉ = C0. Equation (2.3) can be written in the form

Ĉ −
∫

Ω(1,t)
‖x‖1−nc(x) dx =

∫
S(t)
‖x‖1−n 〈~w, ~ν〉 dσ

− (p− 1)
∫

Ω(t)
‖x‖1−n‖~w‖q dx + (1− n)

∫
Ω(t)
‖x‖−n 〈~w, ~ν〉 dx . (2.5)

Multiplying (2.5) by tp−2, integrating over [a, t] and multiplying by p−1
tp−1 we obtain
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Ĉ −
(a
t

)p−1 [
Ĉ − Cp(a)

]
− Cp(t) =

p− 1
tp−1

∫ t

a
sp−2

∫
S(s)
‖x‖1−n 〈~w, ~ν〉 dσ ds

− (p− 1)2

tp−1

∫ t

a
sp−2

∫
Ω(s)
‖x‖1−n‖~w‖q dx ds

+
(1− n)(p− 1)

tp−1

∫ t

a
sp−2

∫
Ω(s)
‖x‖−n 〈~w, ~ν〉 dx ds . (2.6)

The second and the third integrals on the right hand side tend to zero as t tends to infinity
in view of (2.1) and (2.4). The Hölder inequality implies∣∣∣∣ 1

tp−1

∫ t

a
sp−2

∫
S(s)
‖x‖1−n 〈~w, ~ν〉 dσ ds

∣∣∣∣
≤ 1
tp−1

∫ t

a
sp−2

(∫
S(s)
‖x‖1−n‖~w‖q dσ

)1/q

ω1/p
n ds

≤ ω
1/p
n

tp−1

(∫
Ω(a,t)

‖x‖1−n‖~w‖q dx

)1/q (∫ t

0
sp

2−2p ds
)1/p

≤ ω
1/p
n

(p− 1)2/p

(∫
Ω(a)
‖x‖1−n‖~w‖q dx

)1/q

t
(p−1)2

p
−(p−1)

(2.7)

and the first integral in (2.6) tends to zero too. Hence

lim
t→∞

Cp(t) = Ĉ = C0.

The implication “(ii)=>(iii)” is trivial.
“(iii)=>(i)” Suppose, by contradiction, that (2.2) holds and∫

Ω(a)
‖x‖1−n‖~w‖q dx = +∞.

From (2.3) we get

1
tp−1

∫ t

a
sp−2

∫
S(s)
‖x‖1−n 〈~w, ~ν〉 dσ ds

+
p− 1
tp−1

∫ t

a
sp−2

∫
Ω(a,s)

‖x‖1−n‖~w‖q dx ds

− 1− n
tp−1

∫ t

a
sp−2

∫
Ω(a,s)

‖x‖−n 〈~w, ~ν〉 dx ds

=
1
tp−1

∫ t

a
sp−2 ds

∫
S(a)
‖x‖1−n 〈~w, ~ν〉 dσ

− 1
tp−1

∫ t

a
sp−2

∫
Ω(a,s)

‖x‖1−nc(x) dx ds .

(2.8)

Define the function

v(t) := (p− 1)
∫ t

a
sp−2

∫
Ω(a,s)

‖x‖1−n‖~w‖q dx ds .

11



The function v satisfies

v(t)
tp−1

→∞ for t→∞. (2.9)

Because of the right hand side of the equality (2.8) is bounded from above, there exists ta
such that the right hand side of (2.8) is less than v(t)

3tp−1 for t ≥ ta. Now we have from (2.8)

2
3
v(t) <

∣∣∣∣∣
∫ t

a
sp−2

∫
S(s)
‖x‖1−n 〈~w, ~ν〉 dσ ds

∣∣∣∣∣
+

∣∣∣∣∣(1− n)
∫ t

a
sp−2

∫
Ω(a,s)

‖x‖−n 〈~w, ~ν〉 dx ds

∣∣∣∣∣ (2.10)

for t ≥ ta. Similarly to (2.7) we have∣∣∣∣∣
∫ t

a
sp−2

∫
S(s)
‖x‖1−n 〈~w, ~ν〉 dσ ds

∣∣∣∣∣
≤

(∫
Ω(a,t)

‖x‖1−n‖~w‖q dx

)1/q
ω

1/p
n t

(p−1)2

p

(p− 1)2/p
= K

(
tv′(t)

)1/q
, (2.11)

where K = ω
1/p
n (p− 1)−

2
p
− 1
q . The Hölder inequality gives∣∣∣∣∣(1− n)

∫ t

a
sp−2

∫
Ω(a,s)

‖x‖−n 〈~w, ~ν〉 dx ds

∣∣∣∣∣
≤ (n− 1)

∫ t

a
sp−2

(∫
Ω(a,t)

‖x‖1−n‖~w‖q dx

)1/q (∫ ∞
1

ωnξ
−p dξ

)1/p

ds

≤ (n− 1)

(∫ t

a
sp−2

∫
Ω(a,t)

‖x‖1−n‖~w‖q dx ds

)1/q

×
(∫ ∞

1
ωns

−p ds
)1/p(∫ t

0
sp−2 ds

)1/p

ds

= (n− 1)
( v(t)
p− 1

)1/q t
p−1
p ω

1/p
n

(p− 1)2/p

=
(n− 1)ω1/p

n

(p− 1)
1
q

+ 2
p

v1/q(t)t
p−1
p .

(2.12)

In view of the fact (2.9) there exists a number tb ≥ ta such that

(n− 1)ω1/p
n

(p− 1)
1
q

+ 2
p

t
p−1
p ≤ 1

3
v1/p(t) (2.13)

for t ≥ tb. Combining (2.10), (2.11), (2.12) and (2.13) we get

1
3
v(t) ≤ K

(
tv′(t)

)1/q
12



for t ≥ tb. From here

v′(t)
vq(t)

≥ 1
t

(
1

3K

)q
for t ≥ tb. Integration of this inequality from tb to ∞ gives a convergent integral on the
left hand side and divergent integral on the right hand side. This contradiction ends the
proof.

The following oscillation criterion now follows immediately from Lemma 2.1.

Theorem 2.1 (Hartman–Wintner type oscillation criterion). If

−∞ < lim inf
t→∞

Cp(t) < lim sup
t→∞

Cp(t) ≤ ∞

or if

lim
t→∞

Cp(t) =∞,

then Eq. (1.1) is oscillatory.

Proof. From the assumptions of the theorem it follows that lim inft→∞Cp(t) > −∞.
Suppose, by contradiction, that (1.1) is nonoscillatory. If there is a number a > 1 such that
(1.1) has a solution positive on Ω(a), then Theorem 2.1 implies that there exists a finite
limit limt→∞Cp(t). This contradicts the assumptions and theorem is proved.

Remark 2.1. Theorem 2.1 extends Theorem A proved using Riccati technique in monograph
[Hartman, 1964, Chap. XI] for linear ordinary differential equation. Remark that there are
several possibilities how to formulate the extension of this classical criterion. Another
generalization of this result was published by Došlý and Mařı́k (2001, Theorem 3.4) under
an additional condition p ≥ n+ 1. Here, in Theorem 2.1, we proved an oscillation criterion
without any restriction on p.

Corollary 2.1 (Leighton–Wintner type criterion). If

lim
t→∞

∫
Ω(1,t)

‖x‖1−nc(x) dx =∞, (2.14)

then Eq. (1.1) is oscillatory.

Proof. If (2.14) holds, then limt→∞Cp(t) = ∞ and the statement follows from Theorem
2.1.

3 Hille and Nehari type oscillation criteria

Recall that we will suppose that the finite limit

lim
t→∞

Cp(t) =: C0

exists and we formulate oscillation criteria in terms of functions Cp(t), Q(t), H(t) and
numbers Q∗, Q∗, H∗, H∗, A and B defined on page 8.

The following lemma simply ensures that the numbers A and B are well defined.
More precisely, we prove that Eqs. (1.5) and (1.6) are solvable and introduce some useful
properties of the function defined by the left hand side of these equations.
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Lemma 3.1. Let α ∈ R be arbitrary number. The function

y(x) = (p− 1)ω−q/pn |x|q + αx

has the following properties:

(i) y(x) has its global minimum at the point x̂ = −ωnΦ
(
α

p

)
and y(x̂) = −ωn

∣∣∣∣αp
∣∣∣∣p;

(ii) y(x) is decreasing on (−∞, x̂] and increasing on [x̂,∞);

(iii) limt→±∞ y(x) =∞.

Proof. Follows immediately from computation y′ = (p− 1)qω−q/pn |x|q−2x+ α.

If (1.1) is nonoscillatory and ~w is the solution of (1.2) defined on Ω(a), then denote

ρ(t) = tp−1

∫
S(t)
‖x‖1−n 〈~w, ~ν〉 dσ for t ≥ a; (3.1)

r = lim inf
t→∞

ρ(t), R = lim sup
t→∞

ρ(t);

Â = −Φ
(
n− 1
p

)
ωn, B̂ = −Φ

(
n− p− 1

p

)
ωn.

Below we prove appriori bounds for the numbers r, R. We start with one technical
lemma.

Lemma 3.2. Let (1.4) holds, (1.1) be nonoscillatory, ~w be the solution of (1.2) defined on
Ω(a) for some a > 1 and ρ(t) the function defined by (3.1). The following estimations are
true for every t ≥ τ ≥ a:

|ρ(t)|q ≤ωq/pn tp
∫
S(t)
‖x‖1−n‖~w‖q dσ ; (3.2)

Q(t) ≤ρ(t)− tp−1

∫ ∞
t

[
(p− 1)ωn−q/p|ρ(s)|q − (1− n)ρ(s)

]
s−p ds ; (3.3)

H(t) ≤− ρ(t)− 1
t

∫ t

τ

[
(p− 1)ω−q/pn |ρ(s)|q − (p− n+ 1)ρ(s)

]
ds

+
τ

t

[
ρ(τ) +H(τ)

]
; (3.4)

Q(t) ≤ρ(t) +
∣∣∣∣1− np

∣∣∣∣p ωn
p− 1

; (3.5)

H(t) ≤− ρ(t) +
∣∣∣∣p− n+ 1

p

∣∣∣∣p ωn +
τ

t

[
ρ(τ) +H(τ)

]
. (3.6)

Proof. The inequality (3.2) follows from the definition of the function ρ(t) and from the
Schwarz and Hölder inequalities. Multiplying Eq. (2.5) by tp−1 we obtain

Q(t) = ρ(t)− tp−1

∫ ∞
t

[
(p− 1)

∫
S(s)
‖x‖1−n‖~w‖q ds − (1− n)ρ(s)s−p

]
ds .
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Now (3.2) implies (3.3). Differentiating (2.5) we obtain

−
∫
S(t)
‖x‖1−nc(x) dσ =

d
dt

ρ(t)
tp−1

+ (p− 1)
∫
S(t)
‖x‖1−n‖~w‖q dσ − (1− n)

∫
S(t)
‖x‖−n 〈~w, ~ν〉 dσ .

Multiplying this equality by tp and integrating from τ ≥ a to t we obtain

−
∫

Ω(τ,t)
‖x‖p−n+1c(x) dx = tρ(t)− τρ(τ)− p

∫ t

τ
ρ(s) ds

+
∫ t

τ

[
(p− 1)sp

∫
S(s)
‖x‖1−n‖~w‖q dσ − (1− n)ρ(s)

]
ds .

Now the fact that

tH(t)− τH(τ) =
∫

Ω(τ,t)
‖x‖p−n+1c(x) dx

combined with (3.2) implies (3.4). Terms in brackets in the inequalities (3.3) and (3.4) can
be estimated using Lemma 3.1 and after integration we get (3.5) and (3.6). Note that Â and
B̂ are the points, which, substituted to ρ(s) in (3.3) and (3.4), realize the minimum value of
the function in brackets.

Theorem 3.1. Let (1.4) holds and

lim sup
t→∞

tp−1

ln t
[C0 − Cp(t)] >

∣∣∣p− n
p

∣∣∣pωn. (3.7)

Then Eq. (1.1) is oscillatory.

Proof of Theorem 3.1. Suppose, by contradiction, that (1.4) holds, there exists a solution
w(x) of the Riccati equation defined on Ω(a) for some a > 1 and (3.7) does not hold. We
start with the equality (2.5). Multiplying it by (p− 1)tp−2, integrating over [a, t] and using
(3.1) we obtain

tp−1
(
C0 − Cp(t)

)
− ap−1C0 = (p− 1)

∫ t

a

ρ(s)
s

ds − (p− 1)tp−1

∫
Ω(t)
‖x‖1−n‖~w‖q dx

+ (p− 1)ap−1

∫
Ω(a)
‖x‖1−n‖~w‖q dx

− (p− 1)
∫ t

a
sp−1

∫
S(s)
‖x‖1−n‖~w‖q dσ ds

+ (1− n)tp−1

∫
Ω(t)
‖x‖−n 〈~w, ~ν〉 dx − (1− n)ap−1

∫
Ω(a)
‖x‖−n 〈~w, ~ν〉 dx

+ (1− n)
∫ t

a

ρ(s)
s

ds ,

where on the right hand side the last six terms appeared from integration by parts from the
last two terms in (2.5). From here and from the inequality (3.2) we conclude
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tp−1
(
C0 − Cp(t)

)
≤ K − tp−1

∫ ∞
t

[
(p− 1)ω−q/pn |ρ(s)|q − (1− n)ρ(s)

]
s−p ds

−
∫ t

a

[
(p − 1)ω−q/pn |ρ(s)|q − (p − n)ρ(s)

]1
s

ds ,

where the constant terms are joint in one constant K. The terms in the integrals can be
estimated by Lemma 3.1 and after integration we obtain

tp−1 (C0 − Cp(t)) ≤ K +
∣∣∣∣1− np

∣∣∣∣p ωn
p− 1

+
∣∣∣∣p− np

∣∣∣∣p ωn ln
t

a
(3.8)

for t ≥ a, which contradicts (3.7). Theorem is proved.

Suitable modifications of the left hand side of (3.7) lead to the following corollary.

Corollary 3.1. Let (1.4) holds. Every of the following conditions is sufficient for Eq. (1.1)
to be oscillatory:

(i) Q∗ > −∞ and

lim sup
t→∞

1
ln t

∫
1≤‖x‖≤t

‖x‖p−nc(x) dx >

∣∣∣∣n− pp
∣∣∣∣p ωn; (3.9)

(ii)

lim inf
t→∞

[Q(t) +H(t)] >
p

p− 1

∣∣∣∣n− pp
∣∣∣∣p ωn; (3.10)

(iii)

Q∗ >
1

p− 1

∣∣∣∣n− pp
∣∣∣∣p ωn; (3.11)

(iv)

H∗ >

∣∣∣∣n− pp
∣∣∣∣p ωn. (3.12)

Proof of Corollary 3.1. Suppose that (1.4) holds. From the definition of the function Q(t)
it follows

tp−1
(
C0 − Cp(t)

)
= Q(t) + tp−1

∫
Ω(1,t)

‖x‖1−nc(x) dx

− (p − 1)
∫ t

1
sp−2

∫
Ω(1,s)

‖x‖1−nc(x) dx ds .

Integration by parts in the second integral gives

tp−1
(
C0 − Cp(t)

)
= Q(t) +

∫
Ω(1,t)

‖x‖p−nc(x) dx . (3.13)
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Now the statement (i) follows from Theorem 3.1. Similarly from the definition of the
function Q(t) it follows

tp−1
(
C0 − Cp(t)

)
= (p− 1)

∫ t

1

Q(s)
s

ds + C0.

From here and from Theorem 3.1 it follows that (1.1) is oscillatory if (iii) holds. Integrating
by parts in the last equality we have

tp−1
(
C0−Cp(t)

)
= (p− 1)

[
1
t

∫ t

1
Q(s) ds +

∫ t

1

1
s2

∫ s

1
Q(ξ) dξ ds

]
+C0. (3.14)

Further∫ t

1
Q(s) ds =tQ(t)−Q(1)−

∫ t

1
sQ′(s) ds

=tQ(t)− C0 − C0
p− 1
p

(tp − 1) + (p− 1)
∫ t

1
sp−1

∫
Ω(1,s)

‖x‖1−nc(x) dx ds

+
∫ t

1
sp
∫
S(s)
‖x‖1−nc(x) dσ ds .

Integration by parts in the first integral on the right hand side and the definitions of the
functions Q(t) and H(t) gives∫ t

1
Q(s) ds =

1
p

(
tQ(t) + tH(t)− C0

)
.

Hence

Q(t) +H(t) =
p

t

∫ t

1
Q(s) ds +

C0

t

holds for every t ≥ 1. If (ii) holds, then

lim inf
t→∞

1
t

∫ t

1
Q(s) ds >

1
p− 1

∣∣∣∣n− pp
∣∣∣∣p ωn

and the equality (3.14) with the Theorem 3.1 implies oscillation of Eq. (1.1). The last
statement follows from the equalities

Cp(t)− Cp(τ) = (p− 1)
∫ t

τ

ln s
sp

1
ln s

∫
Ω(1,s)

‖x‖p−nc(x) dx ds

1
ln t

∫
Ω(1,t)

‖x‖p−nc(x) dx =
H(t)
ln t

+
1

ln t

∫ t

1

H(s)
s

ds ,

which can be derived in a similar way.

For a related result proved by a different technique and for slightly different equation
see Corollary 1.2 of Chapter 5 (page 76).
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Remark 3.1. If the limit

lim
t→∞

∫
Ω(1,t)

‖x‖1−nc(x) dx (3.15)

exists, then the limit (1.4) exists too and both limits are equal. If the limit (3.15) is finite,
then Q(t) takes the form

Q(t) = tp−1

∫
Ω(t)
‖x‖1−nc(x) dx .

On the other hand, the existence of (3.15) is not necessary for existence of the limit (1.4).
For p = 2, n = 1, c(x) ≥ 0 is the criterion (3.11) the well–known Hille’s criterion.

If p = n, then the oscillation constant in Theorem 3.1 and Corollary 3.1 equals zero. In
this case the criteria including lim sup, i.e. criteria (3.7) and (3.9), can be restated in the
following sharper form.

Theorem 3.2. Let p = n and (1.4) holds. Each of the following conditions guarantees
oscillation of Eq. (1.1):

(i)

lim sup
t→∞

tn−1[C0 − Cp(t)] =∞;

(ii)

Q∗ > −∞ and lim sup
t→∞

∫
Ω(1,t)

c(x) dx =∞.

The following theorem completes the criterion (3.10) in some sense.

Theorem 3.3. Let (1.4) and

lim sup
t→∞

[Q(t) +H(t)] >
∣∣∣∣1− np

∣∣∣∣p ωn
p− 1

+
∣∣∣∣p− n+ 1

p

∣∣∣∣p ωn. (3.16)

Then Eq. (1.1) is oscillatory.

Proof of Theorem 3.3. Suppose, by contradiction, that Eq. (1.1) is nonoscillatory and (1.4)
holds. Then the inequalities (3.5) and (3.6) holds. The sum of this two inequalities
contradicts (3.16). This contradiction ends the proof.

Remark 3.2. Putting x = 1
p−n+1 into the inequality

|1− px|p + p− 1 ≥ p|1− x|p

and multiplying it by
∣∣∣p−n+1

p

∣∣∣p ωn
p−1 we obtain∣∣∣∣1− np

∣∣∣∣p ωn
p− 1

+
∣∣∣∣p− n+ 1

p

∣∣∣∣p ωn ≥ p

p− 1

∣∣∣∣n− pp
∣∣∣∣p ωn.

For p = n − 1 is this inequality trivial. From here it follows that the oscillation constant
in the criterion (3.10), lim inft→∞[Q(t) + H(t)], is smaller than that one in the criterion
(3.16), lim supt→∞[Q(t) +H(t)].
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In view of the previous results, it is natural to focus our attention to the cases, when
(3.11) and (or) (3.12) does not hold. Suppose

(n− 1)− p(p− 1)
p(p− 1)

Φ
(
n− 1
p

)
ωn ≤ Q∗ ≤

∣∣∣∣n− pp
∣∣∣∣p ωn
p− 1

, (3.17)

and (or)

1− n
p

Φ
(
p− n+ 1

p

)
ωn ≤ H∗ ≤

∣∣∣∣n− pp
∣∣∣∣p ωn. (3.18)

Remark 3.3. Putting x = p−1
n−1 into the inequality

1− px ≤ |1− x|p (3.19)

and multiplying this inequality by
∣∣∣n−1
p−1

∣∣∣p ωn
p−1 we obtain

(n− 1)− p(p− 1)
p(p− 1)

Φ
(
n− 1
p

)
ωn ≤

∣∣∣∣n− pp
∣∣∣∣p ωn
p− 1

.

In the case n = 1 is this inequality trivial. Similarly we can obtain

1− n
p

Φ
(
p− n+ 1

p

)
ωn ≤

∣∣∣∣n− pp
∣∣∣∣p ωn

from (3.19) choosing x = 1
p−n+1 and multiplying by

∣∣∣p−n+1
p

∣∣∣p ωn. Hence both (3.17) and
(3.18) are meaningful.

In the folowing two technical lemmas we present an estimate for numbers A and B.
Recall that these numbers are defined on page 8.

Lemma 3.3. Let (1.1) be nonoscillatory and let (1.4) and (3.17) hold. Then

r ≥ A ≥ Â, (3.20)

where A denotes the smaller of zeros of Eq. (1.5).

Proof. Letw be the solution of the Riccati equation (1.2) defined on Ω(a), a > 1. If r =∞,
there is nothing to prove. Suppose that r < ∞. If Q∗ = (n−1)−p(p−1)

p(p−1) Φ
(
n−1
p

)
ωn then Â

solves Eq. (1.5) and lies on the left hand side from the global minimum of the function
defined by the left hand side of this equation. Then Lemma 3.1 implies that A = Â. Now
inequality (3.5) implies

r ≥ Q∗ −
∣∣∣∣1− np

∣∣∣∣p ωn
p− 1

= Â = A

and (3.20) holds.
Suppose that ε0 := Q∗ − (n−1)−p(p−1)

p(p−1) Φ
(
n−1
p

)
ωn > 0. Then clearly A > Â. For

every ε ∈ (0, ε0) there exists tε > a such that for every t ≥ tε the following inequality
holds.

ρ(t) ≥ r − ε > r −Q∗ +
(n− 1)− p(p− 1)

p(p− 1)
Φ
(
n− 1
p

)
ωn
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From the inequality (3.5) we have

Q∗ ≤ r +
∣∣∣∣1− np

∣∣∣∣p ωn
p− 1

and combining the last two inequalities we get

ρ(t) > r − ε > −Φ
(
n− 1
p

)
ωn

for t ≥ tε. From here and from Lemma 3.1 it follows that the right hand side of (3.3) can
be increased substituting ρ(s) by r − ε, if t ≥ tε. Hence, after integration, we have

(p− 1)Q(t) < (p− 1)ρ(t)− (p− 1)ω−q/pn |r − ε|q + (1− n)(r − ε)

for every t ≤ tε. The limit process limε→0+ lim inft→∞ gives

(p− 1)ω−q/pn |r|q + (n− p)r + (p− 1)Q∗ ≤ 0

which implies r ≥ A. The lemma is proved.

Lemma 3.4. Let (1.4) and (3.18) hold and let (1.1) be nonoscillatory. Then

R ≤ B ≤ B̂, (3.21)

where the number B denotes the larger zero of Eq. (1.6).

Proof. The proof is almost the same as the proof of Lemma 3.3. Let w be the solution of
the Riccati equation (1.2) defined on Ω(a), a > 1. If R = −∞, there is nothing to prove.
Suppose that R > −∞. If H∗ = 1−n

p Φ
(
p−n+1

p

)
ωn then B̂ solves Eq. (1.6) and lies on

the right hand side from the global minimum of the function defined by the left hand side
of this equation. Then Lemma 3.1 implies that B = B̂. Now the inequality (3.6) implies

R ≤ −H∗ +
∣∣∣∣p− n+ 1

p

∣∣∣∣p ωn = B̂ = B

and (3.21) holds.
Suppose that ε0 := H∗ − 1−n

p Φ
(
p−n+1

p

)
ωn > 0. Then clearly B < B̂. For every

ε ∈ (0, ε0) there exists tε > a such that for every t ≥ tε

ρ(t) ≤ R+ ε < R+H∗ −
1− n
p

Φ
(
p− n+ 1

p

)
ωn

From the inequality (3.6) we have

H∗ ≤ −R+
∣∣∣∣p− n+ 1

p

∣∣∣∣p ωn.
Combining the last two inequalities we get

ρ(t) < R+ ε < −Φ
(
p− n+ 1

p

)
ωn
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for t ≥ tε. From here and from Lemma 3.1 it follows that the right hand side of (3.4) can
be increased substituting ρ(s) by R+ ε, if τ ≥ tε. Hence, after integration, we have

H(t) < −ρ(t)−(p−1)ω−q/pn |R+ε|q+(p−n+1)(R+ε)
(

1− τ

t

)
+
τ

t

[
ρ(τ)+H(τ)

]
for every t ≤ tε. The limit process limε→0+ lim inft→∞ gives

(p− 1)ω−q/pn |R|q + (n− p)R+H∗ ≤ 0

which implies R ≤ B. The lemma is proved.

In the following theorem we suppose that only one of the inequalities (3.17) and (3.18)
hold.

Theorem 3.4. Let (1.4) holds. Each of the following conditions implies oscillation of
Eq. (1.1):

(i)

(3.17) and H∗ >
∣∣∣∣p− n+ 1

p

∣∣∣∣p ωn −A hold; (3.22)

(ii)

(3.18) and Q∗ >
1

p− 1

∣∣∣∣1− np
∣∣∣∣p ωn +B hold. (3.23)

Proof of Theorem 3.4. Let us prove (i). Suppose, by contradiction, that (1.1) is nonoscilla-
tory and (3.17) holds. The inequality (3.6) implies

H∗ ≤ −r +
∣∣∣∣p− n+ 1

p

∣∣∣∣p ωn.
From Lemma 3.3 it follows

H∗ ≤
∣∣∣∣p− n+ 1

p

∣∣∣∣p ωn −A,
a contradiction. The statement (ii) can be proved similarly using inequality (3.6) and Lemma
3.3, which implies

Q∗ ≤ B +
1

p− 1

∣∣∣∣n− 1
p

∣∣∣∣p ωn, (3.24)

a contradiction to (3.23).

If both (3.17) and (3.18) holds, then constants in (3.16), (3.22) and (3.23) can be
decreased, as the following theorem shows.

