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Abstract. In this paper oscillatory properties of the Schrödinger partial differential equa-
tion are investigated. Using Riccati technique a Hartman–Wintner type criterion is proved.
Further, some oscillation criteria which appeared only recently for the ordinary differential
equations, are extended to the partial differential equation.

1 Introduction

Let us consider the Schrödinger partial differential equation

∆u+ c(x)u = 0 ∆ =
n∑
i=1

∂2

∂x2i
. (1.1)

The function c(x) is assumed to be integrable on each compact subset of the set Ω = {x ∈
Rn : ||x|| ≥ 1}. By a solution of equation (1.1) is understood the function u : Ω→ R which
is absolutely continuous with first partial derivatives in each compact subset of Ω and satisfy
the equation (1.1) almost everywhere on Ω.

Oscillation properties of the Schrödinger, or more generally, of elliptic partial differential
equations are studied for example in [3, 8, 11, 12].

In Müller–Pfeiffer [8] and Toraev [12] the variational method is used to derive oscillation
criteria for elliptic partial differential equations. Here the equation (1.1) is said to be oscilla-
tory if there exists a nodal domain outside of arbitrary ball in Rn. In Allegretto [1] is such a
oscillation called strong oscillation; an alternative term is nodal oscillation. Schminke in [11]
introduced Riccati technique for studying oscillation properties of (1.1). Using this method
it is natural to define oscillation as follows.



Definition 1.1. The function f(x) is said to be oscillatory if f(x) has zero outside of
arbitrary ball in Rn centered in the origin and it is said nonoscillatory otherwise. The
equation (1.1) is said to be nonoscillatory if it has nonoscillatory solution and oscillatory
otherwise.

By the n-dimensional version of the Sturm separation theorem the equation (1.1) is
oscillatory if it is nodally oscillatory. Equivalence between these two types of oscillation,
which is obvious in the case n = 1, has been proved in Allegretto [1] for the function c(x)
sufficiently smooth. In Moss–Piepenbrik [7] an alternative proof of this equivalence was given
and the condition on smoothness of the function c(x) was weakened into the condition the
function c(x) to be locally Hölder continuous.

The aim of this paper is to give some new oscillation criteria, i.e. criteria which guarantees
that if there exists a solution u of the equation (1.1) on Ω, then the function u is oscillatory.
These results extends some known criteria for oscillation of the equation (1.1)

Denote

C(t) =
1

t

∫ t

1

∫
1≤||x||≤T

||x||1−nc(x) dx dT . (1.2)

We distinguish two cases.

1. There exists a finite limit
lim
t→∞

C(t) = C0. (1.3)

2. The condition (1.3) fails to hold and lim inft→∞C(t) > −∞.

In the first case the method introduced for n = 1 in Chantladze, Kandelaki and Lom-
tatidze [2] is used in proving our main results. Denote

Q(t) = t
(
C0 −

∫
1≤||x||≤t

||x||1−nc(x) dx
)
,

H(t) =
1

t

∫
1≤||x||≤t

||x||3−nc(x) dx

Q∗ = lim inf
t→∞

Q(t), Q∗ = lim sup
t→∞

Q(t),

H∗ = lim inf
t→∞

H(t), H∗ = lim sup
t→∞

H(t).

The oscillation criteria are formulated in terms of the functions C(t), Q(t), H(t) and numbers
Q∗, Q

∗, H∗, H
∗.

In the second case the equation (1.1) is oscillatory by Theorem 3.1 below.
The paper is organized as follows. In the next section we present auxiliary results con-

cerning the nonoscillatory Schrödinger equation. Main results are formulated in Section 3.
The Section 4 is devoted to some remarks and comments.



2 Preliminary results

We use the Riccati technique introduced in [11]. Denote Ωr = {x ∈ Rn : ||x|| ≥ r} If u is a
solution of (1.1) which is positive in Ωr for some r > 0, then the vector variable w = ∇u

u
is

defined on Ωr and solves here the Riccati type equation

divw + c(x) + ||w||2 = 0, (2.1)

where || · || is the usual Euclidean norm in Rn. Conversely, if there exists a solution of
the equation (2.1) defined in Ωr, then there exists a positive solution of the equation (1.1).
Clearly the equation (1.1) is nonoscillatory if and only if there exists a number a ∈ R and a
solution u of equation (1.1) positive on Ωa, i.e. there exists a solution w of (2.1) defined on
the set Ωa. In this section we will suppose that the equation (1.1) is nonoscillatory and the
Riccati equation has a solution on Ωa.