Theorem 3.5. Let (1.4), (3.17) and (3.18) holds. Each of the following conditions implies
oscillation of Eq. (1.1):

(i)

Q∗ > Q∗ −A+B; (3.25)
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(ii)

H∗ > H∗ −A+B;

(iii)

lim sup
t→∞

[Q(t) +H(t)] > Q∗ +H∗ −A+B. (3.26)

Proof of Theorem 3.5. Suppose that (1.1) is nonoscillatory, (3.17) and (3.18) hold. Suppose
Q∗ >

(n−1)−p(p−1)
p(p−1) Φ

(
n−1
p

)
ωn and H∗ > 1−n

p Φ
(p−n+1

p

)
ωn. Then A > Â and B < B̂. By

Lemmas 3.3 and 3.4, for every ε ∈ (0,min{A− Â,−B + B̂}) there exists tε such that

Â < A− ε < ρ(t) < B + ε < B̂

for every t ≥ tε. Lemma 3.1 implies, that the right hand sides of the inequalities (3.3) and
(3.4) can be for t ≥ τ ≥ tε increased substituting ρ(t) byA− ε,B+ ε, respectively. Hence

Q(t) ≤ρ(t)− ω−q/pn

∣∣∣A− ε∣∣∣q +
1− n
p− 1

(A− ε) (3.27)

and

H(t) ≤− ρ(t)−
[
(p− 1)ω−q/pn |B + ε|q − (p− n+ 1)(B + ε)

][
1− τ

t

]
+
τ

t

[
ρ(τ) +H(τ)

]
(3.28)

hold for large t and τ . From (3.27) using the limit process limε→0+ lim supt→∞ and Lemma
3.4 we obtain

Q∗ ≤ B − ω−q/pn |A|q +
1− n
p− 1

A. (3.29)

Combining this inequality and Eq. (1.5) we obtain

Q∗ ≤ Q∗ −A+B

which contradicts (3.25). The condition (i) is proved. The condition (ii) follows in a similar
way from (3.28), Lemma 3.3 and Eq. (1.6). The sum of (3.27) and (3.28) gives

Q(t) +H(t) ≤ −ω−q/pn

∣∣∣A− ε∣∣∣q +
1− n
p− 1

(A− ε)−
[
(p− 1)ω−q/pn |B + ε|q

− (p − n + 1)(B + ε)
][

1 − τ

t

]
+
τ

t

[
ρ(τ) + H(τ)

]
The limit process limε→0+ lim supt→∞, (1.5) and (1.6) imply

lim sup
t→∞

[Q(t) +H(t)] ≤ Q∗ +H∗ −A+B,

which contradicts (3.26).
If Q∗ = (n−1)−p(p−1)

p(p−1) Φ
(
n−1
p

)
ωn (H∗ = 1−n

p Φ
(p−n+1

p

)
ωn) then A = Â (B = B̂) and

(3.27) ((3.28)) with ε = 0 follows from the statement (ii) of Lemma 3.1 for every t ≥ a.
The rest of the proof is identical with those one given above.

22



The fact that constants from Theorem 3.5 are smaller than those in Theorem 3.4 is
explained in Remark 3.5.

Remark 3.4. The right-hand sides in (3.7)–(3.12), (3.25)–(3.26) are optimal and they
cannot be increased. This follows from the example of the equation with radial function
c(x) =

∣∣∣p−np ∣∣∣p 1
‖x‖p . This equation is nonoscillatory, since ‖x‖

p−n
p is its solution, and the

function c(x) produces equality in the above mentioned criteria.

Remark 3.5. The constants in Theorem 3.5 are smaller than the corresponding ones in
Theorems 3.3, 3.4. This follows from the proof of these theorems. Let us show this fact
in the case of oscillation criterion Q∗. Lemma 3.1 implies that the constant in inequality
(3.29), which was used in proof of Theorem 3.5, is less than or equal to the constant in
inequality (3.24) used in Theorem 3.4. If, in addition, the first inequality in (3.17) is sharp,
then A > Â and the constant in (3.29) is strictly less than that one in (3.24).

Remark 3.6. Recall that the criteria expressed in terms of the functions Cp(t), Q(t) and
H(t) are radial in the sense of the classification introduced in Remark 2.3 on page 4 – the
functionsCp(t),Q(t) andH(t) depend on

∫
S(r) c(x) dσ only and the first step in the proofs

is integration of Riccati equation over ball S(r). Preferring integration over the balls in Rn

we loose the information about the distribution of the potential c(x) over the sphere S(r).
This makes many things easier and computations more comfortable, but the distribution of
potential over spheres may be substantial in cases when the mean value of the function c(x)
over spheres is not sufficiently large.

This disadvantage can be removed using integral averaging technique with the so called
H-function, as shown in the remaining part of this chapter. In the proofs of the corresponding
oscillation criteria we multiply the Riccati equation by a nonradial function first and then
integrate this equation over spheres. As a consequence we get nonradial oscillation criteria.
Moreover, the function H(t, x) which is used to multiply the Riccati equation is allowed to
contain parts where this function is identically zero and a convenient choice of this function
allows to formulate oscillation criteria for different (but simple) unbounded domains than
exterior of the ball (see for example Theorem 5.1).

4 Oscillation and weighted integral averages

Notation: Let D and D0 are the sets in R× Rn defined as follows:

D =
{

(t, x) ∈ R× Rn : t ≥ ‖x‖ ≥ t0
}
,

D0 =
{

(t, x) ∈ R× Rn : t > ‖x‖ ≥ t0
}
.

Philos (1989) used a class of functions H(t, s) defined on D ∈ R × R to obtain
oscillation criteria for linear second order Sturm–Liouville differential equation. This
technique, usually referred as averaging technique, has been elaborated and extended also
for other types of differential equations, see e.g. [Li, 1995; Kong, 1999; Wang, 2001]. Let
us point out especially the paper [Wang, 2001], where the usual condition ∂H(t,s)

∂s ≤ 0 is
relaxed.

In the remaining part of this chapter we extend the averaging technique also to our
Eq. (1.1) and obtain new oscillation criteria which are nonradial in their nature and thus
different from usual oscillation criteria published in the literature. It is also shown, that this
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technique allows to get oscillation criteria not only for the exterior of a ball, but also for
different types of unbounded domains. Let us start with a direct extension of [Wang, 2001,
Theorem 1] to Eq. (1.1) (see also Theorem D on page 69).

Theorem 4.1. Let H(t, x) ∈ C(D, [0,∞)), and ρ(x) ∈ C1(Ω(t0), (0,∞)) be such that
the function H(t, x) has continuous partial derivative with respect to xi (i = 1..n) on D0

and the following conditions hold

(i) H(t, x) = 0 if and only if t = ‖x‖

(ii) There exists function k(s) ∈ C([t0,∞), (0,∞)) such that the function
f(t, s) := k(s)

∫
S(s)H(t, x) dσ is nonincreasing with respect to s for every t ≥ s ≥

t0.

(iii) The vector–valued function ~h(t, x) defined on D0 by

~h(t, x) = ∇H(t, x) +
H(t, x)
ρ(x)

∇ρ(x) (4.1)

satisfies∫
Ω(t0,t)

H1−p(t, x)‖~h(t, x)‖pρ(x) dx <∞ (4.2)

for t > t0.

If

lim sup
t→∞

(∫
S(t0)

H(t, x) dσ

)−1

×
∫

Ω(t0,t)

[
H(t, x)ρ(x)c(x)− ‖

~h(t, x)‖pρ(x)
ppHp−1(t, x)

]
dx =∞, (4.3)

then Eq. (1.1) is oscillatory.

Proof. Suppose that (1.1) is not oscillatory. There exists T ≥ t0, such that (1.1) has
a solution u positive on Ω(T ). We use a modified Riccati substitution. The vector variable

~w(x) := ρ(x)
‖∇u(x)‖p−2∇u(x)

Φ(u(x))
(4.4)

is well defined on Ω(T ) and satisfies

div ~w(x) = ρ(x)
div
(
‖∇u‖p−2∇u

)
Φ(u)

+
‖∇u‖p−2

Φ(u)
〈∇u,∇ρ(x)〉 − (p− 1)ρ(x)

‖∇u‖p

|u|p
.

An application of (1.1) and (4.4) to this equality gives

div ~w(x) = −ρ(x)c(x) +
1

ρ(x)
〈~w(x),∇ρ(x)〉 − (p− 1)ρ1−q(x)‖~w(x)‖q (4.5)

and equivalently

ρ(x)c(x) = − div ~w(x) +
1

ρ(x)
〈~w(x),∇ρ(x)〉 − (p− 1)ρ1−q(x)‖~w(x)‖q
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for x ∈ Ω(T ). Multiplication of this equality by the factor H(t, x) and integration over
Ω(T, t) for t > T yields∫

Ω(T,t)
H(t, x)ρ(x)c(x) dx = −

∫
Ω(T,t)

H(t, x) div ~w(x) dx

+
∫

Ω(T,t)
H(t, x)

1
ρ(x)

〈~w(x),∇ρ(x)〉 dx

−
∫

Ω(T,t)
H(t, x)(p− 1)ρ1−q(x)‖~w(x)‖q dx .

From here we conclude that∫
Ω(T,t)

H(t, x)ρ(x)c(x) dx = −
∫

Ω(T,t)
div(H(t, x)~w(x)) dx

+
∫

Ω(T,t)
〈∇H(t, x), ~w(x)〉 dx +

∫
Ω(T,t)

H(t, x)
1

ρ(x)
〈~w(w),∇ρ(x)〉 dx

−
∫

Ω(T,t)
H(t, x)(p− 1)ρ1−q(x)‖~w(x)‖q dx .

Application of Gauss-Ostrogradski theorem, the property (i) of the function H(t, x) and
(4.1) give∫

Ω(T,t)
H(t, x)ρ(x)c(x) dx =

∫
S(T )

H(t, x) 〈~w(x), ~ν〉 dx

+
∫

Ω(T,t)

〈
~h(t, x), ~w(x)

〉
dx −

∫
Ω(T,t)

H(t, x)(p− 1)ρ1−q(x)‖~w(x)‖q dx .

(4.6)

From here and from the Young inequality

(p− 1)‖ ~X‖q − p
〈
~X, ~Y

〉
+ ‖~Y ‖p ≥ 0 (4.7)

for ~X = ~w(x)H
1
q (t, x)ρ−

1
p (x) and ~Y = ~h(t, x)ρ

1
p (x)p−1H

1−p
p (t, x) it follows∫

Ω(T,t)
H(t, x)ρ(x)c(x) dx

≤
∫
S(T )

H(t, x) 〈~w(x), ~ν〉 dx +
∫

Ω(T,t)

‖~h(t, x)‖pρ(x)
ppHp−1(t, x)

dx .

which is equivalent to∫
Ω(T,t)

[
H(t, x)ρ(x)c(x)− ‖

~h(t, x)‖pρ(x)
ppHp−1(t, x)

]
dx ≤

∫
S(T )

H(t, x) 〈~w(x), ~ν〉 dx

Hence∫
Ω(T,t)

[
H(t, x)ρ(x)c(x)− ‖

~h(t, x)‖pρ(x)
ppHp−1(t, x)

]
dx ≤ w∗(T )

∫
S(T )

H(t, x) dσ , (4.8)
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where w∗(T ) = maxx∈S(T )

{
‖~w(x)‖

}
. Using (4.8) we are able to estimate the integral

from the condition (4.3)∫
Ω(t0,t)

[
H(t, x)ρ(x)c(x)− ‖

~h(t, x)‖pρ(x)
ppHp−1(t, x)

]
dx

≤
∫

Ω(t0,T )
H(t, x)ρ(x)c(x) dx + w∗(T )

∫
S(T )

H(t, x) dσ

≤
∫ T

t0

[∫
S(s)

H(t, x) dσ

]
k(s)

ρ∗(s)c∗(s)
k(s)

ds +
w∗(T )
k(T )

k(T )
∫
S(T )

H(t, x) dσ

for t > T where ρ∗(s) = maxx∈S(s){ρ(x)} and c∗(s) = maxx∈S(s)

{
|c(x)|

}
. Since

f(t, s) := k(s)
∫
S(s)H(t, x) dσ is a nonincreasing function with respect to s, the above

inequality implies∫
Ω(t0,t)

[
H(t, x)ρ(x)c(x)− ‖

~h(t, x)‖pρ(x)
ppHp−1(t, x)

]
dx

≤k(t0)

[∫
S(t0)

H(t, x) dσ

][∫ T

t0

ρ∗(s)c∗(s)
k(s)

ds +
w∗(T )
k(T )

]

and hence(∫
S(t0)

H(t, x) dσ

)−1 ∫
Ω(t0,t)

[
H(t, x)ρ(x)c(x)− ‖

~h(t, x)‖pρ(x)
ppHp−1(t, x)

]
dx

≤k(t0)
∫ T

t0

ρ∗(s)c∗(s)
k(s)

ds +
k(t0)w∗(T )

k(T )

for large t, which contradicts (4.3).

Remark 4.1. If both H(t, x) and ρ(x) in Theorem 4.1 depend on t and ‖x‖ only, then
Theorem 4.1 reduces to [Wang, 2001, Theorem 1].

5 Oscillation in general domains

The following theorem is a variant of the preceding one. In contrast to Theorem 4.1, the
function H(t, x) need not to be positive for t0 ≤ ‖x‖ < t in theorems below, but can
attain also zero values. This allows to eliminate “bad parts” of the potential c(x) from our
considerations. We will use the following additional notation:

Ω0,t(a, b) =
{
x ∈ Rn : a ≤ ‖x‖ ≤ b,H(t, x) 6= 0

}
,

S0,t(a) =
{
x ∈ Rn : ‖x‖ = a,H(t, x) 6= 0

}
.

These sets are used to exclude the parts of the sets Ω(a, b) and S(a) where the function
H(t, x) equals zero from the area of integration.

Theorem 5.1. Let H(t, x) ∈ C(D, [0,∞)), and ρ(x) ∈ C1(Ω(t0), (0,∞)) be such that
the function H(t, x) has continuous partial derivative with respect to xi (i = 1..n) on D0

and the following conditions hold
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(i) If ‖x‖ = t ≥ t0, then H(t, x) = 0.

(ii) If H(t, x) = 0 for some (t, x) ∈ D0, then ‖∇H(t, x)‖ = 0.

(iii) There exists function k(s) ∈ C([t0,∞), (0,∞)) such that the function
f(t, s) := k(s)

∫
S(s)H(t, x) dσ = k(s)

∫
S0,t(s)

H(t, x) dσ is positive and nonin-
creasing with respect to s for every t > s ≥ t0.

(iv) The vector–valued function ~h(t, x) defined on D0 by (4.1) satisfies∫
Ω0,t(t0,t)

H1−p(t, x)‖~h(t, x)‖pρ(x) dx <∞ (5.1)

for t > t0.

If

lim sup
t→∞

(∫
S(t0)

H(t, x) dσ

)−1

×
∫

Ω0,t(t0,t)

[
H(t, x)ρ(x)c(x)− ‖

~h(t, x)‖pρ(x)
ppHp−1(t, x)

]
dx =∞ (5.2)

then Eq. (1.1) is oscillatory.

Proof. Assume the contradiction. As in the proof of Theorem 4.1 we conclude (4.6) for
t > T , where ~w is the solution of Riccati–type equation (4.5), defined on Ω(T ) by (4.4).
Since H(t, x) = ‖~h(t, x)‖ = 0 for x ∈ Ω(T, t) \ Ω0,t(T, t), we have∫

Ω(T,t)

〈
~h(t, x), ~w(x)

〉
dx −

∫
Ω(T,t)

H(t, x)(p− 1)ρ1−q(x)‖~w(x)‖q dx

=
∫

Ω0,t(T,t)

[〈
~h(t, x), ~w(x)

〉
−H(t, x)(p− 1)ρ1−q(x)‖~w(x)‖q

]
dx . (5.3)

The following relation follows from (5.3) and from Hölder inequality∫
Ω(T,t)

〈
~h(t, x), ~w(x)

〉
dx −

∫
Ω(T,t)

H(t, x)(p− 1)ρ1−q(x)‖~w(x)‖q dx

=
∫ t

T

[∫
S0,t(s)

〈
~h(t, x), ~w(x)

〉
dσ

−
∫
S0,t(s)

H(t, x)(p− 1)ρ1−q(x)‖~w(x)‖q dσ

]
ds

≤
∫ t

T

[(∫
S0,t(s)

H1−p(t, x)ρ(x)‖~h(t, x)‖p dσ
) 1
p

×
(∫

S0,t(s)
H(t, x)ρ1−q(x)‖~w(x)‖q dσ

) 1
q

−
∫
S0,t(s)

H(t, x)(p− 1)ρ1−q(x)‖~w(x)‖q dσ

]
ds
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Application of Young inequality (4.7) gives∫
Ω(T,t)

〈
~h(t, x), ~w(x)

〉
dx −

∫
Ω(T,t)

H(t, x)(p− 1)ρ1−q(x)‖~w(x)‖q dx

≤
∫ t

T
p−p

∫
S0,t(s)

H1−p(t, x)ρ(x)‖~h(t, x)‖p dσ ds

=
∫

Ω0,t(T,t)
p−pH1−p(t, x)ρ(x)‖~h(t, x)‖p dx .

Combining this inequality with (4.6) we conclude∫
Ω0,t(T,t)

[
H(t, x)ρ(x)c(x)− p−pρ(x)H1−p(t, x)‖~h(t, x)‖p

]
dx

≤
∫
S(T )

H(t, x) 〈~w(x), ~ν〉 dx (5.4)

and similarly as in the proof of Theorem 4.1 we obtain∫
Ω0,t(t0,t)

[
H(t, x)ρ(x)c(x)− p−pρ(x)H1−p(t, x)‖~h(t, x)‖p

]
dx

≤
∫

Ω(t0,T )
H(t, x)ρ(x)c(x) dx +

∫
S(T )

H(t, x) 〈~w(x), ~ν〉 dσ

≤
∫ T

t0

[∫
S(s)

H(t, x) dσ

]
k(s)

ρ∗(s)c∗(s)
k(s)

ds + w∗(T )
∫
S(T )

H(t, x) dσ

≤ k(t0)

[∫
S(t0)

H(t, x) dσ

] [∫ T

t0

ρ∗(s)c∗(s)
k(s)

ds +
w∗(T )
k(T )

]
,

where w∗(s), ρ∗(s) and c∗(s) are the same as in the proof of Theorem 4.1. The last
inequality contradicts (5.2). The proof is complete.

Remark 5.1. Condition (ii) claims that if H(t, x) vanishes, then ‖x‖ = t or ∇H(t, x)
vanishes as well.

Condition (iii) claims (among others) that the set S0,t(s) is nonempty for every t
satisfying t0 < s < t. Hence the function H(t, x) has parts with positive values on every
sphere centered in the origin.

Remark 5.2. Under (4.2) we understand that the function g(t, s) defined for t0 < s < t by

g(t, s) :=
∫
S0,t(s)

H1−p(t, x)ρ(x)‖~h(t, x)‖p dσ

is integrable with respect to s over the interval (t0, t). (The point t may be a singular point
of the integral, since H(t, x) = 0 for ‖x‖ = t.) A similar commentary explains also, how
to understand (5.1).

Remark 5.3. Let Ω ⊂ Ω(t0) be unbounded domain with smooth boundary ∂Ω. If in
addition to the conditions of Theorem 5.1 the function H(t, x) vanishes outside Ω and both
H(t, x) and ‖∇H(t, x)‖ vanish on ∂Ω for every t ≥ t0, then it follows that Eq. (1.1) is
oscillatory in Ω. Hence Theorem 5.1 can be used to formulate explicit oscillation criteria
on different types of domains, than exterior of the ball. Examples of the oscillation criteria
on half–plane are given on page 35.
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The following corollary is an immediate consequence of Theorem 5.1.

Corollary 5.1. Let the assumptions (i) – (iv) of Theorem 5.1 hold. If

lim sup
t→∞

(∫
S(t0)

H(t, x) dσ

)−1 ∫
Ω0,t(t0,t)

‖~h(t, x)‖pρ(x)
Hp−1(t, x)

dx <∞ (5.5)

and

lim sup
t→∞

(∫
S(t0)

H(t, x) dσ

)−1 ∫
Ω(t0,t)

H(t, x)ρ(x)c(x) dx =∞,

then Eq. (1.1) is oscillatory.

Theorem 5.1 shows that Eq. (1.1) is oscillatory if the expression(∫
S(t0)

H(t, x) dσ

)−1 ∫
Ω0,t(t0,t)

[
H(t, x)ρ(x)c(x)− ‖

~h(t, x)‖pρ(x)
ppHp−1(t, x)

]
dx

is sufficiently large in a neighborhood of infinity (in the sense of infinite limes superior). As
a natural continuation we deal with the cases when this condition is broken. In this case the
equation still may be oscillatory, if this expression is large in the integral sense. We prove
one technical lemma first.

Lemma 5.1. Let the functions H , h, k and ρ satisfy the hypothesis (i)–(iv) of Theorem 5.1.
Suppose that (5.5), (5.16) and (5.17) hold. Let u be solution of (1.1) which is positive on
Ω(T0) for some T0 ≥ t0 and ~w(x) be the corresponding Riccati variable defined on Ω(T0)
by (4.4). Then

lim inf
t→∞

∫ t

T0

∫
S(s)H(t, x)ρ1−q(x)‖~w(x)‖q dσ

k(s)
∫
S(s)H(t, x) dσ

ds <∞. (5.6)

Proof. Let us denote

F (t) =

(∫
S(T0)

H(t, x) dσ

)−1 ∫
Ω(T0,t)

‖~h(t, x)‖ · ‖~w(x)‖ dx

G(t) =

(∫
S(T0)

H(t, x) dσ

)−1

(p− 1)
∫

Ω(T0,t)
H(t, x)ρ1−q(x)‖~w(x)‖q dx

for t > T0. As in the proof of Theorem 5.1 we conclude (4.6) and hence

G(t)− F (t) ≤
(∫

S(T0)
H(t, x) dσ

)−1

×

[∫
S(T0)

H(t, x)‖~w(x)‖ dσ −
∫

Ω(T0,t)
H(t, x)ρ(x)c(x) dx

]

≤ w∗(T0)−
(∫

S(T0)
H(t, x) dσ

)−1
∫

Ω(T0,t)
H(t, x)ρ(x)c(x) dx

(5.7)
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holds for every t > T0, where w∗(t) has been defined in the proof of Theorem 4.1. Hence
by (5.17)

lim inf
t→∞

[G(t)− F (t)] ≤ w∗(T0)−A(T0) <∞. (5.8)

Suppose that (5.6) does not hold. Then

lim
t→∞

∫ t

T0

∫
S(s)H(t, x)ρ1−q(x)‖~w(x)‖q dσ

k(s)
∫
S(s)H(t, x) dσ

ds =∞.

According to (5.16) there exists η ∈ R such that

0 < η < inf
s≥t0

{
lim inf
t→∞

k(s)
∫
S(s)H(t, x) dσ

k(t0)
∫
S(t0)H(t, x) dσ

}
(5.9)

and for every µ ∈ R+ there exists T1 > T0 such that∫ t

T0

(p− 1)
∫
S(s)H(t, x)ρ1−q(x)‖~w(x)‖q dσ

k(s)
∫
S(s)H(t, x) dσ

ds ≥ µ

ηk(T0)
(5.10)

for every t ≥ T1. Further there exists T2 > T1 such that

k(T1)
∫
S(T1)H(t, x) dσ

k(t0)
∫
S(t0)H(t, x) dσ

> η (5.11)

for all t ≥ T2. From the definition of the function G(t) it follows that for t ≥ T2

G(t) =
(∫

S(T0)
H(t, x) dσ

)−1
∫ t

T0

[(
k(s)

∫
S(s)

H(t, x) dσ

)

×
(p− 1)

∫
S(s)H(t, x)ρ1−q(x)‖~w(x)‖q dσ

k(s)
∫
S(s)H(t, x) dσ

]
ds

holds. Integration by parts and the property (i) of the function H(t, x) imply

G(t) ≥
(∫

S(T0)
H(t, x) dσ

)−1
∫ t

T0

[
− ∂

∂s

(
k(s)

∫
S(s)

H(t, x) dσ
)

×
(∫ s

T0

(p− 1)
∫
S(ξ)H(t, x)ρ1−q(x)‖~w(x)‖q dσ

k(ξ)
∫
S(ξ)H(t, x) dσ

dξ
)]

ds

and in view of (iii)

G(t) ≥
(∫

S(T0)
H(t, x) dσ

)−1
∫ t

T1

[
− ∂

∂s

(
k(s)

∫
S(s)

H(t, x) dσ
)

×
(∫ s

T0

(p− 1)
∫
S(ξ)H(t, x)ρ1−q(x)‖~w(x)‖q dσ

k(ξ)
∫
S(ξ)H(t, x) dσ

dξ
)]

ds .
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Application of (5.10) gives

G(t) ≥
(∫

S(T0)
H(t, x) dσ

)−1 µ

ηk(T0)

∫ t

T1

− ∂

∂s

(
k(s)

∫
S(s)

H(t, x) dσ
)

ds

≥
µk(T1)

∫
S(T1)H(t, x) dσ

ηk(T0)
∫
S(T0)H(t, x) dσ

.

In view of (iii)

G(t) ≥
µk(T1)

∫
S(T1)H(t, x) dσ

ηk(t0)
∫
S(t0)H(t, x) dσ

and (5.11) implies

G(t) ≥ µ

for every t ≥ T2. Since µ has been chosen arbitrary, limt→∞G(t) = ∞. Let us con-
sider the sequence {tn}∞n=1 of the points from (T2,∞) such that limn→∞ tn = ∞ and
limt→∞[G(tn) − F (tn)] = lim inft→∞[G(t) − F (t)]. In view of (5.8) there exists real
constant M with property

G(tn)− F (tn) ≤M (5.12)

for all n. Hence

lim
n→∞

F (tn) = lim
n→∞

G(tn) =∞. (5.13)

From (5.12) and (5.13) we obtain

F (tn)
G(tn)

− 1 ≥ − M

G(tn)
> −1

2

for large n. Hence

F (tn)
G(tn)

>
1
2

for large n and combination of this inequality with (5.13) yields

lim
n→∞

F p(tn)
Gp−1(tn)

=∞. (5.14)

However the definition of the function F (t) and the Hölder inequality give

F (t) ≤

[(∫
S(T0)

H(t, x) dσ
)−1

∫
Ω(T0,t)

(p− 1)H(t, x)ρ1−q(x)‖~w(x)‖q dx

] 1
q

×

[(∫
S(T0)

H(t, x) dσ
)−1

×
∫

Ω(T0,t)
(p− 1)1−pH1−p(t, x)ρ(x)‖~h(t, x)‖p dx

] 1
p
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≤[G(t)]
1
q

[(∫
S(T0)

H(t, x) dσ
)−1

×
∫

Ω(T0,t)
(p− 1)1−pH1−p(t, x)ρ(x)‖~h(t, x)‖p dx

] 1
p

and therefore
F p(t)
Gp−1(t)

≤(p− 1)1−p
(∫

S(T0)
H(t, x) dσ

)−1

×
∫

Ω(T0,t)
(p− 1)1−pH1−p(t, x)ρ(x)‖~h(t, x)‖p dx .

Since by (5.9)

k(T0)
∫
S(T0)H(t, x) dσ

k(t0)
∫
S(t0)H(t, x) dσ

≥ η

for large t, we have

F p(t)
Gp−1(t)

≤(p− 1)1−pη−1
(
k(t0)

∫
S(t0)

H(t, x) dσ
)−1

× k(T0)
∫

Ω(t0,t)
(p− 1)1−pH1−p(t, x)ρ(x)‖~h(t, x)‖p dx . (5.15)

If (5.14) would hold we obtain a contradiction with (5.5). This contradiction completes the
proof.

The following theorem extends [Wang, 2001, Theorem 2]. As stated before, it can be
applied in some cases when (5.2) fails.