The following Lemma is an extension of Lemma 7.1 in Chapter XI from Hartman [4] and
plays a crucial role in our later considerations.

Lemma 2.1. Let the equation (1.1) be nonoscillatory, i.e. (1.1) has a positive solution on
Ωa for some a ≥ 1. The following statements are equivalent:

(i) It holds ∫
a≤||x||≤∞

||x||1−n||w||2 dx <∞; (2.2)

(ii) There exists a finite limit
lim
t→∞

C(t) = C0; (2.3)

(iii) It holds
lim inf
t→∞

C(t) > −∞. (2.4)

Proof. Let w be the solution of Riccati equation defined on the set Ωa. The Riccati equation,
Gauss divergence theorem and the identity

||x||1−n divw = div(||x||1−nw)− (1− n)||x||−n〈w, j〉,

where j is the unit outside normal to the sphere in Rn and 〈·, ·〉 is the usual scalar product
in Rn, implies that w satisfies the equality∫

a≤||x||≤t
||x||1−nc(x) dx +

∫
a≤||x||≤t

||x||1−n||w||2 dx (2.5)

−
∫
a≤||x||≤t

(1− n)||x||−n〈w, j〉 dx +

∫
||x||=t

||x||1−n〈w, j〉 dS

−
∫
||x||=a

||x||1−n〈w, j〉 dS = 0

for t ≥ a.



“(i)=>(ii)” Suppose that (2.2) holds. Then the Cauchy inequality implies∫
a≤||x||≤t

||x||−n||w|| dx

≤
(∫

a≤||x||≤t
||x||1−n||w||2 dx

)1/2(∫
a≤||x||≤t

||x||−n−1 dx
)1/2

=
(∫

a≤||x||≤t
||x||1−n||w||2 dx

)1/2(
ωn

∫ t

a

1

s2
ds
)1/2

,

where ωn is the measure of the unit sphere in Rn and∫
a≤||x||≤∞

||x||−n〈w, j〉 dx <∞ (2.6)

converges. From (2.5) and (2.6) we get

Ĉ −
∫
1≤||x||≤t

||x||1−nc(x) dx =

∫
||x||=t

||x||1−n〈w, j〉 dS (2.7)

−
∫
t≤||x||≤∞

||x||1−n||w||2 dx + (1− n)

∫
t≤||x||≤∞

||x||−n〈w, j〉 dx ,

where

Ĉ =−
∫
a≤||x||≤∞

||x||1−n||w||2 dx +

∫
1≤||x||≤a

||x||1−nc(x) dx

+

∫
||x||=a

||x||1−n〈w, j〉 dS + (1− n)

∫
a≤||x||≤∞

||x||−n〈w, j〉 dx

is a finite number. We will show that
Ĉ = C0 (2.8)

Then it will follow that Ĉ in fact does not depend on the choice of the number a.
From (2.7) and from the inequality

|α + β + γ|2 ≤ 4|α|2 + 4|β|2 + 4|γ|2

it follows

1

T

∫ T

a

∣∣∣∣Ĉ − ∫
1≤||x||≤t

||x||1−nc(x) dx

∣∣∣∣2 dt

≤ 4

T

∫ T

a

∣∣∣∣∫
||x||=t

||x||1−n〈w, j〉 dS
∣∣∣∣2 dt (2.9)

+
4

T

∫ T

a

∣∣∣∣∫
t≤||x||≤∞

||x||1−n||w||2 dx

∣∣∣∣2 dt (2.10)

+
4(1− n)2

T

∫ T

a

∣∣∣∣∫
t≤||x||≤∞

||x||−n〈w, j〉 dx
∣∣∣∣2 dt . (2.11)



By l’Hospital rule, (2.2) and (2.6) the terms (2.10) and (2.11) tend to zero for T →∞. The
Cauchy inequality implies

1

T

∫ T

a

∣∣∣∣∫
||x||=t

||x||1−n〈w, j〉 dS
∣∣∣∣2 dt

≤ 1

T

∫ T

a

(∫
||x||=t

||x||1−n||w||2 dS

)(∫
||x||=t

||x||1−n dS

)
dt

=
1

T
ωn

∫
a≤||x||≤T

||x||1−n||w||2 dx

and using (2.2) the term (2.9) tends to zero. Hence

1

T

∫ T

a

∣∣∣∣Ĉ − ∫
1≤||x||≤t

||x||1−nc(x) dx

∣∣∣∣2 dt → 0 for T →∞. (2.12)

Cauchy inequality implies∣∣∣∣ 1

T

∫ T

a

f(t) dt

∣∣∣∣ ≤ 1

T

∫ T

a

|f(t)| dt ≤
(

1

T

∫ T

a

|f(t)|2 dt

)1/2

.

Hence (
1

T

∫ T

a

∣∣∣∣Ĉ − ∫
1≤||x||≤t

||x||1−nc(x) dx

∣∣∣∣2 dt

)1/2

≥
∣∣∣∣ 1

T

∫ T

a

(
Ĉ −

∫
1≤||x||≤t

||x||1−nc(x) dx

)
dt

∣∣∣∣
=

∣∣∣∣Ĉ − Ĉ a

T
− 1

T

∫ T

a

∫
1≤||x||≤t

||x||1−nc(x) dx dt

∣∣∣∣
and from (2.12) it follows that (2.3) with Ĉ = C0 holds.

The implication “(ii)=>(iii)” is trivial.
“(iii)=>(i)” Suppose that (2.4) holds and (2.2) does not hold. Define the function

Z(t) :=

∫ t

a

∫
a≤||x||≤s

||x||1−n||w||2 dx ds .

This function satisfies
Z(t)

t
→∞ for t→∞. (2.13)

From (2.5) we get

1

T
Z(T )− 1

T

∫ T

a

∫
a≤||x||≤t

(1− n)||x||−n〈w, j〉 dx dt

+
1

T

∫ T

a

∫
||x||=t

||x||1−n〈w, j〉 dS dt

= − 1

T

∫ T

a

∫
a≤||x||≤t

||x||1−nc(x) dx dt +
T − a
T

∫
||x||=a

||x||1−n〈w, j〉 dS .



If (2.4) holds, then the right-hand side is bounded from above and less than 1
4T
Z(T ) for T

large enough. Hence

3

4
Z(T ) ≤

∣∣∣∣∫ T

a

∫
a≤||x||≤t

(1− n)||x||−n〈w, j〉 dx dt

∣∣∣∣
+

∣∣∣∣∫ T

a

∫
||x||=t

||x||1−n〈w, j〉 dS dt

∣∣∣∣
for T large enough. The Cauchy inequality gives∣∣∣∣∫ T

a

∫
||x||=t

||x||1−n〈w, j〉 dS dt

∣∣∣∣
≤
(∫

a≤||x||≤T
||x||1−n||w||2 dx

)1/2(∫
a≤||x||≤T

||x||1−n dx

)1/2

=

(∫
a≤||x||≤T

||x||1−n||w||2 dx

)1/2(∫ T

a

ωn dt

)1/2

≤
(
ωnTZ

′(T )
)1/2

.

A similar computation gives∣∣∣∣∫ T

a

∫
a≤||x||≤t

(1− n)||x||−n〈w, j〉 dx dt

∣∣∣∣
≤ (n− 1)

(
ωn

∫ T

a

∫ t

a

s−2 ds dt

)1/2(∫ T

a

∫
a≤||x||≤t

||x||1−n||w||2 dx dt

)1/2

≤ (n− 1)

(
ωn
T

a

)1/2(∫ T

a

∫
a≤||x||≤t

||x||1−n||w||2 dx dt

)1/2

.

From (2.13) it follows that
ωn
a
≤ 1

42(n− 1)2
Z(T )

T

for T large enough, hence∣∣∣∣∫ T

a

∫
a≤||x||≤t

(1− n)||x||1−n〈w, j〉 dx dt

∣∣∣∣
≤ (n− 1)

1

4(n− 1)

(
Z(T )

)1/2(
Z(T )

)1/2
=

1

4
Z(T )

for T large enough. Combining the above computations we get

1

2
Z(T ) ≤

(
ωnTZ

′(T )
)1/2

and from here

4ωn
Z ′(T )

Z2(T )
≥ 1

T
for T large enough.