Theorem 5.2. Let the functionsH , h, k and ρ satisfy the hypotheses (i)–(iv) of Theorem 5.1.
Suppose also that

0 < inf
s≥t0

{
lim inf
t→∞

k(s)
∫
S(s)H(t, x) dσ

k(t0)
∫
S(t0)H(t, x) dσ

}
(5.16)

and (5.5) holds. If there exists a function A ∈ C(Ω(t0),R) such that

inf
t∈(T,∞)

{(∫
S(T )

H(t, x) dσ
)−1

∫
Ω0,t(T,t)

[
H(t, x)ρ(x)c(x)

− ‖
~h(t, x)‖pρ(x)
ppHp−1(t, x)

]
dx

}
≥ A(T )

(5.17)

for T ≥ t0 and∫ ∞
t0

(A+(T ))qρ̂1−q(T )k−1(T ) dT =∞, (5.18)

where A+(T ) = max
{
A(T ), 0

}
and

ρ̂(T ) = sup
t>T

{(∫
S(T )

H(t, x) dσ
)−1

∫
S(T )

ρ(x)H(t, x) dσ

}
, (5.19)

then Eq. (1.1) is oscillatory.
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Proof. Suppose that (1.1) is not oscillatory and u is a solution of (1.1) positive on Ω(T0) for
some T0 ≥ t0. Let ~w(x) be Riccati variable defined by (4.4). As in the proof of Theorem 5.1
we conclude (5.4) and by (5.17)

A(T ) ≤

∫
S(T )H(t, x)‖~w(x)‖ dσ∫

S(T )H(t, x) dσ
(5.20)

holds for every t > T > T0. Hence

A(T )
∫
S(T )

H(t, x) dσ ≤
∫
S(T )

H(t, x)‖~w(x)‖ dσ

for all t > T . Hölder inequality gives

A(T )
∫
S(T )

H(t, x) dσ ≤
(∫

S(T )
H(t, x)ρ1−q(x)‖~w(x)‖q dσ

) 1
q

×
(∫

S(T )
H(t, x)ρ(x) dσ

) 1
p
.

From here we get(
A+(T )

)q(∫
S(T )

H(t, x) dσ
)q
≤
∫
S(T )

H(t, x)ρ1−q(x)‖~w(x)‖q dσ

×
(∫

S(T )
H(t, x)ρ(x) dσ

)q−1

and the definition of the function ρ̂ yields(
A+(T )

)q(ρ̂(T ))1−q ≤
(∫

S(T )
H(t, x) dσ

)−1
∫
S(T )

H(t, x)ρ1−q(x)‖~w(x)‖q dσ

for t > T > T0. This inequality combined with (5.6) contradicts (5.18). The proof is
complete.

Remark 5.4. The supremum in (5.19) always exists, since(∫
S(T )

H(t, x) dσ
)−1

∫
S(T )

ρ(x)H(t, x) dσ ≤ max
x∈S(T )

{ρ(x)}.

Remark 5.5. Comparing Theorem 5.2 with [Wang, 2001, Theorem 2] we see that condition
(5.17) is in the case of ordinary differential equations replaced by a weaker condition where
lim supt→∞ stays instead of inft∈(T,∞). The reason, why we need the stronger condition
(5.17) is the following. In the proof of Theorem 5.2 we estimate the function A(T ) from
above with an expression involving solution of Riccati equation — see (5.20). This bound
does not depend on the value of t in the case of ODE (integrals are missing and terms
H(t, x) cancel), however it does depend on t in the case of Eq. (1.1).

Lemma 5.2. Let the functions H , h, k and ρ satisfy the hypotheses (i)–(iv) and of Theorem
5.1. Suppose that (5.16), (5.17) and

lim inf
t→∞

(∫
S(t0)

H(t, x) dσ
)−1

∫
Ω(t0,t)

H(t, x)ρ(x)c(x) dx <∞. (5.21)

hold. Let u and ~w be the same as in Lemma 5.1. Then (5.6) holds.

33



Proof. As in the proof of Theorem 5.1 we see that (4.6) holds. With the notation of Lemma
5.1, inequality (5.7) holds. Hence

lim sup
t→∞

[G(t)− F (t)] ≤w∗(T0)− lim inf
t→∞

(∫
S(T0)

H(t, x) dσ
)−1

×
∫

Ω(t0,t)
H(t, x)ρ(x)c(x) dx

≤w∗(T0)−A(T0) <∞. (5.22)

By (5.17)

A(t0) ≤
(∫

S(t0)
H(t, x) dσ

)−1
∫

Ω0,t(t0,t)

[
H(t, x)ρ(x)c(x)− ‖

~h(t, x)‖pρ(x)
ppHp−1(t, x)

]
dx

for t ≥ t0. Hence by (5.21)

lim inf
t→∞

(∫
S(t0)

H(t, x) dσ
)−1

∫
Ω0,t(t0,t)

‖~h(t, x)‖pρ(x)
ppHp−1(t, x)

dx

≤ lim inf
t→∞

(∫
S(t0)

H(t, x) dσ
)−1

∫
Ω0,t(t0,t)

H(t, x)ρ(x)c(x) dx −A(t0)

<∞. (5.23)

Let us consider the sequence {tn}∞n=1 in (T0,∞) satisfying limn→∞ tn =∞ and

lim
n→∞

(∫
S(t0)

H(tn, x) dσ
)−1

∫
Ω0,tn (t0,tn)

‖~h(tn, x)‖pρ(x)
ppHp−1(tn, x)

dx

= lim inf
t→∞

(∫
S(t0)

H(t, x) dσ
)−1

∫
Ω0,t(t0,t)

‖~h(t, x)‖pρ(x)
ppHp−1(t, x)

dx .

Now suppose by contradiction that (5.6) fails. As in the proof of Lemma 5.1 and using
(5.22) we conclude (5.13). Using the same procedure as in Lemma 5.1 we obtain (5.14) and
(5.15), which contradicts to (5.23). Hence (5.6) holds.

The following theorem extends [Wang, 2001, Theorem 3]. It is a variant of Theorem
5.2 with (5.5) replaced by (5.21).

Theorem 5.3. Let the functions H , h, k and ρ satisfy the hypotheses (i)–(iv) of Theorem
5.1. Suppose also that (5.16) and (5.21) hold. If there exists a function A ∈ C(Ω(t0),R)
such that (5.17) and (5.18) hold, then Eq. (1.1) is oscillatory.

Proof. The proof is almost the same as the proof of Theorem 5.2. Lemma 5.2 is applied
instead of Lemma 5.1.

6 Oscillation criteria on half-plane

In the remaining part of this chapter we specify general ideas introduced on previous pages
and derive oscillation criteria on half-plane x2 ≥ 0.
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Example 6.1. Consider the Schrödinger partial differential equation (1.3) in R2, i.e., n =
p = 2. For λ > 1 define the functions H , k and ρ as follows:

ρ(x) ≡ 1 for x ∈ R2

k(s) =
1
s

for s > 1

H(t, x) =

{
(t− r)λ sin2 ϕ ϕ ∈ [0, π),
0 ϕ ∈ [π, 2π),

where r andϕ are the radial and the polar coordinates of the pointx ∈ R2. It is easy to see that
St,0(s) is the top half-circle with radius s < t and

∫
S(s)H(t, x) dσ = π

2 (t− s)λs = O(tλ).

Since ρ(x) ≡ 1, ~h(t, x) = ∇H(t, x) holds and consequently

‖~h(t, x)‖2 =

{
λ2(t− r)2λ−2 sin4 ϕ+ 4 (t−r)2λ

r2 sin2 ϕ cos2 ϕ ϕ ∈ [0, π),
0 ϕ ∈ [π, 2π).

Direct computation shows

H−1(t, x)‖~h(t, x)‖2 = λ2(t− r)λ−2 sin2 ϕ+ 4
(t− r)λ

r2
cos2 ϕ

for x ∈ Ω0,t(t0) and (5.1) clearly holds. Further (5.2) has the form

lim sup
t→∞

t−λ
∫
M(t)

[
c(x(r, ϕ))(t− r)λ sin2 ϕ

− λ2

4
(t− r)λ−2 sin2 ϕ− (t− r)λ

r2
cos2 ϕ

]
dx =∞, (6.1)

where M(t) = {(x1, x2) ∈ R2 : 1 ≤ x2
1 + x2

2 ≤ t2, x2 > 0}. Since

lim
t→∞

t−λ
∫
M(t)

(t− r)λ−2 sin2 ϕ dx = lim
t→∞

t−λ
π

2

∫ t

1
r(t− r)λ−2 dr

≤ lim
t→∞

t−λ
π

2

∫ t

1
t(t− r)λ−2 dr

=
π

2
1

λ− 1
lim
t→∞

t1−λ(t− 1)λ−1 <∞,

is (6.1) equivalent to

lim sup
t→∞

t−λ
∫
M(t)

[
c(x(r, ϕ))(t− r)λ sin2 ϕ− (t− r)λ

r2
cos2 ϕ

]
dx (r, ϕ) =∞.

Hence (6.1) is sufficient for Eq. (1.3) to be oscillatory on the half-plane x2 ≥ 0.

Example 6.2. Let us consider the same equation as in Example 6.1. Let us change the
function ρ(x) into ρ(x) = 1

‖x‖ = 1
r . The computation in polar coordinates yields

‖~h(t, x)‖2 =λ2(t− r)2λ−2 sin4 ϕ+ 2λ(t− r)2λ−1r−1 sin4 ϕ

+ (t− r)2λr−2 sin4 ϕ+ 4(t− r)2λr−2 sin2 ϕ cos2 ϕ
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for ϕ ∈ [0, π) and ‖~h(t, x)‖2 = 0 otherwise. As in the preceding example, (5.1) holds.
Further integrating in polar coordinates we ensure that (5.5) holds. Then the condition

lim sup
t→∞

t−λ
∫
M(t)

c(x(r, ϕ))(t− r)λr−1 sin2 ϕ dx (r, ϕ) =∞

is a sufficient condition for oscillation of Eq. (1.1) on the half-plane x2 ≥ 0.

Remark 6.1. In contrast to common results in the literature, the conditions in Examples
6.1 and 6.2 are not affected by the behavior of the function c(x) on the half-plane x2 ≤ 0,
which may be “relatively bad”.
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Chapter 3

Three terms PDE with p-Laplacian

1 Introduction

In this chapter we study the half-linear partial differential equation with p-Laplacian and
damping term in the form

div
(
‖∇u‖p−2∇u

)
+
〈
~b(x), ‖∇u‖p−2∇u

〉
+ c(x)Φ(u) = 0. (1.1)

The functions c(x) and ~b(x) are assumed to be Hölder continuous functions on the do-
main Ω(1). The solution of (1.1) is every function defined on Ω(1) which satisfies (1.1)
everywhere on Ω(1).

Some of the results are formulated for simplicity also for the linear equation

∆u+
〈
~b(x),∇u

〉
+ c(x)u = 0 (1.2)

which can be obtained from (1.1) by putting p = 2, for the Schrödinger equation

∆u+ c(x)u = 0 (1.3)

obtained for p = 2 and~b ≡ 0 and also for the undamped half-linear equation

div
(
‖∇u‖p−2∇u

)
+ c(x)Φ(u) = 0 (1.4)

which has been studied in Chapters 1 and 2 and can be obtained from (1.1) by putting~b ≡ 0.
The main difference between the results from this chapter and similar results in the

literature lies in the fact, that our criteria are not “radial” in the sense of the classification
from Remark 2.3 on page 4. See also the discussion in Section 3.1 of the current chapter.

2 Riccati inequality

We start this chapter by investigating the partial Riccati-type differential inequality

div ~w + ‖~w‖q + c(x) ≤ 0

and some generalizations of this inequality in the forms

div (α(x)~w) +Kα(x)‖~w‖q + α(x)c(x) ≤ 0 (2.1)
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and

div ~w +K‖~w‖q + c(x) +
〈
~w,~b
〉
≤ 0, (2.2)

where K ∈ R, q > 1. The assumptions on the function α are stated below.
We consider the Riccati inequality on two types of unbounded domains in Rn: The

exterior of a ball, centered in the origin, and a general unbounded domain Ω. In the latter
case we use the assumption:

(A1) The set Ω is an unbounded domain in Rn, simply connected with a piecewise smooth
boundary ∂Ω and meas

(
Ω ∩ S(t)

)
> 0 for t > 1.

Theorem 2.1. Let Ω satisfy (A1) and c ∈ C(Ω,R). Suppose that α satisfies

α ∈ C1(Ω ∩ Ω(a0),R+) ∩ C0(Ω,R),∫ ∞
a0

(∫
Ω∩S(t)

α(x) dσ

)1−q

dt =∞ . (2.3)

Further suppose that there exist a ≥ a0, a real constant K > 0 and a real-valued differ-
entiable vector function ~w(x) which is bounded (in the sense of the continuous extension,
if necessary) on every compact subset of Ω ∩ Ω(a) and satisfies the differential inequality
(2.1) on Ω ∩ Ω(a). Then

lim inf
t→∞

∫
Ω∩Ω(a0,t)

α(x)c(x) dx <∞. (2.4)

Proof. For simplicity let us denote Ω̃(a) = Ω(a) ∩ Ω, S̃(a) = S(a) ∩ Ω, Ω̃(a, b) =
Ω(a, b) ∩ Ω. Suppose, by contradiction, that (2.1) and (2.3) are fulfilled and

lim
t→∞

∫
eΩ(a0,t)

α(x)c(x) dx =∞. (2.5)

Integrating (2.1) over the domain Ω̃(a, t) and applying the Gauss-Ostrogradski divergence
theorem we get∫

eS(t)
α(x) 〈~w(x), ~ν(x)〉 dσ −

∫
eS(a)

α(x) 〈~w(x), ~ν(x)〉 dσ

+
∫

eΩ(a,t)
α(x)c(x) dx +K

∫
eΩ(a,t)

α(x)‖~w(x)‖q dx ≤ 0, (2.6)

where ~ν(x) is the outside normal unit vector to the sphere S(‖x‖) in the point x (note that
the product α(x)~w(x) vanishes on the boundary ∂Ω since α ∈ C0(Ω,R) and ~w is bounded
near the boundary). In view of (2.5) there exists t0 ≥ a such that∫

eΩ(a,t)
α(x)c(x) dx −

∫
eS(a)

α(x) 〈~w(x), ~ν(x)〉 dσ ≥ 0 (2.7)

for every t ≥ t0. Further, Schwarz and Hölder inequalities give

−
∫

eS(t)
α(x) 〈~w(x), ~ν(x)〉 dσ ≤

∫
eS(t)

α(x)‖w(x)‖ dσ

≤
(∫

eS(t)
α(x)‖w(x)‖q dσ

)1/q(∫
eS(t)

α(x) dσ
)1/p

.

(2.8)
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Combination of inequalities (2.6), (2.7), and (2.8) gives

K

∫
eΩ(a,t)

α(x)‖~w(x)‖q dx ≤
(∫

eS(t)
α(x)‖w(x)‖q dσ

)1/q(∫
eS(t)

α(x) dσ
)1/p

for every t ≥ t0. Denote

g(t) =
∫

eΩ(a,t)
α(x)‖w(x)‖q dx .

Then the last inequality can be written in the form

Kg(t) ≤
(
g′(t)

)1/q(∫
eS(t)

α(x) dσ
)1/p

.

From here we conclude for every t ≥ t0

Kqgq(t) ≤ g′(t)
(∫

eS(t)
α(x) dσ

)q/p
hold and equivalently

Kq
(∫

eS(t)
α(x) dσ

)1−q
≤ g′(t)
gq(t)

.

This inequality shows that the integral on the left-hand side of (2.3) has an integrable
majorant on [t0,∞) and hence it is convergent as well, a contradiction to (2.3).

Frequently considered cases are Ω = Rn and Ω = Ω(a0). In these cases the preceding
theorem gives:

Corollary 2.1. Let α ∈ C1(Ω(a0),R+), c ∈ C(Ω(a0),R). Suppose that∫ ∞
a0

(∫
S(t)

α(x) dσ

)1−q

dt =∞. (2.9)

Further suppose, that there exists a ≥ a0, real constant K > 0 and real–valued differen-
tiable vector function ~w(x) defined on Ω(a) which satisfies the differential inequality (2.1)
on Ω(a). Then

lim inf
t→∞

∫
Ω(a0,t)

α(x)c(x) dx <∞. (2.10)

Proof. The proof is a simple modification and simplification of the proof of Theorem 2.1
and therefore it is omitted here.

In the following theorem we use the integral averaging technique which is for second
order linear ordinary differential equation due to [Philos, 1989] and has been used for two
terms equation already in Chapter 2 on page 23. Consider two-parametric weight function
H(t, x) defined on the closed domain

D =
{

(t, x) ∈ R× Rn : a0 ≤ ‖x‖ ≤ t
}

(2.11)

Denote D0 =
{

(t, x) ∈ R × Rn : a0 < ‖x‖ < t
}

and suppose that the function H(t, x)
satisfies the hypothesis
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(A2) H(t, x) ∈ C(D,R+
0 ) ∩ C1(D0,R+

0 ).

Some additional assumptions on the function H are stated below.

Theorem 2.2. Let Ω be an unbounded domain in Rn which satisfies assumption (A1),
c ∈ C(Ω,R) and ~b ∈ C(Ω,Rn). Suppose the function H(t, x) satisfies (A2) and the
following conditions:

(i) H(t, x) ≡ 0 for x 6∈ Ω.

(ii) If x ∈ ∂Ω, then H(t, x) = 0 and ‖∇H(t, x)‖ = 0 for every t ≥ x.

(iii) If x ∈ Ω0, then H(t, x) = 0 if and only if ‖x‖ = t.

(iv) The vector function ~h(x) defined on D0 with the relation

~h(t, x) = −∇H(t, x) +~b(x)H(t, x) (2.12)

satisfies∫
Ω(a0,t)∩Ω

H1−p(t, x)
∥∥~h(t, x)

∥∥p dx <∞. (2.13)

(v) There exists a continuous function k(r) ∈ C([a0,∞),R+) such that the function
f(t, r) := k(r)

∫
S(r)∩ΩH(t, x) dx is positive and nonincreasing on [a0, t) with

respect to the variable r for every t, t > r.

Further suppose that there exist real numbers a ≥ a0, K > 0 and differentiable vector
function ~w(x) defined on Ω which is bounded on every compact subset of Ω ∩ Ω(a) and
satisfies Riccati inequality (2.2) on Ω ∩ Ω(a). Then

lim sup
t→∞

(∫
S(a0)

H(t, x) dσ

)−1 ∫
Ω(a0,t)∩Ω

[
H(t, x)c(x)−

∥∥~h(t, x)
∥∥p

(Kq)p−1pHp−1(t, x)

]
dx <∞.

(2.14)

Remark 2.1. Let us emphasize that nabla operator∇H(t, x) relates only to the components
of x, i.e. ∇H(t, x) =

(
∂
∂x1

, . . . , ∂
∂xn

)
H(t, x), and does not relate to the variable t.

Proof of Theorem 2.2. For simplicity let us introduce the notation Ω̃(a), S̃(a) and Ω̃(a, b)
as in the proof of Theorem 2.1. Suppose that the assumptions of theorem are fulfilled.
Multiplication of (2.2) by the function H(t, x) gives

H(t, x) div ~w(x) +H(t, x)c(x) +KH(t, x)‖~w(x)‖q +H(t, x)
〈
~w(x),~b(x)

〉
≤ 0

and equivalently

div(H(t, x)~w(x)) +H(t, x)c(x)

+KH(t, x)‖~w(x)‖q +
〈
~w(x), H(t, x)~b(x)−∇H(t, x)

〉
≤ 0
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for x ∈ Ω̃(a) and t ≥ ‖x‖. This and Young inequality

‖~a‖p

p
±
〈
~a,~b
〉

+
‖~b‖q

q
≥ 0 . (2.15)

imply

div(H(t, x)~w(x)) +H(t, x)c(x)− ‖H(t, x)~b(x)−∇H(t, x)‖p

(Kq)p−1pHp−1(t, x)
≤ 0.

Integration of this inequality over the domain Ω̃(a, t) and the Gauss-Ostrogradski divergence
theorem give

−
∫

eS(a)
H(t, x) 〈~w(x), ~ν(x)〉 dσ +

∫
eΩ(a,t)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx ≤ 0

and hence∫
eΩ(a,t)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx ≤

∫
eS(a)

H(t, x)‖w(x)‖ dσ

holds for t > a. We will use this bound to estimate the integral from condition (2.14)∫
eΩ(a0,t)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx

=
∫

eΩ(a0,a)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx

+
∫

eΩ(a,t)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx

≤
∫

eΩ(a0,a)
H(t, x)c(x) dx +

∫
eS(a)

H(t, x)‖w(x)‖ dσ .

Denote the maximal functions c∗(r) = max
{
|c(x)| : x ∈ S(r)

}
andw∗(r) = max

{
‖w(x)‖ :

x ∈ S(r)
}

. Then∫
eΩ(a0,t)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx

≤
∫ a

a0

[
k(r)

∫
eS(r)

H(t, x) dσ
]c∗(r)
k(r)

dr + k(a)
w∗(a)
k(a)

∫
eS(a)

H(t, x) dσ

≤ k(a0)
∫

eS(a0)
H(t, x) dσ

[ ∫ a

a0

c∗(r)
k(r)

dr +
w∗(a)
k(a)

]
holds for every t ≥ a0. From here we conclude that the expression(∫

eS(a0)
H(t, x) dσ

)−1
∫

eΩ(a0,t)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx

is bounded for all t ≥ a0. Hence (2.14) follows. The proof is complete.
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As in Corollary 2.1, we restate the result of Theorem 2.2 also for Ω = Rn.

Corollary 2.2. Let c ∈ C(Ω(a0)), ~b ∈ C(Ω(a0),Rn). Suppose that the function H(t, x)
satisfies assumption (A2) and the following conditions:

(i) H(t, x) = 0 if and only if ‖x‖ = t

(ii) The vector function ~h(x) defined on D0 with the relation (2.12) satisfies∫
Ω(a0,t)

H1−p(t, x)‖~h(t, x)‖p dx <∞

(iii) There exists a continuous function k(r) ∈ C([a0,∞),R+) such that the function
f(r, t) := k(r)

∫
S(r)H(t, x) dx is positive and nonincreasing on [a0, t) with respect

to the variable r for every t, t > r.

Further suppose that there exist real numbers a ≥ a0, K > 0 and differentiable vector
function ~w(x) defined on Ω(a) which satisfies the Riccati inequality (2.2) on Ω(a). Then

lim sup
t→∞

(∫
S(a0)

H(t, x) dσ
)−1

∫
Ω(a0,t)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx <∞.

The proof of this theorem is a simplification of the proof of Theorem 2.2.

3 Oscillation of three terms half-linear equation

Recall that in the current chapter we study three terms half-linear equation (1.1)

div
(
‖∇u‖p−2∇u

)
+
〈
~b(x), ‖∇u‖p−2∇u

〉
+ c(x)Φ(u) = 0.

Our main tool will be a modification of Lemma 3.1 from page 6 which presents the rela-
tionship between positive solution of (1.1) and a solution of the Riccati–type equation:

Lemma 3.1. Let u be a solution of Eq. (1.1) which has no zero on the domain Ω ⊆ Rn.
Then the vector variable ~w(x) defined on the domain Ω by

~w(x) =
‖∇u(x)‖p−2∇u(x)
|u(x)|p−2u(x)

(3.1)

is well defined on Ω and satisfies the Riccati-type equation

div ~w + c(x) + (p− 1)‖~w‖q +
〈
~w,~b(x)

〉
= 0 (3.2)

for every x ∈ Ω.

Proof. From (3.1) it follows (the dependence on the variable x is suppressed in the notation)

div ~w =
div
(
‖∇u‖p−2∇u

)
|u|p−2u

− (p− 1)
‖∇u‖p

|u|p
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on the domain Ω. Since u is a positive solution of (1.1) on Ω it follows

div ~w = −c−
〈
~b,
‖∇u‖p−2∇u
|u|p−2u

〉
− (p− 1)

‖∇u‖p

|u|p

= −c− (p− 1)
‖∇u‖p

|u|p
−
〈
~b,
‖∇u‖p−2∇u
|u|p−2u

〉
.

Application of (3.1) gives div ~w = −c−(p−1)‖~w‖q−
〈
~b, ~w

〉
on Ω. Hence (3.2) holds.

The first theorem concerns the case in which left-hand sides of (3.2) and (2.1) differ at
most in a multiple by the function α.

Theorem 3.1. Suppose that there exists function α ∈ C1(Ω(a0),R+) which satisfies

(i) for x ∈ Ω(a0)

∇α(x) = ~b(x)α(x) (3.3)

(ii) condition (2.9) holds and

(iii)

lim
t→∞

∫
Ω(a0,t)

α(x)c(x) dx =∞. (3.4)

Then Eq. (1.1) is oscillatory in Ω(a0).

Proof. Suppose, by contradiction, that (2.9), (3.3) and (3.4) hold and (1.1) is not oscillatory
in Ω(a0). Then there exists a real number a ≥ a0 such that Eq. (1.1) possesses a solution
u positive on Ω(a). The function ~w(x) defined on Ω(a) by (3.1) is well-defined, satisfies
(3.2) on Ω(a) and is bounded on every compact subset of Ω(a). In view of condition (3.3),
Eq. (3.2) can be written in the form

α div ~w + αc+ (p− 1)α‖~w‖q + 〈~w,∇α〉 = 0

which implies (2.1) with K = p− 1. Corollary 2.1 shows that (2.10) holds, a contradiction
to (3.4).

The following theorem concerns the linear case p = 2.

Theorem 3.2. Let α ∈ C(Ω(a0),R+) Denote

C1(x) = c(x)− 1
4α2(x)

∥∥∥α(x)~b(x)−∇α(x)
∥∥∥2
− 1

2α(x)
div
(
α(x)~b(x)−∇α(x)

)
.

Suppose that∫ ∞
a0

(∫
S(t)

α(x) dσ
)−1

dt =∞ ,

lim
t→∞

∫
Ω(a0,t)

α(x)C1(x) dx =∞. (3.5)

Then the linear damped PDE (1.2) is oscillatory in Ω(a0).
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Proof. Suppose, by contradiction, that (1.2) is nonoscillatory. As in the proof of Theo-
rem 3.1, there exists a ≥ a0 such that (3.2) with p = 2 has a solution ~w(x) defined on Ω(a).
Denote ~W (x) = ~w(x) + 1

2

(
~b− ∇αα

)
. Direct computation shows

div
(
α ~W

)
= 〈∇α, ~w〉+ α div ~w +

1
2

div
(
α~b−∇α

)
= 〈∇α, ~w〉 − αc− α‖~w‖2 −

〈
α~b, ~w

〉
+

1
2

div
(
α~b−∇α

)
= −α

(
c− 1

2α
div
(
α~b−∇α

)
+ ‖~w‖2 + 2

〈
~w,

1
2

(
~b− ∇α

α

)〉)

= −α

(
c− 1

2α
div
(
α~b−∇α

)
+
∥∥∥~w +

1
2

(
~b− ∇α

α

)∥∥∥2
− 1

4

∥∥∥~b− ∇α
α

∥∥∥2
)

= −α

(
c− 1

2α
div
(
α~b−∇α

)
− 1

4

∥∥∥~b− ∇α
α

∥∥∥2
)
− α

∥∥∥~w +
1
2

(
~b− ∇α

α

)∥∥∥2

and the function ~W satisfies

div
(
α ~W

)
+ C1α+ α‖ ~W‖2 = 0

on Ω(a). However by Corollary 2.1 inequality (2.10) with C1 instead of c holds, a contra-
diction to (3.5).

The next theorem deals with the general case p > 1. In this case we allow also another
types of unbounded domains, than Ω(a0).

Theorem 3.3. Let Ω be an unbounded domain which satisfies (A1). Suppose that k ∈ (1,∞)
is a real number and α ∈ C1(Ω(a0),R+

0 ) is a function defined on Ω(a0) such that

(i) α(x) = 0 if and only if x 6∈ Ω ∩ Ω(a0),

(ii) (2.3) holds.

For x ∈ Ω ∩ Ω(a0) denote

C2(x) = c(x)− k

(pα(x))p

∥∥∥α(x)~b(x)−∇α(x)
∥∥∥p .

If

lim
t→∞

∫
Ω∩Ω(a0,t)

α(x)C2(x) dx =∞ (3.6)

holds, then Eq. (1.1) is oscillatory in Ω.

Remark 3.1. Under (3.6) we understand that the integral

f(t) =
∫

Ω∩S(t)
α(x)C2(x) dσ

which may have singularity near the boundary ∂Ω is convergent for large t’s and the function
f satisfies

∫∞
f(t) dt =∞.
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Proof of Theorem 3.3. Suppose, by contradiction, that (1.1) is not oscillatory. Then there
exists a number a ≥ a0 and a function u defined on Ω(a) which is positive on Ω ∩ Ω(a)
and satisfies (1.1) on Ω∩Ω(a). The vector function ~w(x) defined by (3.1) satisfies (3.2) on
Ω ∩ Ω(a) and is bounded on every compact subset of Ω ∩ Ω(a). Denote l = k

1
p−1 and let

l∗ be a conjugate number to the number l, i.e. 1
l + 1

l∗ = 1 holds. Clearly l > 1 and l∗ > 1.
Riccati equation (3.2) can be written in the form

div ~w + c(x) +
p− 1
l
‖~w‖q +

〈
~w,~b(x)− ∇α

α

〉
+
p− 1
l∗
‖~w‖q +

〈
~w,
∇α
α

〉
= 0

for x ∈ Ω ∩ Ω(a). From inequality (2.15) it follows

p− 1
l
‖~w‖q +

〈
~w,~b− ∇α

α

〉
=

(p− 1)q
l

{
‖~w‖q

q
+
〈
~w,

l

(p− 1)q

(
~b− ∇α

α

)〉}
≥ −(p− 1)q

l

lp

[(p− 1)q]p

∥∥∥∥~b− ∇αα
∥∥∥∥p 1
p

= − l
p−1

pp

∥∥∥∥~b− ∇αα
∥∥∥∥p

= − k

pp

∥∥∥∥~b− ∇αα
∥∥∥∥p

Hence the function ~w is a solution of the inequality

div ~w + C2(x) +
p− 1
l∗
‖~w‖q +

〈
~w,
∇α
α

〉
≤ 0

on Ω ∩ Ω(a). This last inequality is equivalent to

div
(
α~w
)

+ αC2 +
p− 1
l∗

α‖~w‖q ≤ 0.

By Theorem 2.1, inequality (2.4) with C2 instead of c holds, a contradiction to (3.6). The
proof is complete.

The last theorem makes use of the two-parametric weight function H(t, x) from Theo-
rem 2.2 to prove the nonexistence of the solution of Riccati equation.

Theorem 3.4. Let Ω be an unbounded domain in Rn which satisfy (A1). LetH(t, x) be the
function which satisfies hypothesis (A2) and has the properties (i)–(v) of Theorem 2.2. If

lim sup
t→∞

(∫
S(a0)

H(t, x) dσ
)−1

∫
Ω(a0,t)∩Ω

[
H(t, x)c(x)− ‖~h(t, x)‖p

ppHp−1(t, x)

]
dx =∞,

(3.7)

then Eq. (1.1) is oscillatory in Ω.

Proof. Suppose, by contradiction, that (1.1) is nonoscillatory. Then Riccati equation (3.2)
has a solution defined on Ω ∩ Ω(T ) for some T > 1, which is bounded near the boundary
∂Ω. Hence (2.14) of Theorem 2.2 with K = p − 1 holds, a contradiction to (3.7). Hence
the theorem follows.
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3.1 Examples

Let us illustrate the ideas from the preceding text on examples. The specification of the
function α in Theorem 3.3 leads to the following oscillation criterion for a conic domain on
the plane. The function α is function of a polar coordinate ϕ only.

Corollary 3.1. Let us consider Eq. (1.4) on the plane (i.e. n = 2) with polar coordinates
(r, ϕ) and let

Ω =
{

(x, y) ∈ R2 : ϕ1 < ϕ(x, y) < ϕ2

}
, (3.8)

where 0 ≤ ϕ1 < ϕ2 ≤ 2π and ϕ(x, y) is a polar coordinate of the point (x, y) ∈ R2.
Further suppose that the smooth function α ∈ C1(Ω(1),R+

0 ) does not depend on r, i.e.
α = α(ϕ). Also, suppose that

(i) α(ϕ) 6= 0 if and only if ϕ ∈ (ϕ1, ϕ2)

(ii)

I1 :=
∫ ϕ2

ϕ1

∣∣α′ϕ(ϕ)
∣∣p

4αp−1(ϕ)
dϕ <∞, (3.9)

where α′ϕ = ∂α
∂ϕ .

Each one of the following conditions is sufficient for oscillation of (1.4) on the domain Ω:

(i) p > 2 and

lim
t→∞

∫ t

1
r

∫ ϕ2

ϕ1

c(r, ϕ)α(ϕ) dϕ dr =∞ (3.10)

(ii) p = 2 and

lim inf
t→∞

1
ln t

∫ t

1
r

∫ ϕ2

ϕ1

c(r, ϕ)α(ϕ) dϕ dr > I1, (3.11)

where c(r, ϕ) is the potential c(x) transformed into polar coordinates and I1 is defined by
(3.9).

Proof. First let us remind that in the polar coordinates dx = r dr dϕ and dσ = r dϕ
holds. Direct computation shows that∫ ∞(∫

Ω∩S(t)
α(x) dσ

)1−q
dt =

∫ ϕ2

ϕ1

α(ϕ) dϕ ·
∫ ∞

t1−q dt .

and the integral diverges, since p ≥ 2 is equivalent to q ≤ 2. Hence (2.3) holds. Trans-
forming the nabla operator to the polar coordinates gives ∇α =

(
0, r−1α′ϕ(ϕ)

)
. Hence,

according to Theorem 3.3, it is sufficient to show that there exists k > 1 such that

lim
t→∞

∫
Ω∩Ω(1,t)

[
c(r, ϕ)α(ϕ)− k

pp
|α′ϕ(ϕ)|p

rpαp−1(ϕ)

]
dx =∞. (3.12)
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Since for p > 2

lim
t→∞

∫
Ω∩Ω(1,t)

|α′ϕ(ϕ)|p

rpαp−1(ϕ)
dx =

∫ ϕ2

ϕ1

|α′ϕ(ϕ)|p

αp−1(ϕ)
dϕ lim

t→∞

∫ t

1
r1−p dr <∞,

conditions (3.12) and (3.10) are equivalent.
Finally, suppose p = 2. From (3.11) it follows that there exists t0 > 1 and ε > 0 such

that

1
ln t

∫
Ω∩Ω(1,t)

c(r, ϕ)α(ϕ) dx > I1 + 2ε

for all t ≥ t0 and hence∫
Ω∩Ω(1,t)

c(r, ϕ)α(ϕ) dx >
[
kI1 + ε

]
ln t

where k = 1 + εI−1
1 holds for t ≥ t0. Since

kI1 ln t =
k ln t

4

∫ ϕ2

ϕ1

|α′ϕ(ϕ)|2α−1(ϕ) dϕ

=
∫ t

1

k

4r

(∫ ϕ2

ϕ1

|α′ϕ(ϕ)|2α−1(ϕ) dϕ
)

dr

=
∫

Ω∩Ω(1,t)

k

4r2
|α′ϕ(ϕ)|2α−1(ϕ) dx

holds, the last inequality can be written in the form∫
Ω∩Ω(1,t)

[
c(r, ϕ)α(ϕ)− k

4
|α′ϕ(ϕ)|2

r2α(ϕ)

]
dx > ε ln t

and the limit process t → ∞ shows that (3.12) holds also for p = 2. The proof is
complete.

Example 3.1. For n = 2 consider Schrödinger equation (1.3), which in polar coordinates
(r, ϕ) reads as

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂ϕ2
+ c(r, ϕ)u = 0. (3.13)

In Corollary 3.1, let us choose ϕ1 = 0, ϕ2 = π, α(ϕ) = sin2 ϕ for ϕ ∈ [0, π] and α(ϕ) = 0
otherwise. In this case the direct computation shows that the oscillation constant I1 in (3.11)
is π

2 , i.e. the equation is oscillatory on the half-plane Ω =
{

(x1, x2) ∈ R2 : x2 > 0
}

if

lim
t→∞

1
ln t

∫ t

1
r

∫ π

0
c(r, ϕ) sin2(ϕ) dϕ dr >

π

2
. (3.14)

Similarly, the choice α(ϕ) = sin3 ϕ gives an oscillation constant 3/2.

Remark 3.2. It is easy to see that condition (3.14) can be fulfilled also for the function c
which satisfy

∫ 2π
0 c(r, ϕ) dϕ = 0. Usual radial criteria fail to detect the oscillation in this

case.
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Another specification of the function α(x) leads to the following corollary.

Corollary 3.2. Let Ω be an unbounded domain in R2 specified in Corollary 3.1. Let
A ∈ C1([0, 2π],R+

0 ) be a smooth function satisfying

(i) A(ϕ) 6= 0 if and only in ϕ ∈ (ϕ1, ϕ2)

(ii) A(0) = A(2π) and A′(0+) = A′(2π−)

(iii) the following integral converges

I2 :=
∫ ϕ2

ϕ1

[
A2(ϕ)(p− 2)2 + (A′(ϕ))2

] p
2

ppAp−1(ϕ)
dϕ <∞. (3.15)

If

lim inf
t→∞

1
ln t

∫ t

1
rp−1

∫ ϕ2

ϕ1

c(r, ϕ)A(ϕ) dϕ dr > I2, (3.16)

then (1.4) is oscillatory in Ω.

Proof. Let α be defined in polar coordinates by the relation

α
(
x(r, ϕ)

)
= rp−2A(ϕ).

Computation in polar coordinates gives∫ ∞(∫
Ω∩S(t)

α(x) dσ
)1−q

dt =
∫ ∞(

rp−1
)1−q

dr
∫ ϕ2

ϕ1

A(ϕ) dϕ

=
∫ ∞ 1

r
dr
∫ ϕ2

ϕ1

A(ϕ) dϕ =∞

and hence (2.3) holds. An application of nabla operator in polar coordinates yields

∇α(x(r, ϕ)) =
(∂α(x(r, ϕ))

∂r
,
1
r

∂α(x(r, ϕ))
∂ϕ

)
= rp−3

(
(p− 2)A(ϕ), A′(ϕ)

)
and hence

‖∇α(x(r, ϕ))‖p

αp−1(x(r, ϕ))
=
rp(p−3)

[
(p− 2)2A2(ϕ) +A′2(ϕ)

]p/2
r(p−1)(p−2)Ap−1(ϕ)

= r−2

[
(p− 2)2A2(ϕ) +A′2(ϕ)

]p/2
Ap−1(ϕ)

holds on Ω. Integration over the part Ω∩S(r) of the sphere S(r) in polar coordinates gives
(in view of (3.15))∫

Ω∩S(r)

‖∇α(x(r, ϕ))‖p

ppαp−1(x(r, ϕ))
dσ = r−1I2.

From (3.16) it follows that there exist real numbers ε > 0 and t0 > 1 such that

1
ln t

∫ t

1
rp−1

∫ ϕ2

ϕ1

c(r, ϕ)A(ϕ) dϕ dr > I2 + 2ε = I2

(
1 + εI−1

2

)
+ ε (3.17)
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holds for t > t0. Denote k = 1 + εI−1
2 . Clearly k > 1. From (3.17) it follows that for

t > t0∫ t

1
rp−1

∫ ϕ2

ϕ1

c(r, ϕ)A(ϕ) dϕ dr > kI2 ln t+ ε ln t

holds. This inequality can be written in the form∫ t

1

[
rp−1

∫ ϕ2

ϕ1

c(r, ϕ)A(ϕ) dϕ − r−1kI2

]
dr > ε ln t

which is equivalent to∫
Ω∩Ω(1,t)

[
c(r, ϕ)α(r, ϕ)− k ‖∇α(r, ϕ)‖p

ppαp−1(r, ϕ)

]
dx > ε ln t,

where dx = r dr dϕ . Now the limit process t→∞ shows that (3.6) holds and hence (1.4)
is oscillatory in Ω by Theorem 3.3.

Example 3.2. An example of the function A which for p > 1, ϕ1 = 0 and ϕ2 = π satisfies
the conditions from Corollary 3.2 isA(ϕ) = sinp ϕ for ϕ ∈ (0, π) andA(ϕ) = 0 otherwise.
In this case the condition

lim inf
t→∞

1
ln t

∫ t

1
rp−1

(∫ π

0
c(r, ϕ) sinp ϕ dϕ

)
dr

>

∫ π

0

[
(p− 2)2 sin2p ϕ+ p2 sin2p−2 ϕ cos2 ϕ

]p/2
pp sinp(p−1) ϕ

dϕ

is sufficient for oscillation of (1.4) (with n = 2) over the domain Ω specified in (3.8).
Here c(r, ϕ) is the potential c(x) transformed into polar coordinates (r, ϕ), i.e. c(r, ϕ) =
c (x(r, ϕ)).

Corollary 3.3. Let us consider Schrödinger equation (3.13) in polar coordinates. Every
of the following two conditions is sufficient for the oscillation of this equation over the
half-plane

Ω =
{

(x1, x2) ∈ R2 : x2 > 0
}
.

(i) There exists λ > 1 such that

lim sup
t→∞

t−λ
∫ t

1
(t− r)λ

(
r

∫ π

0
c(r, ϕ) sin2 ϕ dϕ − π

2r

)
dr =∞. (3.18)

(ii) There exists λ > 1 and γ < 0 such that

lim sup
t→∞

t−λ
∫ t

1
rγ+1(t− r)λ

∫ π

0
c(r, ϕ) sin2 ϕ dϕ dr =∞. (3.19)

Proof. For γ ≤ 0 let us define

H(t, x) =

{
rγ(t− r)λ sin2 ϕ ϕ ∈ (0π),
0 otherwise,
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where (r, ϕ) are polar coordinates of the point x ∈ R2. Recall that in polar coordinates
∇ =

(
∂
∂r ,

1
r

∂
∂ϕ

)
. Hence

~h
(
t, x(r, ϕ)

)
= −∇H

(
t, x(r, ϕ)

)
= −

(
rγ−1(t− r)λ−1(γ(t− r)− λr) sin2 ϕ, 2rγ−1(t− r)λ sinϕ cosϕ

)
and consequently

‖~h(t, x(r, ϕ))‖2

H(t, x(r, ϕ))
= γ2rγ−2(t− r)λ sin2 ϕ− 2λγrγ−1(t− r)λ−1 sin2 ϕ

+ λ2rγ(t− r)λ−2 sin2 ϕ+ 4rγ−2(t− r)λ cos2 ϕ. (3.20)

Inequality λ− 2 > −1 holds for λ > 1. Hence the integral over Ω∩Ω(1, t) converges and
(2.13) for p = 2 holds. Further∫

S(r)∩Ω
H(t, x) dσ = r

∫ π

0
rγ(t− r)λ sin2 ϕ dϕ =

π

2
rγ+1(t− r)λ

and the condition (v) of Theorem 2.2 holds with k(r) = r−1−γ . It remains to prove that
conditions (3.18) and (3.19) imply (3.7). Since

∫ π
0 sin2 ϕ dϕ =

∫ π
0 cos2 ϕ dϕ = π

2 , it
follows from (3.20) that∫

S(r)∩Ω

‖~h(t, x(r, ϕ))‖2

H(t, x(r, ϕ))
dσ =

π

2
(γ2 + 4)rγ−1(t− r)λ − πλγrγ(t− r)λ−1

+
π

2
λ2rγ+1(t− r)λ−2. (3.21)

Next we will show that

lim
t→∞

t−λ
∫ t

1
rγ(t− r)λ−1 dr <∞, (3.22)

lim
t→∞

t−λ
∫ t

1
rγ+1(t− r)λ−2 dr <∞ (3.23)

and for γ < 0 also

lim
t→∞

t−λ
∫ t

1
rγ−1(t− r)λ dr <∞ (3.24)

holds. Inequality (3.22) follows from the estimate∫ t

1
rγ(t− r)λ−1 dr ≤

∫ t

1
1γ(t− r)λ−1 dr =

1
λ

(t− 1)λ.

Integration by parts shows∫ t

1
rγ+1(t− r)λ−2 dr =

(t− 1)λ−1

λ− 1
+
γ + 1
λ− 1

∫ t

1
rγ(t− r)λ−1 dr

and in view of (3.22) inequality (3.23) holds as well. Finally, for γ < 0 integration by parts
gives ∫ t

1
rγ−1(t− r)λ dr =

(t− 1)λ

γ
+
λ

γ

∫ t

1
rγ(t− r)λ−1 dr
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and inequality (3.24) follows from (3.22). Hence the terms from (3.21) have no influence
on the divergence of (3.7) (except the term r−1(t− r)λ which appears for γ = 0) and hence
(3.7) follows from (3.18) and (3.19), respectively. Consequently, the equation is oscillatory
by Theorem 3.4.

4 Interval type oscillation criteria

Kong (1999) used the Riccati technique and the two-parametric averaging function H(t, s)
(a technique originally due to Philos (1999)) to obtain new conjugacy criteria for linear
second order ordinary differential equation(

p(t)y′
)′ + q(t)y = 0 (4.1)

and derived sufficient conditions which guarantee existence of infinitely many intervals with
pairs of conjugate points. These conditions allow to eliminate “bad parts” of the interval
(t0,∞) from the oscillation criteria and are applicable even if the integral of the function
q(t) is extremely small, e.g. if

∫∞
0 q(t) dt = −∞. The results from [Kong, 1999] have

been extended in [Wang, 2004] for half-linear ODE.
In the remaining part of this chapter we extend results from [Kong, 1999; Wang, 2004]

to damped half-linear PDE (1.1). In addition, we offer an improvement of these results
(see Remark 4.3 below) which is new even in the case of the half-linear ODE (4.1) and this
improvement is closely related to the recent result of Sun (2004).

Oscillation properties of Eq. (1.1) and several (less or more general) similar equations
have been studied by Riccati technique in a series of papers by Xu and his colabors, see [Xu,
2005; Xing, Xu, 2003; Xing, Xu, 2005]. In these papers authors, starting with integration
of the Riccati equation over spheres in Rn centered in the origin, convert the n-dimensional
problem into a problem in one variable and then employ the corresponding techniques from
the oscillation theory of ordinary differential equations. The oscillation criteria obtained in
this way are radial1 and these criteria are able detect the oscillation only if the mean value
of the potential function c(x) over the spheres centered in the origin is “sufficiently large”.

Here2 we prefer an advanced approach than that one used in papers by Xu: we use
the averaging function which does not need to preserve radial symmetry. As a particular
example, we use the (n + 1)-variable function H(t, ‖x‖)ρ(x), where x ∈ Rn, rather than
the function of two variables H(t, s)k(s) with s ∈ R, used in [Xing, Xu, 2003], where s
corresponds to our ‖x‖.

In the sequel we define two classes of averaging functions: each of them will be used
on one of the parts of boundary ∂Ω(a, b) = S(a) ∪ S(b). Recall that the set D is defined
on page 39.

Definition 4.1. The function H(t, s) ∈ C(D, [0,∞)) is said to belong to the classH if

(i) H(t, s) = 0 if and only if t = s.

(ii) The partial derivative ∂H
∂s (t, s) exists.

(iii) Denoting

h2(t, s) = −∂H
∂s

(t, s)H−1(t, s), for (t, s) ∈ D, t 6= s,

1in the sense of Remark 2.3 from page 4
2like already in part 4 of Chapter 2 on page 23
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the function hp2(t, s)H(t, s) is locally integrable on each compact subset in D.

Remark 4.1. Remember that the function h2(t, s) has singularity for s = t, sinceH(t, t) =
0. The same is true also for the function h∗1(t, s) defined below.

Definition 4.2. The function H∗(t, s) ∈ C(D, [0,∞)) is said to belong to the classH∗ if

(i) H∗(t, s) = 0 if and only if t = s.

(ii) The partial derivative ∂H∗

∂t (t, s) exists.

(iii) Denoting

h∗1(t, s) =
∂H∗

∂t
(t, s)

[
H∗(t, s)

]−1
, for (t, s) ∈ D, t 6= s,

the function
[
h∗1(t, s)

]p
H∗(t, s) is locally integrable on each compact subset in D.

Remark 4.2. Note that the functions h∗1, h2 play slightly different role in our results than
in the paper [Wang, 2004], where h2(t, s) = ∂H

∂s (t, s)H−1/2(t, s) and h∗1 is defined in the
similar way. The reason is that we wish to gain simpler formulas in our resulting oscillation
criteria.

Our main tool – Riccati-type substitution which converts Eq. (1.1) into first order
Riccati-type equation has been introduced in Lemma 3.1 on page 42.

We start with some estimates in a neighborhood of the boundary of the set Ω(a, b). The
first lemma treats the boundary at b and the second one at a.

Lemma 4.1. Let u be a solution of (1.1) such that u(x) > 0 for c ≤ ‖x‖ < b. Let
ρ ∈ C1(Rn,R+) be a smooth positive function and H be a function of the class H. The
vector variable ~w(x) defined by (3.1) satisfies the inequality∫

Ω(c,b)
H
(
b, ‖x‖

)
c(x)ρ(x) dx ≤ H(b, c)

∫
S(c)

ρ(x) 〈~w(x) , ~ν(x)〉 dσ

+
∫

Ω(c,b)

∥∥∥~b(x)− ∇ρ(x)
ρ(x)

+ h2

(
b, ‖x‖

)
~ν
∥∥∥pρ(x)H

(
b, ‖x‖

)
p−p dx .

(4.2)

Proof. Suppose that positive solution u of (1.1) exists for c ≤ ‖x‖ < b. Multiplying Riccati
equation (3.2) by ρ(x) we get

c(x)ρ(x) = −ρ(x) div ~w − (p− 1)ρ(x)‖~w‖q −
〈
ρ(x)~w , ~b(x)

〉
and hence

c(x)ρ(x) = − div
(
ρ(x)~w

)
− (p− 1)ρ(x)‖~w‖q −

〈
ρ(x)~w , ~b(x)− ∇ρ(x)

ρ(x)

〉
. (4.3)

Integrating over the sphere S(s) of radius s, multiplying by H(t, s) and integrating with
respect to s over the interval (c, t), where t < b, we get∫

Ω(c,t)
H
(
t, ‖x‖

)
ρ(x)c(x) dx = −

∫ t

c
H(t, s)

∫
S(s)

div
(
ρ(x)~w

)
dσ ds

− (p− 1)
∫

Ω(c,t)
H
(
t, ‖x‖

)
ρ(x)‖~w‖q dx

−
∫

Ω(c,t)
H
(
t, ‖x‖

)〈
ρ(x)~w , ~b(x)− ∇ρ(x)

ρ(x)

〉
dx .
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Integration by parts in the first integral on the right hand side, Gauss-Ostrogradski formula
and the definition of the function h2 give∫

Ω(c,t)
H
(
t, ‖x‖

)
c(x)ρ(x) dx = H(t, c)

∫
S(c)

ρ(x) 〈~w , ~ν〉 dσ

−
∫

Ω(c,t)
h2

(
t, ‖x‖

)
H
(
t, ‖x‖

)
ρ(x) 〈~w , ~ν〉 dx

− (p− 1)
∫

Ω(c,t)
H
(
t, ‖x‖

)
ρ(x)‖~w‖q dx

−
∫

Ω(c,t)
H
(
t, ‖x‖

)〈
ρ(x)~w , ~b(x)− ∇ρ(x)

ρ(x)

〉
dx .

Using Young inequality (2.15) with

~a = H
(
t, ‖x‖

)(
~b(x)− ∇ρ(x)

ρ(x)
+ h2

(
t, ‖x‖

)
~ν
)(

(p− 1)H
(
t, ‖x‖

))− 1
q
ρ

1− 1
q (x)q−

1
q

~b = ρ(x)
(

(p− 1)H
(
t, ‖x‖

)) 1
q
ρ

1
q
−1(x)q

1
q ~w

we get∫
Ω(c,t)

H
(
t, ‖x‖

)
c(x)ρ(x) dx ≤ H(t, c)

∫
S(c)

ρ(x) 〈~w , ~ν〉 dσ

+
∫

Ω(c,t)

1
p
Hp
(
t, ‖x‖

)∥∥∥~b(x)− ∇ρ(x)
ρ(x)

+ h2

(
t, ‖x‖

)
~ν
∥∥∥p

× ρ(x)
(
pH
(
t, ‖x‖

))−p/q
dx .

Now simple algebraic simplifications, identity p
q = p − 1 and limit process t → b− give

(4.2).

Lemma 4.2. Let u be a solution of (1.1) such that u(x) > 0 for a < ‖x‖ ≤ c. Let
ρ ∈ C1(Rn,R+) be a smooth positive function and H∗ be a function of the class H∗. The
vector variable ~w(x) defined by (3.1) satisfies the inequality∫

Ω(a,c)
H∗
(
‖x‖, a

)
ρ(x)c(x) dx ≤ −H∗(c, a)

∫
S(c)

ρ(x) 〈~w(x) , ~ν〉 dσ

+
∫

Ω(a,c)

∥∥∥~b(x)− ∇ρ(x)
ρ(x)

− h∗1
(
‖x‖, a

)
~ν
∥∥∥pρ(x)H∗

(
‖x‖, a

)
p−p dx .

(4.4)

Proof. We begin as in the proof of Lemma 4.1 and obtain (4.3). Integrating (4.3) over the
sphere S(s) of radius s, multiplying by H∗(s, t) and integrating with respect to s over the
interval (t, c), where a < t, we get∫

Ω(t,c)
H∗
(
‖x‖, t

)
c(x)ρ(x) dx = −

∫ c

t
H∗(s, t)

∫
S(s)

div
(
ρ(x)~w

)
dσ ds

− (p− 1)
∫

Ω(t,c)
H∗
(
‖x‖, t

)
ρ(x)‖~w‖q dx

−
∫

Ω(t,c)
H∗
(
‖x‖, t

)〈
ρ(x)~w , ~b(x)− ∇ρ(x)

ρ(x)

〉
dx .
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As in the proof of Lemma 4.2, the integration by parts in the first integral on the right hand
side, Gauss-Ostrogradski formula and the definition of the function h∗1 give∫

Ω(t,c)
H∗
(
‖x‖, t

)
c(x)ρ(x) dx = −H∗(c, t)

∫
S(c)

ρ(x) 〈~w , ~ν〉 dσ

+
∫

Ω(t,c)
h∗1
(
‖x‖, t

)
H∗
(
‖x‖, t

)
ρ(x) 〈~w , ~ν〉 dx

− (p− 1)
∫

Ω(t,c)
H∗
(
‖x‖, t

)
ρ(x)‖~w‖q dx

−
∫

Ω(t,c)
H∗
(
‖x‖, t

)〈
ρ(x)~w , ~b(x)− ∇ρ(x)

ρ(x)

〉
dx .

Young inequality (2.15) with

~a = H∗
(
‖x‖, t

)(
~b(x)− ∇ρ(x)

ρ(x)
− h∗1

(
‖x‖, t

)
~ν
)(

(p− 1)H∗
(
‖x‖, t

))− 1
q
ρ

1− 1
q (x)q−

1
q

and

~b = ρ(x)
(

(p− 1)H∗
(
‖x‖, t

)) 1
q
ρ

1
q
−1(x)q

1
q ~w,

some simplifications and limit process t→ a+ give (4.4), similarly as in the proof of Lemma
4.2.

4.1 Conjugacy and oscillation criteria

The following theorem is a sufficient condition which ensures that every solution of the equa-
tion has zero inside Ω(a, b). In one-dimensional case this implies that there are conjugate
point in the interval (a, b).

Theorem 4.1. Suppose that there exist real number c ∈ (a, b), positive smooth function
ρ(x) and averaging functions H(t, s) ∈ H, H∗(t, s) ∈ H∗, such that

1
H∗(c, a)

∫
Ω(a,c)

H∗
(
‖x‖, a

)
ρ(x)c(x) dx +

1
H(b, c)

∫
Ω(c,b)

H
(
b, ‖x‖

)
ρ(x)c(x) dx

>
1

H∗(c, a)

∫
Ω(a,c)

∥∥∥~b(x)− ∇ρ(x)
ρ(x)

− h∗1
(
‖x‖, a

)
~ν
∥∥∥pρ(x)H∗

(
‖x‖, a

)
p−p dx

+
1

H(b, c)

∫
Ω(c,b)

∥∥∥~b(x)− ∇ρ(x)
ρ(x)

+ h2

(
b, ‖x‖

)
~ν
∥∥∥pρ(x)H

(
b, ‖x‖

)
p−p dx .

(4.5)

Then every solution of Eq. (1.1) has at least one zero inside Ω(a, b).

Proof. Suppose, by contradiction, that a solution u with no zero in the interior of Ω(a, b)
exists. Without loss of generality we can suppose that the function c is positive inside
Ω(a, b). Then (4.2) and (4.4) hold. Dividing these inequalities by H(b, c) and H∗(c, a)
respectively and summing up we obtain an opposite inequality to (4.5). This contradiction
shows that Theorem 4.1 holds.
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Theorem 4.2. If there exist t0 > 0, H ∈ H, H∗ ∈ H∗, ρ ∈ C1(Ω(t0),R+) such that for
every τ > t0 the inequalities

lim sup
t→∞

∫
Ω(τ,t)

[
H
(
t, ‖x‖

)
ρ(x)c(x)

−
ρ(x)H

(
t, ‖x‖

)
pp

∥∥∥~b(x)− ∇ρ(x)
ρ(x)

+ h2

(
t, ‖x‖

)
~ν
∥∥∥p] dx > 0

(4.6)

and

lim sup
t→∞

∫
Ω(τ,t)

[
H∗
(
‖x‖, τ

)
ρ(x)c(x)

−
ρ(x)H∗

(
‖x‖, τ

)
pp

∥∥∥~b(x)− ∇ρ(x)
ρ(x)

− h∗1
(
‖x‖, τ

)
~ν
∥∥∥p] dx > 0.

(4.7)

hold, then Eq. (1.1) is oscillatory.

Main idea of the proof. If the assumptions of Theorem 4.2 hold, then for every T > t0
there exist numbers a < c < b such that (4.5) holds and hence the equation has arbitrarily
large zeros. Here we omit the details, since the proof is completely analogous to the
one-dimensional case, see e.g. [Wang, 2004, Theorem 3].

Remark 4.3. If n = 1, ~b = ~o and H(t, s) = H∗(t, s), then Theorem 4.1 corresponds to
[Wang, 2004, Theorem 3] with r ≡ 1. Remark that, as far as the author knows, all relevant
results in the literature suppose H(t, s) = H∗(t, s), i.e. the same weight function is used
on both ends of the interval (a, b). Hence the possibility H(t, s) 6≡ H∗(t, s) causes that
Theorem 4.2 is new even for linear ODE (4.1).

Another, very similar, approach which allows to use weight function with different
growth on both ends of the interval (a, b) has been presented in [Sun, 2004] for n = 1
(see Theorem E on page 71) and in [Xu, 2005] for n ≥ 2. Namely, these authors use
the function Ĥ(r, s, l) of three variables which corresponds, in some sense, to our product
H(r, s)H∗(s, l) (see also Theorem E on page 71). In the following theorem we utilize this
idea and use the product H

(
t2, ‖x‖

)
H∗
(
‖x‖, t1

)
as an averaging function in the procedure

from Lemma 4.1. As a result we obtain an oscillation criterion which is simpler than (4.6)–
(4.7) in the sense that it consists of one inequality only, but it contains more complicated
function in the integral. This theorem is ann-dimensional extension of [Sun, 2004, Theorem
2.5] and non-radial extension of [Xu, 2005, Theorem 2.2] with slightly different meaning
of h∗1, h2, as mentioned above.

Theorem 4.3. Suppose that for every T > t0 there exist t1 > T , H ∈ H and H∗ ∈ H∗
such that

lim sup
t→∞

∫
Ω(t1,t)

H
(
t, ‖x‖

)
H∗
(
‖x‖, t1

)
×

[
ρ(x)c(x)− ρ(x)

pp

∥∥∥~b(x)− ∇ρ(x)
ρ(x)

+
[
h2

(
t, ‖x‖

)
− h∗1

(
‖x‖, t1

)]
~ν
∥∥∥p] dx > 0

(4.8)

Then Eq. (1.1) is oscillatory.
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Proof. As in the proof of Lemma 4.1 we get (4.3). Integrating over the sphere S(s) of
radius s, multiplying by H(t, s)H∗(s, t1) and integrating with respect to s over the interval
(t1, t) we get∫

Ω(t1,t)
H
(
t, ‖x‖

)
H∗
(
‖x‖, t1

)
ρ(x)c(x) dx

= −
∫ t

t1

H(t, s)H∗(s, t1)
∫
S(s)

div
(
ρ(x)~w

)
dσ ds

− (p− 1)
∫

Ω(t1,t)
H
(
t, ‖x‖

)
H∗
(
‖x‖, t1

)
ρ(x)‖~w‖q dx

−
∫

Ω(t1,t)
H
(
t, ‖x‖

)
H∗
(
‖x‖, t1

)〈
ρ(x)~w , ~b(x)− ∇ρ(x)

ρ(x)

〉
dx .

Integration by parts in the first integral on the right hand side, Gauss-Ostrogradski formula
and the definition of the function h2 give∫

Ω(t1,t)
H
(
t, ‖x‖

)
H∗
(
‖x‖, t1

)
ρ(x)c(x) dx

= −
∫

Ω(t1,t)

[
h2

(
t, ‖x‖

)
− h∗1

(
‖x‖, t1

)]
×H

(
t, ‖x‖

)
H∗
(
‖x‖, t1

)
ρ(x) 〈~w , ~ν〉 dx

− (p− 1)
∫

Ω(t1,t)
H
(
t, ‖x‖

)
H∗
(
‖x‖, t1

)
ρ(x)‖~w‖q dx

−
∫

Ω(t1,t)
H
(
t, ‖x‖

)
H∗
(
‖x‖, t1

)〈
ρ(x)~w , ~b(x)− ∇ρ(x)

ρ(x)

〉
dx .

The Young inequality yields∫
Ω(t1,t)

H
(
t, ‖x‖

)
H∗
(
‖x‖, t1

)
ρ(x)c(x) dx ≤

∫
Ω(t1,t)

1
p

[
H
(
t, ‖x‖

)
H∗
(
‖x‖, t1

)]p
×
∥∥∥~b(x)− ∇ρ(x)

ρ(x)
+
[
h2

(
t, ‖x‖

)
− h∗1

(
‖x‖, t1

)]
~ν
∥∥∥p

× ρ(x)
(
pH
(
t, ‖x‖

)
H∗
(
‖x‖, t1

))−p/q
dx .

Using some algebraic simplifications we find that the integral from the left hand side of
(4.8) is bounded from above by zero for every t > t1 which contradicts the assumption
(4.8). Theorem is proved.

Remark 4.4. The sharpness of the presented method can be shown on examples of radially
symmetric equations which follow the corresponding examples for n = 1 and therefore we
omit details.

Several effective criteria can be derived from the above criteria by choosing particular
averaging functions. Typical functions of the classesH andH∗ are

H(t, s) = (t− s)α, and H∗(t, s) = (t− s)β,

where min
{
α, β

}
> p− 1 (this restriction follows from the condition (iii)). The oscillation

criteria with this averaging functions are called Kamenev-type criteria.
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Chapter 4

Three terms elliptic half-linear PDE

1 Introduction

In this chapter we study oscillation properties of the half–linear partial differential equation

div
(
A(x)‖∇u‖p−2∇u

)
+
〈
~b(x), ‖∇u‖p−2∇u

〉
+ c(x)Φ(u) = 0 (1.1)

where x = (xi)ni=1 ∈ Rn, A(x) is elliptic n × n matrix with differentiable components,
c(x) is Hölder continuous function and ~b(x) =

(
b1(x), . . . , bn(x)

)
is continuous n-vector

function. Under a solution of (1.1) in Ω ⊆ Rn we understand a differentiable function u(x)
such that A(x)

∥∥∇u(x)
∥∥p−2∇u(x) is also differentiable and u satisfies (1.1) in Ω.

A special case of (1.1) is the linear partial differential equation which can be obtained
from (1.1) for p = 2. Another special case of (1.1) is the undamped equation

div
(
A(x)‖∇u‖p−2∇u

)
+ c(x)Φ(u) = 0 (1.2)

which for p = 2 reduces to linear equation

div
(
A(x)∇u

)
+ c(x)u = 0. (1.3)

If n = 1, then Eq. (1.2) reduces to the half–linear ordinary differential equation(
a(r)Φ(u′)

)′
+ b(r)Φ(u) = 0, ′ =

d
dr
. (1.4)

The following notation is used: The vector norm ‖~b‖ =
(∑n

i=1 b
2
i

) 1
2 is the usual

Euclidean norm, ‖A‖ = sup‖~b‖6=0
‖A~b‖
‖~b‖

is induced matrix norm and λmin(x), λmax(x) are

the smallest and largest eigenvalues of the matrix A(x), respectively. From the fact that
A(x) is positive definite symmetric matrix it follows that ‖A(x)‖ = λmax(x).

For simplicity, if M is matrix and ~k vector, then the product ~kM denotes the matrix
product of 1× n row matrix ~k and n× n matrix M and the product M~k denotes the matrix
product of the n× n matrix M and n× 1 column matrix ~k.

The results from this chapter are based on a suitable radialization of Eq. (1.1) and
conversion of this equation into an ordinary differential equation. This argument has been
used very effectively by many authors in various situations, see [Redheffer, 1986; Furusho,
1990; Furusho, 1992; Usami, 1995; Jaroš, Kusano, Yoshida, 2000; Mařı́k, 20003; Došlý,
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Mařı́k, 2001; Naito, Usami, 2001; Mařı́k, 20041; Xu, 2005; Xing, Xu, 2005; Xu, 20061].
We show that using this argument (particularly, using results from this chapter) it is possible
to derive easily sharper results than several recent oscillation criteria which can be found in
the literature.

According to the oscillation theory of ordinary differential equations, Eq. (1.4) is said
to be oscillatory if every its solution has infinitely many zeros on the interval (r0,∞)
and nonoscillatory if there exists r1 ≥ r0 such that (1.4) has solution on (r1,∞) without
zeros. If u is a solution of (1.4) which has no zero on (r1,∞), then the function w(r) =
a(r) |u

′(r)|p−2u′(r)
|u(r)|p−2u(r)

is solution of the Riccati equation

R[w] := w′ + b(r) + (p− 1)a1−q(r)|w|q = 0.

This Riccati equation is frequently used to derive oscillation criteria for Eq. (1.4). More
precisely, the following theorem holds.

Theorem A ([Došlý, Řehák, 2005, Theorem 2.2.1]). The following statements are equiva-
lent

(i) Equation (1.4) is nonoscillatory.

(ii) There exists r1 and a continuously differentiable function w : [r1,∞)→ R such that

R[w](r) = 0 for r ∈ [r1,∞).

(iii) There exists r1 and a continuously differentiable function w : [r1,∞)→ R such that

R[w](r) ≤ 0 for r ∈ [r1,∞). (1.5)

Thus, if Eq. (1.4) is oscillatory, then Riccati inequality (1.5) has no solution in any
neighborhood of infinity.

For the partial differential equation we use the concept of oscillation introduced in
Chapter 2.

Many oscillation criteria proved originally for Eq. (1.4) have been extended also to
(1.1). The proof of a typical oscillation criterion for (1.1) is usually based on the Riccati type
substitution ~w(x) = A(x)‖∇u(x)‖p−2∇u(x)

|u(x)|p−2u(x)
which converts positive or negative solutions of

(1.1) into solution of (partial) Riccati equation. This equation is integrated over balls in
n-dimensional space centered in the origin and the problem is converted into problem in
one dimension. The rest of the proof usually simply repeats steps from the proof of the
corresponding oscillation criterion for (1.4) (neglecting some technical problems which
arise for n ≥ 2).

The disadvantage of this approach is obvious: for every new oscillation criterion derived
for ordinary differential equations we have to derive a corresponding criterion for partial
differential equations. Since many new oscillation criteria for (1.4) appear in the literature,
it turns out to be better to find general theorem which allows to detect oscillation of partial
differential equation from oscillation of some ordinary differential equation rather than
readjust the proof of every oscillation criterion from (1.4) to (1.1). Some results of this type
have been proved in [Jaroš, Kusano, Yoshida, 2000; Došlý, Mařı́k, 2001; Naito, Usami,
2001]. Let us mention one of the typical results, proved by O. Došlý.
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Theorem B ([Došlý, Mařı́k, 2001, Theorem 3.5]). Equation

div
(
‖∇u‖p−2∇u

)
+ c(x)|u|p−2u = 0

is oscillatory, if the ordinary differential equation(
ωnr

n−1Φ(u′)
)′

+

(∫
S(r)

c(x) dx

)
Φ(u) = 0

is oscillatory.

Concerning oscillation criteria for (1.4) we refer to the monograph [Došlý, Řehák, 2005],
papers [Kusano, Naito, Ogata, 1994; Li, Yeh, 1995; Kusano, Naito, 1997; Hoshino et al,
1998; Došlý, 1998; Kandelaki, Lomtatidze, Ugulava, 2000; Došlý, Lomtatidze, 2006] and
the references therein.

The aim of this chapter is to extend Theorem B to Eq. (1.1). The application of this
theorem provides a tool to derive oscillation criteria for (1.1) easily from existing oscillation
criteria for (1.4). As we show below, this method can be used not only to provide a simple
proofs of existing or new oscillation criteria, but it also improves some of already known
results.

2 Reduction into ODE

In this section we formulate our main results.

Theorem 2.1. For a real number l > 1 define the functions

a(r) = (l∗)p−1

∫
S(r)
‖A(x)‖pλ1−p

min (x) dσ ,

b(r) =
∫
S(r)

[
c(x)− lp−1

λp−1
min (x)

‖~b(x)‖p

pp

]
dσ .

(2.1)

where l∗ = l
l−1 is the conjugate number to the number l if ‖~b(x)‖ 6= 0 and l∗ = 1 if

‖~b(x)‖ = 0. If the equation(
a(r)Φ(u′)

)′
+ b(r)Φ(u) = 0. (2.2)

is oscillatory, then Eq. (1.1) is also oscillatory.

Proof. Suppose, by contradiction, that (2.2) is oscillatory and (1.1) is not oscillatory. Then
there exists a solution u of this equation which is positive on Ω(r1) for r1 sufficiently large.
For x ∈ Ω(r1) define n-vector function

~w(x) = A(x)
‖∇u(x)‖p−2∇u(x)
|u(x)|p−2u(x)

. (2.3)

The function ~w satisfies

div ~w =
div
(
A(x)‖∇u‖p−2∇u

)
|u|p−2u

+ (1− p)
〈
A(x)‖∇u‖p−2∇u,∇u

〉
|u|−p

= −c(x)−
〈
~b(x),

‖∇u‖p−2∇u
|u|p−2u

〉
− (p− 1)

〈
A(x)‖∇u‖p−2∇u,∇u

〉
|u|p

. (2.4)
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Further, using the smallest eigenvalue of the matrix A and Young inequality (see (4.7) on
page 25) we have

(p− 1)

〈
A(x)‖∇u‖p−2∇u,∇u

〉
|u|p

+
〈
~b(x),

‖∇u‖p−2∇u
|u|p−2u

〉
≥ (p− 1)

(
1
l

+
1
l∗

)
λmin
‖∇u‖p

|u|p
+
〈
~b,
‖∇u‖p−2∇u
|u|p−2u

〉
=
pλmin

l

[(
‖∇u‖p−1

|u|p−1

) p
p−1 p− 1

p

+
〈

l

pλmin
~b,
‖∇u‖p−2∇u
|u|p−2u

〉
+

1
p

(
l

pλmin

)p
‖~b‖p

]

−
(

l

λmin

)p−1 1
pp
‖~b‖p + (p− 1)

λmin

l∗
‖∇u‖p

|u|p

≥ −
(

l

λmin

)p−1 1
pp
‖~b‖p + (p− 1)

λmin

l∗
‖∇u‖p

|u|p

and this inequality is trivial if ‖~b(x)‖ = 0 and l∗ = 1. Combining this computation and
(2.4) we get

div ~w + c(x)−
(

l

λmin

)p−1 1
pp
‖~b‖p + (p− 1)λmin

1
l∗
‖∇u‖p

|u|p
≤ 0. (2.5)

From the inequality

‖~w‖ ≤ ‖A‖‖∇u‖
p−1

|u|p−1
(2.6)

we get

div ~w + c(x)−
(

l

λmin

)p−1 1
pp
‖~b‖p + (p− 1)λmin

1
l∗‖A‖q

‖~w‖q ≤ 0. (2.7)

Define new function

W (r) =
∫
S(r)
〈~w, ~ν〉 dσ . (2.8)

The inequality

|W (r)| =

∣∣∣∣∣∣
∫
S(r)

〈
λ

1
q
min(x)
‖A(x)‖

~w,
‖A(x)‖

λ
1
q
min(x)

~ν

〉
dσ

∣∣∣∣∣∣
≤

(∫
S(r)

λmin(x)
‖A(x)‖q

‖~w‖q dσ

) 1
q
(∫

S(r)
‖A(x)‖pλ

− p
q

min(x) dσ

) 1
p

yields(∫
S(r)
‖A(x)‖pλ

− p
q

min(x) dσ

)− q
p

|W (r)|q ≤
∫
S(r)

λmin(x)
‖A(x)‖q

‖~w‖q dσ .
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By Gauss–Ostrogradski divergence theorem we have

W ′(r) =
d

dr

∫
S(r)
〈~w, ~ν〉 dσ =

d
dr

[∫
S(r)
〈~w, ~ν〉 dσ −

∫
S(a)
〈~w, ~ν〉 dσ

]

=
d

dr

∫
Ω(a,r)

div ~w dx

=
∫
S(r)

div ~w dσ .

(2.9)

The function W satisfies

W ′(r) +
∫
S(r)

[
c(x)−

(
l

λmin(x)

)p−1 ‖~b(x)‖p

pp

]
dσ

+ (p− 1)
1
l∗

(∫
S(r)
‖A(x)‖pλ

− p
q

min(x) dσ

)1−q

|W (r)|q ≤ 0 (2.10)

on [r1,∞) and hence the inequality

W ′ + b(r) + (p− 1)a1−q(r)|W |q ≤ 0 (2.11)

has solution on Ω(a). By Theorem A, Eq. (2.2) is nonoscillatory, a contradiction. Theorem
is proved.

Remark 2.1. If ‖~b(x)‖ ≡ 0 and A(x) = a
(
‖x‖
)
In where a(r) is smooth function and

In is n × n identity matrix, then Theorem 2.1 reduces to [Jaroš, Kusano, Yoshida, 2000,
Theorem 3.4].

Remark 2.2. An important step in the proof of Theorem 2.1 is to derive Eq. (2.4). A closer
look at the proof shows that it is sufficient to derive (2.4) with equality sign replaced by
inequality sign ≤. Hence it is possible to use this method to study equations which are in
certain sense majorants to (1.1). These equations cover for example

div
(
A(x)‖∇u‖p−2∇u

)
+
〈
~b(x), ‖∇u‖p−2∇u

〉
+ c(x)f(u) = 0 (2.12)

where f(u) is a differentiable function which satisfies f(0) = 0, uf(u) > 0 for u 6= 0 and

f ′(u)
f2−q(u)

≥ p− 1. (2.13)

Equation (2.12) is sometimes called super-half-linear equation.
If the function f(u) satisfies (2.13) with p−1 replaced by ε > 0, it is sufficient to replace

f(u) and c(s) by f∗(u) = ε∗f(u) and c∗(x) = 1
ε∗ c(x), respectively, where ε∗ =

(
p−1
ε

)p−1
.

The function f∗(u) satisfies (2.13) and f(u)c(x) = f∗(u)c∗(x) holds.
Finally, it is possible to use this method also to prove nonexistence of positive solution

of the equation

div
(
A(x)‖∇u‖p−2∇u

)
+
〈
~b(x), ‖∇u‖p−2∇u

〉
+B(x, u) = 0,

where

B(x, u) ≥ c(x)f(u) for u ≥ 0

and the function f(u) satisfies hypotheses stated above.
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Remark 2.3. Many oscillation criteria for the ordinary half-linear differential equation are
derived for Eq. (2.2) with a(r) ≡ 1. However, if the integral of a1−q(r) is divergent,
i.e. if

∫∞
a1−q(r) dr = ∞, then the transformation of independent variable s = ϕ(r) :=∫ r

r0
a1−q(t) dt , y(s) = u(r) transforms (2.2) into

d
ds

(
Φ
( dy

ds

))
+ b(r)a1−q(r)Φ(y) = 0, r = ϕ−1(s)

and interval [r0,∞) is transformed into [0,∞). Using this transformation, an extension of
the oscillation criteria derived for a(r) ≡ 1 to general case (2.2) used in Theorem 2.1 is
straightforward.

Remark 2.4. Several oscillation criteria for (2.2) require
∫∞

a1−q(r) dr = ∞. If the
matrix A(x) is a constant matrix, then the divergence of this integral is equivalent to the
condition p ≥ n. This is a natural phenomenon. The fact that the oscillation properties
of (1.1) are different for p < n and p ≥ n has been discussed in details in [Došlý, Mařı́k,
2001].

Some oscillation criteria in the literature contain an additional (and in some sense
arbitrary) function (say θ(r)) and thus are more general. A convenient choice of the function
θ allows to ensure that the condition from some oscillation criterion (usually divergence or
positivity of some integral) holds. A common way to find criteria of this type is to include
the function θ into definition of the function W (r). The following lemma is an application
of this idea to (2.2). Note that it is sufficient to consider ordinary differential equation only
to apply this idea.

Lemma 2.1. Let m > 1 be positive number, m∗ = m
m−1 be its conjugate number and θ(r)

be smooth positive function. If the equation(
(m∗)p−1θ(r)a(r)Φ(u′)

)′
+
(
θ(r)b(r)− a(r)

mp−1

pp
|θ′(r)|p

θp−1(r)

)
Φ(u) = 0 (2.14)

is oscillatory, then Eq. (2.2) is also oscillatory.

Proof. Suppose that (2.2) is not oscillatory. We prove that (2.14) is also nonoscillatory. If
(2.2) is nonoscillatory, then there is a function w(r) which satisfies

w′(r) + b(r) + (p− 1)a1−q(r)|w(r)|q = 0

on (r1,∞) for r1 sufficiently large. Define the function

Z(r) = θ(r)w(r).

The function Z satisfies equation

Z ′(r) + θ(r)b(r) + (p− 1)
(
θ(r)a(r)

)1−q
|Z(r)|q − θ′(r)

θ(r)
Z(r) = 0. (2.15)

Using mutually conjugate numbers m, m∗ and Young inequality we get

(p− 1)(θa)1−q|Z|q − θ′

θ
Z
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= p(θa)1−q 1
m

[
p− 1
p
|Z|q − mθ′

pθ
(θa)q−1Z

+
1
p

∣∣∣∣mθ′pθ

∣∣∣∣p (θa)(q−1)p

]
+

1
m∗

(p− 1)
(
θa
)1−q

|Z|q −
∣∣∣∣ θ′pθ
∣∣∣∣p θamp−1

≥ 1
m∗

(p− 1)
(
θa
)1−q

|Z|q − 1
pp
|θ′|p

θp−1
amp−1

This inequality combined with (2.15) shows that the inequality

Z ′ + θ(r)b(r)− a(r)
mp−1

pp
|θ′(r)|p

θp−1(r)
+
p− 1
m∗

(
θ(r)a(r)

)1−q
|Z|q ≤ 0

has solution on (r1,∞) and (2.14) is nonoscillatory by Theorem A. The proof of the lemma
is complete.

The following corollary is based on a similar idea as Lemma 2.1. The difference is that
it makes use of a function ρ(x) of n variables rather than the function θ(r) of one variable
and the proof is more complicated since it is not sufficient to work with ordinary differential
equations but we have to return in the proof to partial Riccati equation. However, it is
sufficient to simply repeat the steps from the proof of Theorem 2.1 with modified functions.
From this reason we proved the simpler version of this theorem first and now we sketch the
extension to more general case.

Corollary 2.1. Let ρ ∈ C1(Ω(1),R+). Theorem 2.1 remains valid, if Eqs. (2.1) are
replaced by

a(r) = (l∗)p−1

∫
S(r)

ρ(x)‖A(x)‖pλ1−p
min (x) dσ ,

b(r) =
∫
S(r)

ρ(x)

[
c(x)− lp−1

ppλp−1
min (x)

∣∣∣∣∣∣∣∣~b(x)− ∇ρ(x)
ρ(x)

A(x)
∣∣∣∣∣∣∣∣p
]

dσ ,
(2.16)

and l∗ = 1 if
∥∥∥ρ(x)~b(x)−∇ρ(x)A(x)

∥∥∥ = 0 and l∗ = l
l−1 otherwise.

Proof. Suppose by contradiction that (2.2) with a(r) and b(r) defined by (2.16) is oscillatory
and (1.1) is nonoscillatory. Define vector, matrix and scalar functions~bρ(x) = ρ(x)~b(x)−
∇ρ(x)A(x), ~wρ(x) = ρ(x)~w(x), Aρ(x) = ρ(x)A(x) and cρ(x) = ρ(x)c(x). Further, let
λmin,ρ(x) = ρ(x)λmin(x) and ‖Aρ(x)‖ = ρ(x)‖A(x)‖ be minimal eigenvalue and norm of
the matrix Aρ(x) respectively. It is sufficient to prove that the conclusion of Theorem 2.1
remains valid if the functions~b(x), A(x), ~w(x), c(x), λmin(x) and ‖A(x)‖ are replaced by
~bρ(x), Aρ(x), ~wρ(x), cρ(x), λmin,ρ(x) and ‖Aρ(x)‖ respectively, since these replacements
convert (2.1) into (2.16).

We start as in the proof of Theorem 2.1 and derive (2.4). Multiplying (2.4) by the
function ρ(x) we find that (2.4) is equivalent to the equation

div
(
ρ(x)~w(x)

)
+ ρ(x)c(x) +

〈
ρ(x)~b(x)−∇ρ(x)A(x),

‖∇u‖p−2∇u
|u|p−2u

〉
+ (p − 1)

〈
ρ(x)A(x)‖∇u‖p−2∇u,∇u

〉
|u|p

= 0.
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Note that this equation also arises from (2.4) by using the above mentioned replacements.
Naturally, using the steps from Theorem 2.1 we conclude inequality which arises from
(2.10) by using the same replacements. Hence inequality (2.11) with a(r), b(r) defined by
(2.16) has a solution on [r1,∞). By Theorem A, Eq. (2.2) with a(r), b(r) defined by (2.16)
is nonoscillatory, a contradiction.

Remark 2.5. In general, it is not easy to find the norm ‖A(x)‖. From this reason we provide
some upper estimates for this norm:

‖A‖ ≤ ‖A‖F :=

√√√√ n∑
i,j=1

|aij |2 (2.17)

‖A‖ ≤ n max
1≤i,j≤n

|aij |

1√
n
‖A‖ ≤ ‖A‖∞ := max

1≤i≤n

n∑
j=1

|aij |

1√
n
‖A‖ ≤ ‖A‖1 := max

1≤j≤n

n∑
i=1

|aij |

These estimates can be used together with the following simple corollary.

Corollary 2.2. Let l be a real number, l > 1, b̃(r) be continuous function and ã(r) be
smooth function such that

ã(r) ≥ (l∗)p−1

∫
S(r)
‖A(x)‖pλ1−p

min (x) dσ ,

b̃(r) ≤
∫
S(r)

[
c(x)−

(
l

λmin(x)

)p−1 ‖~b(x)‖p

pp

]
dx ,

where l∗ = l
l−1 is the conjugate number to the number l if ‖~b(x)‖ 6≡ 0 and l∗ = 1 if

‖~b(x)‖ ≡ 0. If the ordinary differential equation(
ã(r)Φ(u′)

)′
+ b̃(r)Φ(u) = 0 (2.18)

is oscillatory, then Eq. (1.1) is also oscillatory.

Proof. Suppose that (2.18) is oscillatory. From the assumptions it follows that (2.2) is a
Sturmian majorant to (2.18) and hence (2.2) is also oscillatory. Now the statement follows
from Theorem 2.1.

Obviously, the equality signs in (2.16) can be replaced by inequality signs in the same
way as in Corollary 2.2. The following Theorem 2.2 is a variant of Theorem 2.1 and presents
sharper result, but covers the case 1 < p ≤ 2 only.

Theorem 2.2. Let 1 < p ≤ 2. For a real number l > 1 define the functions

â(r) = (l∗)p−1

∫
S(r)

λmax(x) dσ ,

b̂(r) =
∫
S(r)

[
c(x)− lp−1

pp
λmax(x)‖~b(x)A−1(x)‖p

]
dσ ,

(2.19)
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where l∗ = l
l−1 is the conjugate number to the number l if ‖~b(x)‖ 6= 0 and l∗ = 1 if

‖~b(x)‖ = 0. Here~b(x)A−1(x) denotes the matrix product of row matrix
(
b1(x), . . . , bn(x)

)
and the inverse A−1(x). If the equation(

â(r)Φ(u′)
)′

+ b̂(r)Φ(u) = 0 (2.20)

is oscillatory, then Eq. (1.1) is also oscillatory.

Proof. Suppose, by contradiction, that (2.20) is oscillatory and (1.1) is nonoscillatory. We
start as in the proof of Theorem 2.1 and derive (2.4) which can be written in the form

div ~w + c+
〈
~b,A−1 ~w

〉
+ (p− 1)

〈
~w,A−1 ~w

〉 ‖∇u‖2−p
|u|2−p

= 0. (2.21)

If λmax is the maximal eigenvalue of the matrix A, then the number 1
λmax

is the minimal
eigenvalue of its inverse A−1 and hence〈

~w,A−1 ~w
〉
≥ ‖~w‖2 1

λmax
.

From the property of matrix norm we have (2.6) which is for p ≤ 2 equivalent to the
inequality

‖∇u‖2−p

|u|2−p
≥ ‖~w‖

(2−p)/(p−1)

‖A‖(2−p)/(p−1)
=
‖~w‖(2−p)/(p−1)

λ
(2−p)/(p−1)
max

.

Combining these computation we have the following estimate for the last term on the left
hand side of (2.21)

〈
~w,A−1 ~w

〉 ‖∇u‖2−p
|u|2−p

≥ ‖~w‖2+(2−p)/(p−1)λ
−1+(p−2)/(p−1)
max = ‖~w‖qλ1−q

max .

From these estimates and from Eq. (2.21) we get inequality

div ~w + c+
〈
~bA−1, ~w

〉
+ (p− 1)λ1−q

max ‖~w‖q ≤ 0. (2.22)

Using essentially the same method as in the proof of Theorem 2.1 we use mutually conjugate
numbers l and l∗ to split the last term into two terms and use the Young inequality to remove
the term

〈
~bA−1, ~w

〉
:

〈
~bA−1, ~w

〉
+ (p− 1)λ1−q

max ‖~w‖q =
〈
~bA−1, ~w

〉
+ (p− 1)

(
1
l

+
1
l∗

)
λ1−q

max ‖~w‖q

=
p

l
λ1−q

max

[
p− 1
p
‖~w‖q +

〈
λq−1

max l

p
~bA−1, ~w

〉
+

1
p
λ
p(q−1)
max

lp

pp
‖~bA−1‖p

]
+ (p− 1)

1
l∗
λ1−q

max ‖~w‖q −
lp−1λmax

pp
‖~bA−1‖p

≥ (p− 1)
1
l∗
λ1−q

max ‖~w‖q −
lp−1λmax

pp
‖~bA−1‖p.
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This computation remains valid if ‖~b‖ = 0 and l∗ = 1. In this case l disappears. Inequality
(2.22) now yields

divw + c(x)− lp−1

pp
λmax‖~bA−1‖p + (p− 1)

1
l∗
λ1−q

max ‖~w‖q ≤ 0. (2.23)

Define the function W (r) by (2.8). Hölder inequality yields

|W (r)| =

∣∣∣∣∣
∫
S(r)

〈
λ

(1−q)/q
max ~w, λ

(q−1)/q
max ~ν

〉
dσ

∣∣∣∣∣
≤

(∫
S(r)

λ1−q
max ‖~w‖q dσ

) 1
q
(∫

S(r)
λmax dσ

) 1
p

and (∫
S(r)

λmax dσ

)1−q

|W (r)|q ≤
∫
S(r)

λ1−q
max ‖~w‖q dσ .

This inequality, inequality (2.23) and equality (2.9) show that the function W (r) satisfies

W ′ +
∫
S(r)

[
c(x)− lp−1

pp
λmax‖~bA−1‖p

]
dσ

+ (p − 1)

(
l∗p−1

∫
S(r)

λmax dσ

)1−q

|W |q ≤ 0.

Thus, the inequality

W ′ + b̂(r) + (p− 1)â1−q(r)|W |q ≤ 0 (2.24)

has solution on (r1,∞) and (2.20) is not oscillatory by Theorem A. This contradiction
proves the theorem.

Remark 2.6. Similarly to Theorem 2.1 and Corollary 2.2, the functions â(r) and b̂(r) can
be replaced by any smooth bigger and continuous smaller functions, respectively.

The following corollary is a version of Corollary 2.1.

Corollary 2.3. Let ρ ∈ C1(Ω(1),R+). Theorem 2.2 remains valid, if Eqs. (2.19) are
replaced by

â(r) = (l∗)p−1

∫
S(r)

ρ(x)λmax(x) dσ ,

b̂(r) =
∫
S(r)

ρ(x)
[
c(x)− lp−1

pp
λmax(x)

∣∣∣∣∣∣∣∣~b(x)A−1(x)− ∇ρ(x)
ρ(x)

∣∣∣∣∣∣∣∣p] dσ ,
(2.25)

and l∗ = 1 if
∥∥∥ρ(x)~b(x)A−1(x)−∇ρ(x)

∥∥∥ = 0 and l∗ = l
l−1 otherwise.
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Proof. The proof is analogical to the proof of Corollary 2.1. We suppose that (1.1) is not
oscillatory and prove that (2.20) is also nonoscillatory. Using the same method as in the
proof of Theorem 2.2 we derive inequality (2.21) which can be written in the form

div
(
ρ~w
)

+ ρc+
〈
ρ~b−∇ρA,A−1 ~w

〉
+ (p− 1)ρ

〈
~w,A−1 ~w

〉 ‖∇u‖2−p
|u|1−p

= 0. (2.26)

With the notationAρ(x) = ρ(x)A(x),~bρ(x) = ρ(x)~b(x)−∇ρ(x)A(x), ~wρ(x) = ρ(x)~w(x)
Eq. (2.26) can be written in the form

div
(
~wρ

)
+ cρ +

〈
~bρ, A

−1
ρ ~wρ

〉
+ (p− 1)

〈
~wρ, A

−1
ρ ~wρ

〉 ‖∇u‖2−p
|u|1−p

= 0

whereA−1
ρ (x) = ρ−1(x)A−1(x) is the inverse matrix toAρ(x). This equation has the same

form as (2.26). Thus using the same steps as in the proof of Theorem 2.2 we prove that
there exists a function W (r) which satisfies

W ′ +
∫
S(r)

[
cρ −

lp−1

pp
λmax,ρ‖~bρA−1

ρ ‖p
]

dσ

+ (p − 1)

(
l∗p−1

∫
S(r)

λmax,ρ dσ

)1−q

‖W‖q ≤ 0,

where λmax,ρ(x) = ρ(x)λmax(x) is the largest eigenvalue of the matrix Aρ(x). This shows
that the Riccati inequality (2.24) with â(r) and b̂(r) defined by (2.25) has a solution. Thus
(2.20) is nonoscillatory by Theorem A and the corollary is proved.

Remark 2.7. As we said, Theorem 2.2 produces sharper results than Theorem 2.1. Really,
consider for simplicity the undamped case ‖~b‖ = 0. Since ‖A(x)‖ = λmax(x) ≥ λmin(x),
we have

‖A(x)‖pλ1−p
min (x) = ‖λmax(x)‖pλ1−p

min (x) =
(
λmax(x)
λmin(x)

)p−1

λmax(x) ≥ λmax(x),

where the quotient λmax(x)
λmin(x) ≥ 1 is the conditioned number of the matrix A(x). Hence

a(r) ≥ â(r) and (2.19) is Sturmian majorant to (2.1) and Theorem 2.2 is sharper. Really, if
1 < p ≤ 2, (2.1) is oscillatory and Theorem 2.1 applies, then (2.19) is also oscillatory and
Theorem 2.2 applies as well. The converse is not true, in general.

Since both proofs of Theorem 2.1 and 2.2 are very similar, the fact that the latter theorem
is sharper deserves closer explanation. Let us compare proofs of both theorems. In the
proof of Theorem 2.1 we derive (2.7) from (2.5). In order to do this we have to power both
sides of inequality (2.6) to the power q. Similarly, in the proof of Theorem 2.2 we have
to conclude (2.22) from (2.21) and (2.6) by powering both sides of (2.6) to the power 2−p

p−1
(from here we have the restriction p ≤ 2). Since

2− p
p− 1

<
1

p− 1
<

p

p− 1
= q

for p > 1, it follows that we use smaller power in this crucial step in Theorem 2.2 and thus
the relative error between the left and right hand side of inequality (2.6) does not increase
so much in Theorem 2.2 (comparing to Theorem 2.1).
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3 Applications

This section shows application of general theorems on some examples. These examples
are of a different kind than examples accompanying usual oscillation criteria in literature.
We will not prove oscillation of an equation for which other oscillation criteria fail, but we
show that several recent oscillation criteria can be improved and derived in few simple steps
using results from the preceding section.

The following theorem has been proved originally for damped linear equation by Xu.
However, we reformulate this theorem for undamped equation only in order to obtain results
which can be compared to the results from the preceding section and which are extensible
to half-linear case.

Theorem C ([Xu, 20061, Theorem 3.1]). Let θ ∈ C([r0,∞],R+),m > 1,λ ∈ C([r0,∞),R+),
λ(r) ≥ max‖x‖=r λmax(x) for r ≥ r0. If

lim
r→∞

∫
Ω(r0,r)

[
θ(‖x‖)c(x)− λ(‖x‖)m

4
θ′2(‖x‖)
θ(‖x‖)

]
dx =∞

and

lim
r→∞

∫
Ω(r0,r)

1
θ(‖x‖)λ(‖x‖)

dx =∞,

then Eq. (1.3) is oscillatory.

The classical Leighton–Wintner criterion states that the equation(
α(r)u′

)′
+ β(r)u = 0

is oscillatory if∫ ∞
α−1(s) ds =∞ =

∫ ∞
β(s) ds .

For Eq. (1.3) the functions â(r), b̂(r) from Theorem 2.2 become

â(r) =
∫
S(r)

λmax(x) dσ ,

b̂(r) =
∫
S(r)

c(x) dσ .

Using Theorem 2.2, Lemma 2.1 and the Leighton–Wintner oscillation criterion we conclude
that the maximum from the definition of the function λ(r) can be removed and the function
λ(‖x‖) can be replaced by (smaller) function λmax(x).

Corollary 3.1. The statement of Theorem C remains valid if the function λ(‖x‖) is replaced
by λmax(x).

Since a half-linear version of Leighton–Wintner criterion also exists, a half-linear exten-
sion of Theorem C is straightforward. (For another half-linear extension of the Leighton–
Wintner criterion see Corollary 3.3 below and Corollary 2.1 on page 13 which deals with
A(x) = I , i.e. with p-Laplace operator.)
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Corollary 3.2. Let θ ∈ C([r0,∞],R+), m > 1 and q = p
p−1 be conjugate number to the

number p. If

lim
r→∞

∫
Ω(r0,r)

[
θ(‖x‖)c(x)− λmax(x)

mp−1

pp
θ′p(‖x‖)
θp−1(‖x‖)

]
dx =∞

and

lim
r→∞

∫ r

θ1−q(s)

(∫
S(s)

λmax(x) dσ

)1−q

ds =∞,

then Eq. (1.2) is oscillatory.

Proof. Equation (1.4) is oscillatory if∫ ∞
b(r) dr =∞ =

∫ ∞
a1−q(r) dr .

Thus the statement is an immediate consequence of Theorem 2.2 and Lemma 2.1.

An application of the half-linear Leighton–Wintner criterion to Corollary 2.1 gives the
following oscillation criterion.

Corollary 3.3. Let ρ ∈ C1(Ω(r0),R+) and k > 1. If

lim
r→∞

∫ r

r0

(∫
S(t)

ρ(x)‖A(x)‖pλ1−p
min (x) dσ

)1−q

dt =∞

and

lim
r→∞

∫
Ω(r0,r)

ρ(x)

[
c(x)− k

ppλp−1
min (x)

∣∣∣∣∣∣∣∣~b(x)− ∇ρ(x)
ρ(x)

A(x)
∣∣∣∣∣∣∣∣p
]

dx =∞,

then Eq. (1.1) is oscillatory.

Proof. The proof is similar to the proof of Corollary 3.2 and thus omitted.

Corollary 3.3 is closely related to the results from Chapter 3 where we considerA(x) =
In and detect oscillation in more general domains than exterior of a ball. However, in the
case which is covered by both Corollary 3.3 and Chapter 3 the conclusion of Corollary 3.3
is identical to Theorem 3.3 on page 44.

The method of weighted integral averages is frequently used to obtain various extensions
of Kamenev type oscillation criteria and also interval oscillation criteria. In the sequel we
introduce two results based on this method, Theorems D and E.

Theorem D ([Wang, 2001, Theorem 1]). Let D0 = {(t, s) : t > s ≥ t0} and D = {(t, s) :
t ≥ s ≥ t0}. Let functions H ∈ C(D; R), h ∈ C(D0; R), k, ρ ∈ C1([t0,∞); (0,∞))
satisfy the following three conditions:

(i) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 on D0

(ii) H has a continuous and nonpositive partial derivative on D0 with respect to the
second variable
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(iii)

− ∂

∂s

(
H(t, s)k(s)

)
−H(t, s)k(s)

ρ′(s)
ρ(s)

= h(t, s) ∀(t, s) ∈ D0

and ∫ t

t0

H1−p(t, s)|h(t, s)|p ds <∞

for every t.

If

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)k(s)ρ(s)b(s)− ρ(s)a(s)|h(t, s)|p

pp[H(t, s)k(s)]p−1

]
=∞,

then Eq. (1.4) is oscillatory.

An application of Theorems 2.1 and 2.2 to this result gives the following corollary.

Corollary 3.4. Let ϕ, k ∈ C1([r0,∞),R+) be real functions. Suppose that there exists
continuous function H(r, s) defined for r ≥ s ≥ r0 such that

(i) H(r, r) = 0 and H(r, s) > 0 for r > s ≥ r0,

(ii) the function H has continuous nonpositive partial derivative with respect to the
second variable,

(iii) the function h(r, s) defined by the relation

− ∂

∂s

[
H(r, s)k(s)

]
−H(r, s)k(s)

ϕ′(s)
ϕ(s)

= h(r, s)

satisfies∫ r

r0

H1−p(r, s)|h(r, s)|p ds <∞

for every r

(iv)

lim sup
r→∞

1
H(r, r0)

∫ r

r0

{
H(r, s)k(s)ϕ(s)

∫
S(s)

c(x) dσ

− 1
pp
[
H(r, s)k(s)

]1−pΘ(s)ϕ(s)|h(r, s)|p
}

ds =∞, (3.1)

where

Θ(s) =


∫
S(s)
‖A(x)‖pλ1−p

min (x) dσ if p > 2∫
S(s)

λmax(x) dσ if 1 < p ≤ 2
(3.2)
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Then Eq. (1.2) is oscillatory.

Corollary 3.4 improves [Xing, Xu, 2005, Theorem 2.1] in several aspects. First, we
use the norm consistent with Euclidean vector norm rather than the Frobenius norm used in
[Xing, Xu, 2005] and thus obtain sharper result (see inequality (2.17)).

Second, the term

ΘXu(s) := ρ1−p(s)ωnsn−1 where ρ(s) ≤ min
x∈S(s)

λmin(x)
‖A(x)‖qF

. (3.3)

appears in [Xing, Xu, 2005, Theorem 2.1] in condition (3.1) instead of Θ(s). In Corollary 3.4
we have shown that this term ΘXu(s) can be replaced by smaller term Θ(s). In other words,
the maximum of the function ‖A(x)‖pλ1−p

min (x) over the sphere S(s) (which corresponds to
the minimum of the function λmin(x)

‖A(x)‖q from (3.3)) can be replaced by its integral mean value
and if p ≤ 2 we can further decrease this term as (3.2) shows. In this sense, the Corollary
3.4 not only provides a simple alternative proof of [Xing, Xu, 2005, Theorem 2.1], but
yields sharper result.

The following Theorem E is an example of interval type oscillation criterion for damped
linear differential equation.

Theorem E ([Sun, 2004, Theorem 2.1]). Consider equation(
r(t)y′

)′
+ p(t)y′ + q(t)f(y) = 0,

where r(t) ∈ C([a,∞), (0,∞), p(t), q(t) ∈ C([a,∞),R), f(u) ∈ C(R,R), uf(u) > 0
and f ′(u) ≥ µ > 0 for u 6= 0. This equation is oscillatory provided that for each l ≥ a
there exists a function H with properties

(i) H ∈ C(E,R), where E = {(t, s, l); a ≤ l ≤ s ≤ t <∞}

(ii) H(t, t, l) = 0 = H(t, l, l), H(t, s, l) 6= 0 for l < s < t,

(iii) the function h(t, s, l) defined by relation

∂H

∂s
(t, s, l) = h(t, s, l)H(t, s, l)

is such that h2(t, s, l)H(t, s, l) is locally integrable with respect to s on the set
t ≥ s ≥ l ≥ a,

(iv)

lim sup
t→∞

∫ t

l
H(t, s, l)

[
q(s)− r(s)

4µ

(
p(s)
r(s)

− h(t, s, l)
)2
]

ds > 0.

As an application of Theorem 2.2 to this result we get the following oscillation criterion.

Corollary 3.5. Suppose that for each l ≥ a there exist a function H(r, s, l) defined for
r ≥ s ≥ l ≥ a such that

(i) H(r, r, l) = 0 = H(r, l, l) for r > l ≥ a and H(r, s, l) > 0 for r > s > l,
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(ii) H(r, s, l) has continuous partial derivative with respect to s for r > s > l,

(iii) the function h(r, s, l) defined by relation

∂H

∂s
(r, s, l) = h(r, s, l)H(r, s, l)

is such that h2(r, s, l)H(r, s, l) is locally integrable with respect to s on the set
r ≥ s ≥ l ≥ a,

(iv)

lim sup
t→∞

∫ t

l
H(r, s, l)

{∫
S(s)

[
c(x)− l

4
λmax(x)‖~b(x)A−1(x)‖2

]
dσ

− l∗

4
ΨM (s)h2(r, s, l)

}
ds > 0

(3.4)

where ΨM (r) =
∫
S(r) λmax(x) dσ and l > 1, l∗ = p

p−1 are mutually conjugate

numbers. If ‖~b(x)‖ = 0 we can put l∗ = 1.

Then equation

div
(
A(x)∇u

)
+
〈
~b(x),∇u

〉
+ c(x)u = 0

is oscillatory.

Corollary 3.5 improves [Xu, 2005, Theorem 3.1] which has been proved for slightly
more general equation (covered by Remark 2.2, nevertheless). The condition (3.4) is in
[Xu, 2005] replaced by

lim sup
t→∞

∫ t

l
H(r, s, l)

{∫
S(s)

[
c(x)− 1

2
λmax(x)‖~b(x)A−1(x)‖2

]
dσ

− 1
2

ΨXu(s)h2(r, s, l)
}

ds > 0
(3.5)

where ΨXu(r) = λ(r)ωnrn−1 and λ(r) ≥ maxx∈S(r) λmax(x). It is easy to see that
oscillation criterion involving condition (3.4) is sharper than the criterion involving (3.5).
Really, the maximum of the eigenvalue λmax(x) over the sphere of diameter r which appears
in the definition of ΨXu is replaced by the integral mean value of this eigenvalue in ΨM (r)
and thus ΨM (r) is smaller than ΨXu(r). Another difference between (3.4) and (3.5) is in
the fact that fixed values 1/2 in (3.5) are replaced by l/4 and l∗/4 with arbitrary conjugate
numbers l, l∗ in (3.4).
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Chapter 5

Related equations and inequalities

1 Inequality with p-Laplacian

In the first part of this chapter we study positive solutions of the partial differential inequality

div
(
‖∇u‖p−2∇u

)
+B(x, u) ≤ 0, (1.1)

where B(x, u) : Rn × R → R is a continuous function. Inequality (1.1) covers several
equations and inequalities studied in literature and also in this thesis. If p = 2 then (1.1)
reduces to the semilinear Schrödinger inequality

∆u+B(x, u) ≤ 0, (1.2)

studied in [Swanson, 1979; Noussair, Swanson, 1980]. Another important special case of
(1.1) is the half–linear differential equation

div
(
‖∇u‖p−2∇u

)
+ c(x)Φ(u) = 0, (1.3)

studied in Chapters 1 and 2.
We will introduce sufficient conditions for nonexistence of a solution which would be

eventually positive (i.e., positive outside of some ball in Rn). Remark that in a similar way
one can study also negative solutions of the inequality

div
(
‖∇u‖p−2∇u

)
+B(x, u) ≥ 0,

and a combination of these results produces criteria for nonexistence of a solution of the
inequality

u
[
div
(
‖∇u‖p−2∇u

)
+B(x, u)

]
≤ 0 (1.4)

which would have no zero outside of some ball in Rn, the so called weak oscillation criteria.
A simple version of this procedure is used in Corollary 1.5. A more elaborated version of
this procedure can be found in [Noussair, Swanson, 1980].

1.1 Riccati transformation

The main tool used for the study of positive solutions is the generalized Riccati transforma-
tion. Various forms of Riccati transformation have been used in [Noussair, Swanson, 1980]
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and [Došlý, Mařı́k, 2001], where inequality (1.2) and Eq. (1.3) were studied, respectively.
Our approach combines both these methods and covers both these substitutions as special
cases. We use the transformation

~w(x) = −α(‖x‖)‖∇u(x)‖p−2∇u(x)
ϕ(u(x))

(1.5)

α ∈ C1([a0,∞),R+), ϕ ∈ C1(R+,R+)

which maps a positive C1 function u(x) into an n-vector function ~w(x).

Lemma 1.1. Let u be a positive solution of (1.1) on Ω(a0). Then the n-vector function
~w(x) is well-defined by (1.5) and satisfies the Riccati–type inequality

div ~w(x) ≥
α(‖x‖)B

(
x, u(x)

)
ϕ
(
u(x)

) +
α′(‖x‖)
α(‖x‖)

〈~ν(x), ~w(x)〉

+ α1−q(‖x‖)ϕq−2
(
u(x)

)
ϕ′
(
u(x)

)
‖~w(x)‖q. (1.6)

Proof. Let u(x) ≥ 0 be a solution of (1.1) on Ω(a0) and let ~w(x) be defined by (1.5). From
(1.5) it follows that

div ~w =
α

ϕ(u)
div
(
‖∇u‖p−2∇u

)
− ‖∇u‖p−2

〈
∇u,∇

( α

ϕ(u)

)〉
and in view of (1.1)

div ~w ≥ αB(x, u)
ϕ(u)

− α′‖∇u‖p−2

ϕ(u)
〈∇u, ~ν〉+

αϕ′(u)
ϕ2(u)

‖∇u‖p

holds (the dependence on x ∈ Ω(a0) is suppressed in the notation). In view of (1.5), this
inequality is equivalent to (1.6).

1.2 Nonexistence of positive solution

Our main result concerning inequality (1.1) is the following

Theorem 1.1. Let a0 ≥ 0. Suppose that there exist functions

α ∈ C1([a0,∞),R+), ϕ ∈ C1(R+,R+), c ∈ C(Rn,R),

and numbers k, l, k > 0, l > 1, such that

(i) B(x, u) ≥ c(x)ϕ(u) for x ∈ Rn, u > 0,

(ii) ϕ′(u)ϕq−2(u) ≥ k for u > 0,

(iii) lim
r→∞

∫
Ω(a0,r)

[
α(‖x‖)c(x)− 1

p

( l

kq

)p−1∣∣∣α′(‖x‖)∣∣∣pα1−p(‖x‖)

]
dx = +∞,

(iv) lim
r→∞

∫ r

a0

α
1

1−p (r) r
1−n
p−1 dr = +∞.

Then (1.1) has no positive solution on Ω(a) for arbitrary a > 0.
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Proof. Suppose, by contradiction, that u is a solution of (1.1) positive on Ω(a) for some
a > a0. Lemma 1.1 and the assumptions (i), (ii) imply

div ~w ≥ αc+
α′

α
〈~ν, ~w〉+ α1−qk‖~w‖q

= αc+ α1−q kq

l

[
‖w‖q

q
+
〈
~w,
lαq−2α′

kq
~ν

〉]
+ α1−q k

l∗
‖~w‖q,

where l∗ = l
l−1 is the conjugate number to the number l. The Young inequality implies

‖~w‖q

q
+
〈
~w,
lαq−2α′

qk
~ν

〉
+

1
p

(
lαq−2|α′|

qk

)p
≥ 0.

Combining both these inequalities we obtain

div ~w ≥ αc− α1−q kq

lp

(
lαq−2|α′|

qk

)p
+ α1−q k

l∗
‖~w‖q

= αc− 1
p

(
l

qk

)p−1

|α′|pα1−p + α1−q k

l∗
‖~w‖q.

Integration of the last inequality over Ω(a, r) and the Gauss–Ostrogradski divergence the-
orem give∫

Sr

〈~w, ~ν〉 ds −
∫
Sa

〈~w, ~ν〉 ds

≥ k

l∗

∫
Ω(a,r)

α1−q‖~w‖q dx +
∫

Ω(a,r)

[
αc− 1

p

(
l

qk

)p−1

p|α′|pα1−p

]
dx .

By assumption (iii), there exists r0, r0 > a, such that

∫
Ω(a,r)

[
αc− 1

p

(
l

qk

)p−1

|α′|pα1−p

]
dx +

∫
Sa

〈~w, ~ν〉 ds ≥ 0 for r > r0.

Hence∫
Sr

〈~w, ~ν〉 ds ≥ k

l∗
g(r) (1.7)

holds for r > r0, where

g(r) =
∫

Ω(a,r)
α1−q(‖x‖)‖~w(x)‖q dx .

The Hölder inequality gives∫
Sr

〈~w, ~ν〉 ds ≤
(∫

Sr

‖w‖q ds
) 1
q
(∫

Sr

1 ds
) 1
p = α

1
p (r)

(
g′(r)

) 1
q
ω

1
p
n r

n−1
p . (1.8)
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From (1.7) and (1.8) we obtain(
g′(r)

) 1
q
α

1
p (r)ω

1
p
n r

n−1
p ≥ k

l∗
g(r) for r ≥ r0

and equivalently

g′(r)
gq(r)

ω
q
p
n ≥

( k
l∗

)q
α
− q
p (r)r(1−n) q

p =
( k
l∗

)q
α

1
1−p (r)r

1−n
p−1 for r ≥ r0.

Integration of this inequality over the interval (r0,∞) gives a convergent integral on the
left–hand side and a divergent integral on the right–hand side of this inequality, by virtue of
the assumption (iv). This contradiction completes the proof.

Remark 1.1. For ϕ(u) = Φ(u) we have ϕ′(u)ϕq−2(u) = p − 1 and the assumption (ii)
holds with k = p − 1. Conversely, ϕ(u) ≥

(
k
p−1

)p−1
up−1 is necessary for (ii) to be

satisfied. Remark also that neither sign restrictions, nor radial symmetry, are supposed for
the function c(x) in (i).

Corollary 1.1 (Leighton type criterion). Let p ≥ n. Suppose that there exists a continuous
function c(x) such that

B(x, u) ≥ c(x)Φ(u) for u > 0 (1.9)

and

lim
r→∞

∫
Ω(1,r)

c(x) dx = +∞. (1.10)

Then Eq. (1.1) has no positive solution on Ω(a) for arbitrary a > 0.

Proof. Follows from Theorem 1.1 for α(r) ≡ 1 and ϕ(u) = up−1.

Remark 1.2. Remark that (1.10) is known to be a sufficient condition for oscillation of
(1.3) provided p ≥ n, see [Došlý, Mařı́k, 2001]. It is also known that the condition p ≥ n
in this criterion cannot be omitted.

Corollary 1.2. Suppose that (1.9) holds and there exists m > 1 such that

lim
r→∞

∫
Ω(1,r)

[
‖x‖p−nc(x)−m

∣∣∣p− n
p

∣∣∣p 1
‖x‖n

]
dx = +∞. (1.11)

Then Eq. (1.1) has no positive solution on Ω(a) for arbitrary a > 0.

Proof. Follows from Theorem 1.1 for α(r) = rp−n and ϕ(u) = up−1, m = lp−1.

Remark 1.3. If the limit limr→∞
1

ln r

∫
Ω(1,r) ‖x‖

p−nc(x) dx exists, or if this limit equals
+∞, then (1.11) is equivalent to the condition

lim
r→∞

1
ln r

∫
Ω(1,r)

‖x‖p−nc(x) dx > ωn

∣∣∣p− n
p

∣∣∣p.
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This condition is very close to the criterion (3.9) from Theorem 3.1 on page 16 for oscillation
of the half–linear equation, which contains “lim sup” instead of “lim” and one additional
condition

lim inf
r→∞

[
rp−1

(
C0 −

∫
Ω(1,r)

‖x‖1−nc(x) dx
)]

> −∞,

where

C0 = lim
r→∞

p− 1
rp−1

∫ r

1
tp−2

∫
Ω(1,t)

‖x‖1−nc(x) dx dt .

Among others, the constant
∣∣∣p−np ∣∣∣p in (3.9) is optimal and cannot be improved.

Corollary 1.3. Let p ≥ n, p > 2, (1.9) and

lim
r→∞

∫
Ω(·,r)

ln
(
‖x‖
)
c(x) dx = +∞. (1.12)

Then Eq. (1.1) has no positive solution on Ω(a) for arbitrary a > 0.

Proof. Let a > e, p ≥ n, p > 2, α(r) = ln r. Since

lim
r→∞

α
1

1−p (r)r
1−n
p−1

1
r ln r

= lim
r→∞

r
p−n
p−1 ln

p−2
p−1 r ≥ 1,

the condition (iv) of Theorem 1.1 holds. Further,∫
Ω(e,r)

|α′(‖x‖)|pα1−p(‖x‖) dx = ωn

∫ r

e
ξn−1−p ln1−p ξ dξ

≤ ωn

∫ r

e
ξ−1 ln1−p ξ dξ = ωn

1
p− 2

[
1− ln2−p r

]
.

Hence limr→∞
∫

Ω(e,r)

∣∣α′(‖x‖)∣∣pα1−p(‖x‖) dx exists and (1.12) is equivalent to the con-
dition (iii) of Theorem 1.1. Now Theorem 1.1 implies the conclusion.

The choice α(r) = lnβ r leads to

Corollary 1.4. Let p ≥ n, let (1.9) hold and suppose that there exists β, β ∈ (0, p − 1)
such that

lim
r→∞

∫
Ω(·,r)

lnβ
(
‖x‖
)
c(x) dx = +∞.

Then (1.1) has no positive solution on Ω(a) for arbitrary a > 0.

Proof. The proof is analogical to the proof of Corollary 1.3.

Following terminology in [Noussair, Swanson, 1980] and in Chapter 1, inequality (1.4)
is called weakly oscillatory in Ω whenever every solution u of the inequality is oscillatory
in Ω.

Corollary 1.5. LetB(x, u) : Rn+1 → R be a continuous function which is odd with respect
to the variable u, i.e. let B(x,−u) = −B(x, u). Let the assumptions of Theorem 1.1 be
satisfied. Then inequality (1.4) is weakly oscillatory in Rn.

Proof. Suppose that there exists a > 0 such that inequality (1.4) has a solution u without
zeros on Ω(a). If u is a positive function, then Theorem 1.1 yields a contradiction. Further,
if u is a negative solution on Ω(a), then v(x) := −u(x) is a positive solution of (1.4) on
Ω(a) and the same argument as in the first part of this proof leads to a contradiction.
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1.3 Perturbed half-linear differential inequality

Let us consider a perturbed half–linear differential inequality

div
(
‖∇u‖p−2∇u

)
+ c(x)Φ(u) +

m∑
i=1

qi(x)ψi(u) ≤ 0, (1.13)

where c(x), qi(x) are continuous functions, ψi(u) are continuously differentiable, positive
and nondecreasing for u > 0. Define

q(x) = min
{
c(x), q1(x), q2(x), . . . , qm(x)

}
and

ϕ(u) = up−1 +
m∑
i=1

ψi(u).

Then

c(x)|u|p−1 sgnu+
m∑
i=1

qi(x)ψi(u) ≥ q(x)ϕ(u) ϕ′(u)ϕq−2(u) ≥ p− 1

and hence Theorem 1.1 can be applied. Remark that since qi may change sign, a standard
argument based on the Sturmian majorant and a comparison with half–linear differential
equation (1.3) cannot be applied (as has been explained for p = 2 already in [Noussair,
Swanson, 1980]).

2 Equation with degenerated p-Laplacian

In the second part of this chapter we will study the partial differential equation with pseudo-
Laplacian in the form

n∑
i=1

∂

∂xi
Φ
( ∂u
∂xi

)
+B(x, u) = 0. (2.1)

The nonlinearity B(x, u) : Rn × R→ R is supposed to be a continuous function odd with
respect to the second variable, i.e.

(i) B(x,−u) = −B(x, u) for all x ∈ Rn and u ∈ R.

Hence if the function u(x) solves (2.1), then the function −u(x) is also solution of (2.1).
Furthermore we suppose that there exist real-valued functions c(x) ∈ C(Rn), ϕ(u) ∈

C1(R) such that the following conditions hold

(ii) B(x, u) ≥ c(x)ϕ(u) for all u > 0

(iii) ϕ(u) > 0 for u > 0,

(iv) there exists k > 0 such that ϕq−2(u)ϕ′(u) ≥ k for u > 0.
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A significant particular case of (2.1) we obtain for B(x, u) = c(x)Φ(u). In this case
k = p− 1 holds in (iv) and (2.1) has the form

n∑
i=1

∂

∂xi
Φ
( ∂u
∂xi

)
+ c(x)Φ(u) = 0. (2.2)

An important property of Eq. (2.2) is that a constant multiple of every solution is also
a solution of this equation. The study of this equation is motivated by the fact that it is
Euler–Lagrange equation for the p−degree functional

Fp(u; Ω) :=
∫

Ω

[
n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣p − c(x)|u(x)|p

]
dx =

∫
Ω

[
‖∇u‖pp − c(x)|u|p

]
dx.

Equation (2.2) has been investigated in a series of papers of G. Bognár [Bognár, 1993;
Bognár, 1995; Bognár, 1997] where the basic properties of the eigenvalue problem have
been established. The Picone–type identity and Riccati–type substitution (our main tool)
for (2.2) has been recently introduced in [Došlý, 2002].

The following notation will be used throughout this section: ‖ · ‖p and ‖ · ‖q are the p
and q-norms in Rn

‖x‖p =
( n∑
i=1

|xi|p
)1/p

, ‖x‖q =
( n∑
i=1

|xi|q
)1/q

for x ∈ Rn,

the function Φq(x) is defined similarly to Φ by the relation Φq(x) = |x|q−2x and the sets
Ωq(a, b), Ωq(a) and Sq(a) are defined as follows:

Ωq(a, b) =
{
x ∈ Rn : a ≤ ‖x‖q ≤ b

}
,

Ωq(a) = lim
b→∞

Ωq(a, b) =
{
x ∈ Rn : a ≤ ‖x‖q

}
,

Sq(a) = ∂Ωq(a) =
{
x ∈ Rn : a = ‖x‖q

}
.

Finally ωn,q :=
∫
Sq(1) dσ is the surface area of the unit sphere (with respect to the q-norm).

Motivated by terminology in [Noussair, Swanson, 1980] and Chapter 1, we define an
oscillation of (2.1) as follows

Definition 2.1 (weak oscillation). A function f : Ωq → R is called oscillatory in Ω, if
and only if f(x) has zero in Ω ∩ Ωq(a) for every a > 0. Eq. (2.1) is called oscillatory in
Ω whenever every solution u of (2.1) is oscillatory in Ω. Eq. (2.1) is oscillatory, if it is
oscillatory in Rn.

2.1 Modified Riccati transformation

A modification of Riccati substitution from [Došlý, 2002] is presented in the following
lemma.

Lemma 2.1. Let a0 ∈ R+, α ∈ C1((a0,∞),R+). If u ∈ C2(Rn,R) is a solution of (2.1)
on Ωq(a0) such that u(x) 6= 0 for x ∈ Ωq(a0), then the vector function ~w(x) is well-defined
on Ωq(a0) by

~w(x) =
(
wi(x)

)n
i=1
, wi(x) = −

α
(
‖x‖q

)
ϕ
(
u(x)

)Φ
( ∂u
∂xi

)
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and satisfies the inequality

div ~w ≥ α
(
‖x‖q

)
c(x) + kα1−q(‖x‖q)‖~w‖qq +

α′
(
‖x‖q

)
α
(
‖x‖q

) 〈~w, ~νq〉 , (2.3)

where ~νq(x) is the following vector: ~νq(x) =
(

Φq

(
x1
‖x‖q

)
, . . . ,Φq

(
xn
‖x‖q

))
Proof. In view of (i), without loss of generality, consider that u(x) > 0 on Ωq(a0). It holds

∂wi
∂xi

= −
α
(
‖x‖q

)
ϕ(u)

∂

∂xi

(
Φ
( ∂u
∂xi

))
−Φ
( ∂u
∂xi

)α′(‖x‖q)
ϕ(u)

∂‖x‖q
∂xi

+α
(
‖x‖q

)∣∣∣ ∂u
∂xi

∣∣∣p ϕ′(u)
ϕ2(u)

.

Since ∂‖x‖q
∂xi

= Φq

(
xi
‖x‖q

)
= νi, we get

∂wi
∂xi

= −
α
(
‖x‖q

)
ϕ(u)

∂

∂xi

(
Φ
( ∂u
∂xi

))
+
α′
(
‖x‖q

)
α
(
‖x‖q

) wiνi+ϕ′(u)ϕq−2(u)α1−q(‖x‖q)|wi|q.
From this equation and from (2.1) it follows

div ~w = α
(
‖x‖q

)B(x, u)
ϕ(u)

+ ϕ′(u)ϕq−2(u)α1−q(‖x‖q)‖~w‖qq +
α′
(
‖x‖q

)
α
(
‖x‖q

) 〈~w, ~νq〉 .
Taking into account conditions (ii), (iii) and (iv) we obtain inequality (2.3).

The following inequality is used in the proof. It replaces Young inequality used in
previous chapters.

Lemma 2.2. It holds

‖x‖pp
p

+
n∑
i=1

xiyi +
‖y‖qq
q
≥ 0

for every x, y ∈ Rn, x = (xi)ni=1, y = (yi)ni=1.

For the proof of this lemma, see [Došlý, 2002].

2.2 Oscillation criteria

Theorem 2.1. Let a0 ∈ R+, α ∈ C1((a0,∞),R+) and l > 1. If

lim
r→∞

∫
Ωq(a0,r)

[
α
(
‖x‖q

)
c(x)− 1

p

( l

kq

)p−1
α1−p(‖x‖q)|α′(‖x‖q)|p] dx = +∞

(2.4)

and

lim
r→∞

∫ r

a0

1(
rn−1α(r)

) 1
p−1

= +∞, (2.5)

then Eq. (2.1) is oscillatory in Rn.
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Proof. Suppose, by contradiction, that u is a solution of (2.1) which is positive on Ωq(a0)
for some a0 > 0. Then ~w is defined on Ωq(a0). From inequality (2.3), using integration
over the domain Ωq(a0, r) and the Gauss–Ostrogradski divergence theorem we get∫

Sq(r)
〈~w,~n〉 dσ −

∫
Sq(a0)

〈~w,~n〉 dσ ≥

≥
∫

Ωq(a0,r)

(
α(‖x‖q)c(x) + kα1−q(‖x‖q)‖~w‖qq +

α′(‖x‖q)
α(‖x‖q)

〈~w, ~νq〉
)

dx , (2.6)

where ~n is the outward normal unit vector to Ωq(a0, r) i.e. ~n = ~νq
‖~νq‖ and ~νq is defined in

Lemma 2.1. Observe that ‖~νq‖p = 1.
Now, let l∗ = l

l−1 > 1 be the conjugate number to the number l. Then

kα1−q(‖x‖q)‖~w‖qq +
α′(‖x‖q)
α(‖x‖q)

〈~w, ~νq〉

=
kq

l
α1−q(‖x‖q)

(
‖~w‖qq
q

+
lα′(‖x‖q)αq−2(‖x‖q)

qk
〈~w, ~νq〉

)
+
k

l∗
α1−q(‖x‖q)‖~w‖qq.

Using Lemma 2.2 we obtain

kα1−q(‖x‖q)‖~w‖qq +
α′(‖x‖q)
α(‖x‖q)

〈~w, ~νq〉

≥ − qk

lp
α1−q(‖x‖q)

∥∥∥∥∥ lα′(‖x‖q)αq−2(‖x‖q)
qk

~νq

∥∥∥∥∥
p

p

+
k

l∗
α1−q(‖x‖q)‖~w‖qq

=− 1
p

( l

kq

)p−1
α1−p(‖x‖q)|α′(‖x‖q)|p +

k

l∗
α1−q(‖x‖q)‖~w‖qq.

This inequality together with (2.6) yields∫
Sq(r)

〈~w,~n〉 dσ −
∫
Sq(a0)

〈~w,~n〉 dσ

≥
∫

Ωq(a0,r)

[
α(‖x‖q)c(x)− 1

p

( l

kq

)p−1
α1−p(‖x‖q)|α′(‖x‖q)|p

]
dx

+
k

l∗

∫
Ωq(a0,r)

α1−q(‖x‖q)‖~w‖qq dx . (2.7)

In view of (2.4), there exists r0 > a0 such that∫
Ωq(a0,r)

[
α(‖x‖q)c(x)−1

p

( l

kq

)p−1
α1−p(‖x‖q)|α′(‖x‖q)|p

]
dx+

∫
Sq(a0)

~w~n dσ ≥ 0

and now (2.7) implies∫
Sq(r)

〈~w,~n〉 dσ ≥ k

l∗

∫
Ωq(a0,r)

α1−q(‖x‖q)‖~w‖qq dx (2.8)

for r > r0. Application of the Hölder inequality in Rn yields∫
Sq(r)

〈~w,~n〉 dσ ≤
∫
Sq(r)

‖~w‖q‖~n‖p dσ .
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Since ‖ · ‖ and ‖ · ‖p are equivalent norms in Rn, there exists K > 0 such that ‖~n‖p ≤
K‖~n‖ = K. This fact and another application of Hölder inequality give∫

Sq(r)
〈~w,~n〉 dσ ≤ K

(
ωn,qr

n−1
)1/p(∫

Sq(r)
‖~w‖qq dσ

)1/q
. (2.9)

Denote

g(r) =
∫

Ωq(a0,r)
α1−q(‖x‖q)‖~w‖qq dx .

Then it holds

g′(r) = α1−q(r)
∫
Sq(r)

‖~w‖qq dσ

and (2.9) gives∫
Sq(r)

〈~w,~n〉 dσ ≤ Kω1/p
n,q r

n−1
p

(
αq−1(r)g′(r)

) 1
q
. (2.10)

Combining (2.8) and (2.10) we obtain the inequality

k

l∗
g(r) ≤ Kω1/p

n,q r
n−1
p

(
αq−1(r)g′(r)

)1/q

for r > r0. Hence

( 1
rn−1α(r)

) 1
p−1 ≤ l∗ω

q
p
n,q

kKq

g′(r)
gq(r)

.

Integration of this inequality over [r0,∞) gives the divergent integral on the left hand side,
according to the assumption (2.5), and the convergent integral on the right hand side. This
contradiction completes the proof.

A suitable choice of the function α in Theorem 2.1 leads to effective oscillation criteria
for Eqs. (2.1) and (2.2). This is the content of the following corollaries. The first one is a
Leighton–type oscillation criterion (see [Swanson, 1968, Th. 2.24, p. 70]).

Corollary 2.1. Suppose that p ≥ n and

lim
r→∞

∫
Ω(1,r)

c(x) dx = +∞.

Then Eq. (2.1) is oscillatory in Rn.

Proof. Follows immediately from Theorem 2.1 for α(r) ≡ 1.

Remark that the condition p ≥ n cannot be removed. This is known already from the
study of Schrödinger equation (for p = 2).

Another choice of the function α improves this criterion if p > 2.
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Corollary 2.2. Let p ≥ n, p > 2 and

lim
r→∞

∫
Ωq(1,r)

ln
(
‖x‖q

)
c(x) dx = +∞. (2.11)

Then Eq. (2.1) is oscillatory in Rn.

Proof. Let a0 > e be arbitrary and α(r) = ln(r) on [a0,∞). Since

lim
r→∞

α
1

1−p (r)r
1−n
p−1

1
r ln r

= lim
r→∞

r
p−n
p−1 ln

p−2
p−1 r ≥ 1,

integral (2.5) diverges by ratio-convergence test. Further, since∫
Ωq(a0,r)

|α′(‖x‖q)|pα1−p(‖x‖q) dx = ωn,q

∫ r

e
ξn−1−p ln1−p ξ dξ

≤ ωn,q

∫ r

a0

ξ−1 ln1−p ξ dξ = ωn,q
1

p− 2
[1 − ln2−p r],

the limit limr→∞
∫

Ωq(a0,r)
|α′(‖x‖)|pα1−p(‖x‖) dx converges and (2.11) is equivalent to

the condition (2.4) of Theorem 2.1. All conditions of Theorem 2.1 are satisfied and the
proof is complete.

The following theorem covers also the case when p < n.

Corollary 2.3. Let

lim inf
r→∞

1
ln r

∫
Ωq(1,r)

‖x‖p−nq c(x) dx > ωn,q
|p− n|p

p(kq)p−1
. (2.12)

Then Eq. (2.1) is oscillatory in Rn.

Proof. Let α(r) = rp−n. Then (2.5) holds and it is sufficient to prove that also (2.4) holds,
i.e. that there exists l > 1 such that

lim
r→∞

∫
Ωs(1,r)

[
‖x‖p−nq c(x)− 1

p

( l

kq

)p−1
|p− n|p‖x‖−nq

]
dx = +∞. (2.13)

According to (2.12) there exists m > 1, ε > 0 and r0 > 1 such that∫
Ωq(1,r)

‖x‖p−nq c(x) dx > (m+ ε)ωn,q
|p− n|p

p(kq)p−1
ln r (2.14)

for r > r0. Since∫
Ωq(1,r)

‖x‖−nq dx = ωn,q

∫ r

1

1
s

ds = ωn,q ln r,

can (2.14) be written in the form∫
Ωq(1,r)

[
‖x‖p−nq c(x)−m |p− n|

p

p(kq)p−1
‖x‖−nq

]
dx > εωn,q

|p− n|p

p(kq)p−1
ln r

which implies (2.13). The proof is complete.
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Corollary 2.4. Let

lim inf
r→∞

1
ln r

∫
Ωq(1,r)

‖x‖p−nq c(x) dx > ωn,q

∣∣∣p− n
p

∣∣∣p. (2.15)

Then Eq. (2.2) is oscillatory in Rn.

Proof. Follows immediately from Corollary 2.3.

Remark 2.1. The constant ωn,q
∣∣∣p−np ∣∣∣p in (2.15) is optimal and cannot be decreased. This

follows from the example of equation

n∑
i=1

∂

∂xi
Φ
( ∂u
∂xi

)
+
∣∣∣p− n

p

∣∣∣p‖x‖−pq Φ(u) = 0.

This equation is not oscillatory, since it has nonoscillatory solution u(x) = ‖x‖
p−n
p

q and the

function c(x) =
∣∣∣p−np ∣∣∣p ‖x‖−pq produces equality in condition (2.15).

Remark 2.2. We have already mentioned that the function Φ(u) := |u|p−1 sgnu satisfies
hypothesis (iii) and (iv) with k = p − 1. On the other hand in most real applications we
claim B(x, 0) = 0 for all x and consequently ϕ(0) = 0. In this case integration of (iv)

implies ϕ(u) ≥
(

k
p−1

)p−1
up−1 and the function ϕ(u) must satisfy this growth condition.

Example 2.1. Similarly to (1.13), consider perturbed equation (2.2)

n∑
i=1

∂

∂xi
Φ
( ∂u
∂xi

)
+ c(x)Φ(u) +

m∑
i=1

qi(x)ψi(u) = 0, p ∈ (1, 2] (2.16)

where c(x), qi(x) ∈ C(Rn), ψi(u) ∈ C1(R), ψi(−u) = −ψi(u) for all i = 1..m and all
u ∈ R, and ψi(u) are positive and nondecreasing functions for u > 0 and all i = 1..m.
Define

q(x) = min
{
c(x), q1(x), q2(x), . . . , qm(x)

}
and

ϕ(u) = Φ(u) +
m∑
i=1

ψi(u).

Then

c(x)Φ(u) +
m∑
i=1

qi(x)ψi(u) ≥ q(x)ϕ(u) ϕ′(u)ϕq−2(u) ≥ p− 1

and hence Theorem 2.1 can be applied. Remark that we do not make any sign restriction to
the functions qi and hence (2.16) needs not to be majorant for (2.2) in the sense of Sturmian
theory.
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3 Variational technique and nonradial criteria

Oscillation criteria for Schrödinger partial differential equation

∆u+ c(x)u = 0 (3.1)

and several its generalizations have been studied by many authors and also in this work,
see [Müller–Pfeiffer, 1980; Noussair, Swanson, 1980; Atakarryev, Toraev, 1986; Schminke,
1989; Fiedler, 1988; Jaroš, Kusano, Yoshida, 2000; Mařı́k, 20003; Došlý, Mařı́k, 2001] and
the references therein. From these works and also from the preceding chapters of this thesis
it follows that (3.1) is oscillatory if the potential function c(x) is sufficiently large either
in the sense of the inequality containing directly the function c(x) (the so called Kneser
type criteria) or in the sense of the integral like

∫
‖x‖≤t c(x) dx . Hence in the latter case the

equation is oscillatory if the integral mean value of the function c(x) over the spheres in Rn

centered in the origin is sufficiently large and the oscillation criteria depend in fact on this
integral mean value only. In this sense these criteria preserve a kind of radial symmetry.
However, if the function c(x) is sufficiently large in some direction only, then Eq. (3.1)
may be oscillatory even if the function c(x) contains also “bad” parts which causes that the
integral mean value of the function c(x) over the spheres is small and the criteria containing
the integral like

∫
‖x‖≤t c(x) dx may fail to detect this oscillation. From this reason we

classified the oscillation criteria for PDE’s into radial and nonradial (Remark 2.3 on page
4).

A similar phenomenon has been observed also in the case of ordinary differential
equation. The equation

u′′ + c(x)u = 0

may be oscillatory even if
∫∞

1 c(x) dx = −∞, see e.g. [Kong, 1999].
An idea how to remove the above mentioned disadvantage is to include only the “good”

parts of the function c(x) into the oscillation criterion. We used this approach in Chapters
3 and 4. This approach may also provide oscillation criteria for more general types of
unbounded domains than simply an exterior of some ball. For Kneser type oscillation and
nonoscillation criteria on various types of unbounded domains see [Atakarryev, Toraev,
1986].

As in Chapters 1 and 2, we will study the second order partial differential equation

div
(
‖∇u‖p−2∇u

)
+ c(x)Φ(u) = 0, (3.2)

where p ≥ 2. The function c(x) is supposed to be Hölder continuous in Rn. Under solution
we understand in a classical sense every function u which satisfies (3.2) everywhere in Rn.

Throughout this chapter we assume that all domains are simply connected with piecewise
smooth boundary.

In connection with Eq. (3.2) we will use the same concept of oscillation as defined in
Chapter 1.

Our main tools are the following two inequalities (both are easy to check), Lemma 3.3
which follows from [Došlý, Mařı́k, 2001] and Lemma 3.4 from [Mařı́k, 1999, Theorem
3.2].

Lemma 3.1. For ~a,~b ∈ Rn

‖~a+~b‖2 ≤ 2
(
‖~a‖2 + ‖~b‖2

)
(3.3)

holds.
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Lemma 3.2. For a ≥ 0, b ≥ 0 and l ≥ 1

(a+ b)l ≤ 2l−1
(
al + bl

)
(3.4)

holds.

Lemma 3.3. If there exists a solution u of Eq. (3.2) which is positive in the compact domain
M and y ∈W 1,p

0 (M), then∫
M

(
‖∇y(x)‖p − c(x)|y(x)|p

)
dx ≥ 0 (3.5)

Lemma 3.4. Let R, C ∈ C([a, b]) be continuous functions, R(t) > 0. The p-degree
functional

J(η; a, b) :=
∫ b

a

(
R(t)|η′(t)|p − C(t)|η(t)|p

)
dt

is nonnegative for every function η ∈W 1,p
0 (a, b) if and only if the equation(

r(t)|y′|p−2y′
)

+ c(t)|y|p−2y = 0, ′ =
d
dt

is disconjugate on (a, b), i.e. every its solution has at most one zero on (a, b).

Remark that Lemma 3.4 holds also on the class of piecewise smooth functions η with
boundary conditions η(a) = 0 = η(b).

Theorem 3.1. Let p ≥ 2, α ∈ C1(Rn) and let ~ν be a normal unit vector to the sphere
S(‖x‖) oriented outwards. Let K = 2−1+p/2 if 〈∇α(x), ~ν〉 = 0 for all x and K = 2p−1

otherwise. Suppose that α(x) vanishes outside Ω and is positive inside Ω. Denote

R(t) =
∫
S(t)∩Ω

Kαp(x) dσ

and

C(t) =
∫
S(t)∩Ω

(
αp(x)c(x)−K‖∇α(x)‖p

)
dσ .

If the ordinary differential equation(
R(t)Φ(u′)

)′
+ C(t)Φ(u) = 0, ′ =

d
dt

(3.6)

is oscillatory at +∞, then Eq. (3.2) is oscillatory in Ω.

Proof. Suppose that (3.6) is oscillatory. In view of Lemma 3.3 it is sufficient to prove
that for every a > 0 there exists a function y ∈ W 1,p(Ω(a) ∩ Ω) with compact support
M ⊆ Ω(a) ∩ Ω for which (3.5) fails.

According to Lemma 3.4, for every a > 0 there exists b > a and a piecewise smooth
function z such that z(a) = 0 = z(b) and∫ b

a

(
R(t)|z′(t)|p − C(t)|z(t)|p

)
dt < 0.
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Set y(x) = α(x)z(‖x‖) for a ≤ ‖x‖ ≤ b and y(x) ≡ 0 otherwise. Clearly y(x) = 0 on
∂(Ω ∩ Ω(a, b)). Direct computation shows

∇y(x) = ∇α(x)z(‖x‖) + ϕ(x)z′(‖x‖)~ν

and by (3.3)

‖∇y(x)‖2 ≤ A
(
‖∇α(x)‖2z2(‖x‖) + α2(x)z′2(‖x‖)

)
, (3.7)

where A = 2. Moreover, if 〈∇α(x), ~ν〉 = 0, then (3.7) holds also with A = 1 and equality
sign. By inequality (3.4) we have for p ≥ 2 and l = p/2

‖∇y(x)‖p ≤ A
p
2 2

p
2
−1
(
‖∇α(x)‖p|z(‖x‖)|p + αp(x)|z′(‖x‖)|p

)
.

Hence∫
Ω(a,b)∩Ω

(
‖∇y(x)‖p − c(x)|y(x)|p

)
dx

=
∫ b

a

∫
S(t)∩Ω

(
‖∇y(x)‖p − c(x)|y(x)|p

)
dσ dt

=
∫ b

a
|z′(t)|p

(∫
S(t)∩Ω

Kα(x)p dσ
)

− |z(t)|p
(∫

S(t)∩Ω

(
αp(x)c(x)−K‖∇α(x)‖p

)
dσ
)

dt

=
∫ b

a

(
R(t)|z′(t)|p − C(t)|z(t)|p

)
dt < 0.

Hence, by Lemma 3.3, Eq. (3.2) cannot possess a solution positive on the domain Ω(a, b)∩Ω.
Since a can be arbitrary large, the equation is oscillatory in Ω.

Remark 3.1. Theorem 3.1 with Ω = Rn, α(x) ≡ 1 andK = 1 is known, see [Došlý, Mařı́k,
2001, Theorem 3.5]. The test function from (3.5) is in this case in the form y(x) = z(‖x‖).
See also [Jaroš, Kusano, Yoshida, 2000] for slightly more general equation than (3.2).

Remark 3.2. Oscillation criteria for Eq. (3.6) can be found in monograph [Došlý, Řehák,
2005] and the references therein.

Remark 3.3. For n = 2 on the plane with Cartesian coordinates (x1, x2) let r(x1, x2),
ϕ(x1, x2) be the polar coordinates of the point x = (x1, x2). Let us denote the half-plane
x2 ≥ 0 by Ω and put α(x1, x2) = sin2 ϕ(x1, x2) for (x1, x2) ∈ Ω (i.e. ϕ ∈ [0, π]) and
α(x1, x2) ≡ 0 otherwise. The function C(t) from Eq. (3.6) is affected by the values of the
function c(x1, x2) over the half-plane Ω only. Application of any of the known oscillation
criteria for Eq. (3.6) produces a criterion for oscillation of (3.2) over the domain Ω. This
criterion will not be disturbed by the values of the function c(x1, x2) on the half-plane
x2 ≤ 0 which may be relatively “bad”. Among others, the criterion may be applicable also
in the cases when the values on the lower half-plane x2 ≤ 0 causes that

∫
S(t) c(x) dσ = 0.

In these cases radial oscillation criteria (in the sense of Remark 2.3 on page 4) fail to detect
the oscillation.
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Summary

In this book we study the partial differential equation with p−Laplacian and the nonlinearity
of Emden-Fowler type

div
(
‖∇u‖p−2∇u

)
+ c(x)Φ(u) = 0 (1)

and its generalizations. Here p > 1, Φ is signed power function Φ(u) = |u|p−2u =
|u|p−1 sgnu, x = (x1, x2, . . . , xn), the vector norm ‖ · ‖ is the usual Euclidean norm in Rn

and ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
is the usual nabla operator. The sets Ω(a) and S(a) are sets in

Rn defined as follows:

Ω(a) =
{
x ∈ Rn : a ≤ ‖x‖

}
,

S(a) =
{
x ∈ Rn : ‖x‖ = a

}
.

The function c(x) called potential is assumed to be integrable on every compact subset of
Ω(1). It is worth to mention that we do not assume anything concerning either the fixed sign
or the radial symmetry of the potential c(x). The solution of Eq. (1) is every differentiable
function u : Ω(1) → R such that ‖∇u‖p−2 ∂u

∂xi
is differentiable with respect to xi and u

satisfies Eq. (1) almost everywhere on Ω(1).
The number q is the conjugate number to p, i.e., q = p

p−1 . The number ωn is the surface
area of the unit sphere in Rn and the vector ~ν(x) is the normal unit vector to the sphere
S(‖x‖) oriented outwards, i.e. ~ν(x) = (x1, . . . , xn)‖x‖−1.

A well-known linear oscillation theory is established for the equation

∆u+ c(x)u = 0. (2)

According to this theory, there are two different concepts of oscillation – weak oscillation
and strong (nodal) oscillation. Equation (2) is said to be weakly oscillatory if every solution
has a zero outside every ball in Rn and strongly oscillatory if every solution has a nodal
domain outside every ball in Rn. In this book the weak oscillation is used.

The classical Sturm theory states that

u′′ + c(x)u = 0 (3)

is oscillatory if the function c(x) is sufficiently large and it is known that these classical
Sturmian comparison theorems can be extended to Eq. (1) and consequently, Eq. (1) is oscil-
latory if the function c(x) is sufficiently large. Most oscillation criteria arise essentially from
oscillation criterion for Eq. (3) by replacing the onedimensional potential with integral mean
value of the n-variable potential c(x) from Eq. (1) where the mean value is evaluated over
spheres centered in the origin. Thus the function c(x) is usually embedded in the integrals
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over spheres in absolute majority of oscillation criteria and as an unwanted side-effect,
the information about distribution of the potential over the sphere is lost. To remove this
disadvantage we derive several oscillation results in which the distribution of the potential
c(x) over spheres is also allowed to play a role. These criteria are called nonradial oscillation
criteria.

Let us emphasize that following the nonradial approach we obtain oscillation criteria
which are applicable also to the cases when the equation is strongly asymmetric with respect
to origin and the mean value of the potential c(x) is small. The possible applications include
for example criteria which depend on the function g(r) =

∫
S(r) ρ(x)c(x) dσ , where ρ(x)

is n-variable function (which does not depend on ‖x‖ only). The oscillation criteria of
this type are applicable also in such extreme cases when

∫
S(r) c(x) dS = 0 and these

criteria can be used also to detect oscillation over more general exterior domains, than the
exterior of a ball. The author believes that nonradial criteria are more natural for partial
differential equations and provide deeper insight into the oscillation properties specific for
partial differential equations.

Typical result is the following.

Theorem 1. Denote

D =
{

(t, x) ∈ R× Rn : t ≥ ‖x‖ ≥ t0
}
,

D0 =
{

(t, x) ∈ R× Rn : t > ‖x‖ ≥ t0
}
.

Let H(t, x) ∈ C(D, [0,∞)), and ρ(x) ∈ C1(Ω(t0), (0,∞)) be such that the function
H(t, x) has continuous partial derivative with respect to xi (i = 1..n) on D0. Denote

Ω0,t(a, b) =
{
x ∈ Rn : a ≤ ‖x‖ ≤ b,H(t, x) 6= 0

}
,

S0,t(a) =
{
x ∈ Rn : ‖x‖ = a,H(t, x) 6= 0

}
.

and suppose that the following conditions hold

(i) If ‖x‖ = t ≥ t0, then H(t, x) = 0.

(ii) If H(t, x) = 0 for some (t, x) ∈ D0, then ‖∇H(t, x)‖ = 0.

(iii) There exists function k(s) ∈ C([t0,∞), (0,∞)) such that the function
f(t, s) := k(s)

∫
S(s)H(t, x) dσ = k(s)

∫
S0,t(s)

H(t, x) dσ is positive and nonin-
creasing with respect to s for every t > s ≥ t0.

(iv) The vector–valued function ~h(t, x) defined on D0 by

~h(t, x) = ∇H(t, x) +
H(t, x)
ρ(x)

∇ρ(x) (4)

satisfies∫
Ω0,t(t0,t)

H1−p(t, x)‖~h(t, x)‖pρ(x) dx <∞ (5)

for t > t0.

90



If

lim sup
t→∞

(∫
S(t0)

H(t, x) dσ

)−1

×
∫

Ω0,t(t0,t)

[
H(t, x)ρ(x)c(x)− ‖

~h(t, x)‖pρ(x)
ppHp−1(t, x)

]
dx =∞ (6)

then Eq. (1) is oscillatory.

To explain the difference between this theorem and the usual radially symmetric criteria
consider an unbounded domain Ω ⊂ Ω(t0) with smooth boundary ∂Ω. If in addition to
the conditions of Theorem 1 the function H(t, x) vanishes outside Ω and both H(t, x) and
‖∇H(t, x)‖ vanish on ∂Ω for every t ≥ t0, then it follows that Eq. (1) is oscillatory in Ω.
Hence Theorem 1 can be used to formulate explicit oscillation criteria on general types of
domains. Examples of the oscillation criteria on half–plane are given on page 35.

Many of the results are proved also for more general equations

div
(
‖∇u‖p−2∇u

)
+
〈
~b(x), ‖∇u‖p−2∇u

〉
+ c(x)Φ(u) = 0. (7)

and

div
(
A(x)‖∇u‖p−2∇u

)
+
〈
~b(x), ‖∇u‖p−2∇u

〉
+ c(x)Φ(u) = 0 (8)

As a particular example of general oscillation criterion we present the following two
Theorems 2 and 3.

Theorem 2. For a real number l > 1 define the functions

a(r) = (l∗)p−1

∫
S(r)
‖A(x)‖pλ1−p

min (x) dσ ,

b(r) =
∫
S(r)

[
c(x)− lp−1

λp−1
min (x)

‖~b(x)‖p

pp

]
dσ .

(9)

where l∗ = l
l−1 is the conjugate number to the number l if ‖~b(x)‖ 6= 0 and l∗ = 1 if

‖~b(x)‖ = 0. If the equation(
a(r)Φ(u′)

)′
+ b(r)Φ(u) = 0. (10)

is oscillatory, then Eq. (8) is also oscillatory.

It turns out that the same result can be proved also for more general equations, which
are majorants to (8). These equations cover for example

div
(
A(x)‖∇u‖p−2∇u

)
+
〈
~b(x), ‖∇u‖p−2∇u

〉
+ c(x)f(u) = 0, (11)

where f(u) is a differentiable function which satisfies f(0) = 0, uf(u) > 0 for u 6= 0 and

f ′(u)
f2−q(u)

≥ p− 1. (12)
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Equation (11) is sometimes called super-half-linear equation.
If the function f(u) satisfies (12) with p− 1 replaced by ε > 0, it is sufficient to replace

f(u) and c(s) by f∗(u) = ε∗f(u) and c∗(x) = 1
ε∗ c(x), respectively, where ε∗ =

(
p−1
ε

)p−1
.

The function f∗(u) satisfies (12) and f(u)c(x) = f∗(u)c∗(x) holds.
Finally, it is possible to use this method also to prove nonexistence of positive solution

of the equation

div
(
A(x)‖∇u‖p−2∇u

)
+
〈
~b(x), ‖∇u‖p−2∇u

〉
+B(x, u) = 0,

where

B(x, u) ≥ c(x)f(u) for u ≥ 0

and the function f(u) satisfies hypotheses stated above.

The following theorem is a variant of Theorem 2 and presents sharper result, but covers
the case 1 < p ≤ 2 only.

Theorem 3. Let 1 < p ≤ 2. For a real number l > 1 define the functions

â(r) = (l∗)p−1

∫
S(r)

λmax(x) dσ ,

b̂(r) =
∫
S(r)

[
c(x)− lp−1

pp
λmax(x)‖~b(x)A−1(x)‖p

]
dσ ,

(13)

where l∗ = l
l−1 is the conjugate number to the number l if ‖~b(x)‖ 6= 0 and l∗ = 1 if

‖~b(x)‖ = 0. Here~b(x)A−1(x) denotes the matrix product of row matrix
(
b1(x), . . . , bn(x)

)
and the inverse A−1(x). If the equation(

â(r)Φ(u′)
)′

+ b̂(r)Φ(u) = 0 (14)

is oscillatory, then Eq. (8) is also oscillatory.

An application of these theorems and known oscillation criteria for ordinary differential
equations yields effective oscillation criteria for equation (8) which are sharper and more
general than the results published in the literature.

The last part of this book concerns equations and inequalities related to Eq. (1).
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Souhrn

Tato publikace je věnována studiu parciálnı́ diferenciálnı́ rovnice s p-laplaciánem a neline-
aritou Emden-Fowlerova typu

div
(
‖∇u‖p−2∇u

)
+ c(x)Φ(u) = 0 (1)

a některým jejı́m zobecněnı́m. Zde p > 1, Φ je obecná mocninná funkce opatřená znamén-
kem argumentu Φ(u) = |u|p−2u = |u|p−1 sgnu, x = (x1, x2, . . . , xn), vektorová norma
‖ · ‖ je běžná Euklidovská norma v prostoru Rn a ∇ =

(
∂
∂x1

, . . . , ∂
∂xn

)
je obvyklý nabla

operátor. Symboly Ω(a) a S(a) označujı́ následujı́cı́ množiny v Rn:

Ω(a) =
{
x ∈ Rn : a ≤ ‖x‖

}
,

S(a) =
{
x ∈ Rn : ‖x‖ = a

}
.

Funkce c(x) se nazývá potenciál a předpokládáme, že tato funkce je integrovatelná na
každé kompaktnı́ podmnožině množiny Ω(1). Zdůrazněme na tomto mı́stě, že nečinı́me
žádné předpoklady o znaménku této funkce nebo o jejı́ radiálnı́ symetrii. Pod pojmem
řešenı́ rovnice (1) rozumı́me každou absolutně spojitou funkci u : Ω(1)→ R, pro kterou je
‖∇u‖p−2 ∂u

∂xi
absolutně spojitá vzhledem k xi a u splňuje rovnici (1) skoro všude na Ω(1).

Symbolem q označujeme konjugované čı́slo k čı́slu p, tj. q = p
p−1 . Symbolem ωn

označujeme povrch jednotkové koule v Rn a vektor ~ν(x) je normálový vektor ke kulové
ploše S(‖x‖) orientovaný vně, tj. ~ν(x) = (x1, . . . , xn)‖x‖−1.

Pro rovnici

∆u+ c(x)u = 0, (2)

která je speciálnı́m přı́padem rovnice (1) pro p = 2, je vybudována rozsáhlá oscilačnı́ teorie.
V této teorii jsou rozlišovány dva druhy oscilace – slabá oscilace a silná (nodálnı́) oscilace.
Rovnice (2) je oscilatorická ve slabém smyslu, pokud každé jejı́ řešenı́ má nulový bod vně
libovolně velké koule v Rn a v silném smyslu, pokud pro každé jejı́ řešenı́ u existuje vně
libovolně velké koule množina Ω taková, že funkce u je rovna nule na hranici této množiny.
V této práci se budeme zabývat slabou oscilacı́. (Poznamenejme, že oba druhy oscilacı́
jsou ekvivalentnı́ v lineárnı́m přı́padě p = 2, problém ekvivalence obou přı́stupů v přı́padě
obecného p je však dosud otevřen.)

Podle klasické Sturmovy srovnávacı́ teorie je rovnice

u′′ + c(x)u = 0 (3)

oscilatorická, pokud je funkce c(x) dostatečně velká pro velká x. Je známo, že mnoho částı́
této teorie je možno zobecnit i na rovnici (1). V důsledku této skutečnosti je rovnice (1)
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oscilatorická, pokud je funkce c(x) dostatečně velká. Ve většině oscilačnı́ch kritériı́ je
funkce jedné proměnné c(x) z rovnice (3) nahrazena integrálnı́ střednı́ hodnotou funkce n
proměnných c(x) z rovnice (1), přičemž střednı́ hodnota je počı́tána na sférách se středem
v počátku. V důsledku toho funkce c(x) ve velké většině oscilačnı́ch kritériı́ vystupuje
prostřednictvı́m své střednı́ hodnoty na sférách se středem v počátku a nežádoucı́m do-
provodným jevem je fakt, že po výpočtu této integrálnı́ střednı́ hodnoty ztrácı́me informaci
o rozloženı́ potenciálu v jednotlivých směrech. Abychom odstranili tento nežádoucı́ jev,
jsou v práci odvozeny výsledky, ve kterých hraje roli nejenom střednı́ hodnota funkce c(x),
ale i jejı́ rozloženı́ v prostoru. Kritéria tohoto typu nazýváme dı́ky jejich podstatě neradiálnı́
oscilačnı́ kritéria.

Zdůrazněme, že dı́ky neradiálnı́mu přı́stupu jsme schopni odvodit oscilačnı́ kritéria,
která jsou aplikovatelná i na přı́pady, kdy funkce c je silně radiálně nesymetrická vzhle-
dem k počátku a jejı́ střednı́ hodnota na sférách se středem v počátku je malá. Možné
aplikace zahrnujı́ i tak extrémnı́ přı́pady, kdy střednı́ hodnota funkce c(x) je nulová, tj. platı́∫
S(r) c(x) dS = 0. Mezi dalšı́ výhody tohoto přı́stupu patřı́ i možnost detekce oscilace na

obecnějšı́ch množinách, než je pouze vnějšı́ část n-rozměrné koule. Autor věřı́, že tento
přı́stup je přirozený pro parciálnı́ diferenciálnı́ rovnice a poskytuje mnohem lepšı́ náhled
na oscilačnı́ teorii parciálnı́ch diferenciálnı́ch rovnic a přı́padné rozdı́ly mezi parciálnı́mi a
obyčejnými diferenciálnı́mi rovnicemi.

Typickým výsledkem je následujı́cı́ věta.

Věta 1. Označme

D =
{

(t, x) ∈ R× Rn : t ≥ ‖x‖ ≥ t0
}
,

D0 =
{

(t, x) ∈ R× Rn : t > ‖x‖ ≥ t0
}
.

Bud’H(t, x) ∈ C(D, [0,∞)), a funkce ρ(x) ∈ C1(Ω(t0), (0,∞)) bud’taková, že funkce
H(t, x) má spojitou parciálnı́ derivaci podle xi (i = 1..n) na množině D0. Označme

Ω0,t(a, b) =
{
x ∈ Rn : a ≤ ‖x‖ ≤ b,H(t, x) 6= 0

}
,

S0,t(a) =
{
x ∈ Rn : ‖x‖ = a,H(t, x) 6= 0

}
.

a předpokládejme, že jsou splněny následujı́cı́ podmı́nky

(i) Jestliže ‖x‖ = t ≥ t0, pak H(t, x) = 0.

(ii) Jestliže H(t, x) = 0 pro některá (t, x) ∈ D0, potom ‖∇H(t, x)‖ = 0.

(iii) Existuje funkce k(s) ∈ C([t0,∞), (0,∞)) taková, že funkce
f(t, s) := k(s)

∫
S(s)H(t, x) dσ = k(s)

∫
S0,t(s)

H(t, x) dσ je kladná a neklesajı́cı́
vzhledem k proměnné s pro každé t > s ≥ t0.

(iv) Vektorová funkce ~h(t, x) definovaná na D0 vztahem

~h(t, x) = ∇H(t, x) +
H(t, x)
ρ(x)

∇ρ(x) (4)

splňuje∫
Ω0,t(t0,t)

H1−p(t, x)‖~h(t, x)‖pρ(x) dx <∞ (5)

pro t > t0.
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Jestliže

lim sup
t→∞

(∫
S(t0)

H(t, x) dσ

)−1

×
∫

Ω0,t(t0,t)

[
H(t, x)ρ(x)c(x)− ‖

~h(t, x)‖pρ(x)
ppHp−1(t, x)

]
dx =∞, (6)

potom rovnice (1) je oscilatorická.

Pro objasněnı́ rozdı́lu mezi touto větou a obvyklými postačujı́cı́mi podmı́nkami pro
oscilaci uvažujme ohraničenou oblast Ω ⊂ Ω(t0) s hladkou hranicı́ ∂Ω. Pokud vedle
podmı́nky Věty 1 je funkce H(t, x) navı́c rovna nule mimo oblast Ω a obě funkce H(t, x) a
‖∇H(t, x)‖ jsou nulové na hranici ∂Ω pro všechna t ≥ t0, pak je rovnice (1) oscilatorická
na množině Ω. Větu 1 je tedy možno použı́t pro formulaci explicitnı́ch oscilačnı́ch kritériı́ na
obecnějšı́ch množinách, než vnějšı́ část koule. Jako přı́klad aplikace tohoto typu odvozujeme
v práci napřı́klad oscilačnı́ kritéria zaručujı́cı́ oscilaci na polorovině.

Velká část výsledků týkajı́cı́ch se oscilace je odvozena pro obecnějšı́ rovnice

div
(
‖∇u‖p−2∇u

)
+
〈
~b(x), ‖∇u‖p−2∇u

〉
+ c(x)Φ(u) = 0 (7)

a

div
(
A(x)‖∇u‖p−2∇u

)
+
〈
~b(x), ‖∇u‖p−2∇u

〉
+ c(x)Φ(u) = 0. (8)

Jako přı́klad obecných oscilačnı́ch kritériı́ formulujme následujı́cı́ dvě věty, Větu 2 a 3.

Věta 2. Pro reálné čı́slo l > 1 definujme funkce

a(r) = (l∗)p−1

∫
S(r)
‖A(x)‖pλ1−p

min (x) dσ ,

b(r) =
∫
S(r)

[
c(x)− lp−1

λp−1
min (x)

‖~b(x)‖p

pp

]
dσ .

(9)

kde l∗ = l
l−1 je konjugované čı́slo k čı́slu l pokud ‖~b(x)‖ 6= 0 a l∗ = 1 pokud ‖~b(x)‖ = 0.

Jestliže je rovnice(
a(r)Φ(u′)

)′
+ b(r)Φ(u) = 0 (10)

oscilatorická, potom je oscilatorická i rovnice (8).

Je možno ukázat, že analogické výsledky mohou být dokázány i pro obecnějšı́ rovnice,
které v jistém smyslu rovnici (8) majorizujı́. Tyto obecnějšı́ rovnice zahrnujı́ napřı́klad

div
(
A(x)‖∇u‖p−2∇u

)
+
〈
~b(x), ‖∇u‖p−2∇u

〉
+ c(x)f(u) = 0, (11)

kde f(u) je diferencovatelná funkce splňujı́cı́ f(0) = 0, uf(u) > 0 pro u 6= 0 a

f ′(u)
f2−q(u)

≥ p− 1. (12)

95



Pokud navı́c funkce f(u) splňuje nerovnici (12) s nějakou jinou kladnou konstantou
než p − 1, napřı́klad s konstantou ε > 0, stačı́ zaměnit funkce f(u) a c(x) za funkce

f∗(u) = ε∗f(u) a c∗(x) = 1
ε∗ c(x), kde ε∗ =

(
p−1
ε

)p−1
. Tı́mto se rovnice nezměnı́ a nové

funkce již majı́ požadované vlastnosti.
Dále je možné analogickou cestou dokázat podmı́nky zaručujı́cı́ neexistenci kladného

řešenı́ rovnice

div
(
A(x)‖∇u‖p−2∇u

)
+
〈
~b(x), ‖∇u‖p−2∇u

〉
+B(x, u) = 0,

kde

B(x, u) ≥ c(x)f(u) pro u ≥ 0

a funkce f(u) splňuje podmı́nky z předešlých odstavců.

Následujı́cı́ věta je silnějšı́ variantou Věty 2, pokrývá ovšem pouze přı́pad 1 < p ≤ 2.

Věta 3. Bud’1 < p ≤ 2 reálné čı́slo. Pro reálné čı́slo l > 1 definujme funkce

â(r) = (l∗)p−1

∫
S(r)

λmax(x) dσ ,

b̂(r) =
∫
S(r)

[
c(x)− lp−1

pp
λmax(x)‖~b(x)A−1(x)‖p

]
dσ ,

(13)

kde l∗ = l
l−1 je konjugované čı́slo k čı́slo l, pokud ‖~b(x)‖ 6= 0, a l∗ = 1 pokud ‖~b(x)‖ = 0.

Zde symbolem~b(x)A−1(x) označujeme maticový součin řádkové matice
(
b1(x), . . . , bn(x)

)
a inverznı́ matice A−1(x). Jestliže je rovnice(

â(r)Φ(u′)
)′

+ b̂(r)Φ(u) = 0 (14)

oscilatorická, je oscilatorická i rovnice (8).

Aplikacı́ těchto vět a známých oscilačnı́ch kritériı́ pro obyčejné diferenciálnı́ rovnice
zı́skáváme oscilačnı́ kritéria pro parciálnı́ diferenciálnı́ rovnici (8) a taková kritéria v mnoha
přı́padech zlepšujı́ a zpřesňujı́ dosavadnı́ známé a publikované výsledky.

Závěrečná část publikace je věnována rovnicı́m a nerovnicı́m přı́buzným s rovnicı́ (1).

Klı́čová slova: parciálnı́ diferenciálnı́ rovnice, diferenciálnı́ rovnice druhého řádu, p-
laplacián, oscilačnı́ teorie
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DOŠLÝ, O.,:1998 Oscillation criteria for half-linear second order differential equations,
Hiroshima Math. J. 28, 507–521.
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MAŘÍK, R., 20021: Oscillation criteria for a class of nonlinear partial differential equations,
Electron. J. Diff. Eqns. 28 Vol. 2002, 1–10.

MAŘÍK, R., 20022: Positive solutions of inequality with p-Laplacian in exterior domains,
Mathematica Bohemica, Vol. 127, No. 4, 597–604.
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