Integration of this inequality from T0 to ∞ gives a convergent integral on the left–hand
side and divergent integral on the right–hand side. This contradiction ends the proof.



In what follows the function ρ(t) is defined

ρ(t) =

∫
||x||=t

||x||1−n〈w, j〉 dx (2.14)

for every t ≥ a. In Lemmas 2.2 and 2.3 we give an a priori bound for the function tρ(t) in
terms of Q∗ and H∗.

Lemma 2.2. Let (1.3) holds. If (1.1) is nonoscillatory and (n−2)2−1
4

ωn ≤ Q∗ ≤ (n−2)2
4

ωn
holds, then

lim inf
t→∞

tρ(t) ≥ ωn
2

[
2− n−

√
(n− 2)2 − 4Q∗

ωn

]
. (2.15)

Proof. Let w be the solution of the Riccati equation (2.1) defined on Ωa for some a ∈ R.
From Cauchy inequality we have

ρ2(t) ≤ ωn

∫
||x||=t

||x||1−n||w||2 dS for t ≥ a. (2.16)

The equalities (2.7), (2.8) and the inequality

αx− βx2 ≤ α2

4β
for β > 0 (2.17)

imply for t ≥ a

tρ(t) ≥ Q(t) + t

∫ ∞
t

[
(n− 1)sρ(s) +

1

ωn
s2ρ2(s)

] 1

s2
ds

≥ Q(t)− (n− 1)2

4
ωn. (2.18)

Denote r = lim inft→∞ tρ(t). If r = ∞, there is nothing to prove. Suppose that r < ∞. If

Q∗ = (n−2)2−1
4

ωn, the statement follows from (2.18). Suppose Q∗ >
(n−2)2−1

4
ωn and choose

0 < ε < Q∗− (n−2)2−1
4

ωn. Then there exists tε ≥ a such that tρ(t) ≥ r− ε and Q(t) ≥ Q∗− ε
for t ≥ tε. Using (2.18) we get

tρ(t) ≥ r − ε > r −Q∗ +
(n− 2)2 − 1

4
ωn

≥ −(n− 1)2

4
ωn +

(n− 2)2 − 1

4
ωn = −n− 1

2
ωn

for t ≥ tε. From here and from the fact that the function (n − 1)x + 1
ωn
x2 is increasing for

x ≥ −n−1
2
ωn we get

(n− 1)tρ(t) +
1

ωn
t2ρ2(t) ≥ (n− 1)(r − ε) +

1

ωn
(r − ε)2

for t ≥ tε and the first inequality in (2.18) implies

tρ(t) ≥ Q∗ − ε+ (n− 1)(r − ε) +
1

ωn
(r − ε)2 (2.19)



for t ≥ tε. From here using the limit process limε→0 lim inft→∞ we get

r ≥ 1

ωn
r2 + (n− 1)r +Q∗

which immediately implies (2.15).

Lemma 2.3. If (1.1) is nonoscillatory and (n−2)2−1
4

ωn ≤ H∗ ≤ (n−2)2
4

ωn holds, then

lim sup
t→∞

tρ(t) ≤ ωn
2

[
2− n+

√
(n− 2)2 − 4H∗

ωn

]
. (2.20)

Proof. Let w be the solution of the Riccati equation (2.1) defined on Ωa for some a, 1 ≤ a ≤
τ ≤ T . Derivation of (2.5) with respect to t, multiplication by t2 and integration between τ
and T we get∫ T

τ

t2
∫
||x||=t

||x||1−nc(x) dS dt +

∫ T

τ

t2
∫
||x||=t

||x||1−n||w||2 dS dt

−
∫ T

τ

(1− n)t2
∫
||x||=t

||x||−n〈w, j〉 dS dt + T 2

∫
||x||=T

||x||1−n〈w, j〉 dS

−τ 2
∫
||x||=τ

||x||1−n〈w, j〉 dS −
∫ T

τ

2t

∫
||x||=t

||x||1−n〈w, j〉 dS dt = 0,

where the last three terms arises from integration by parts. From here using (2.14) and
(2.16) we get

Tρ(T ) +H(T ) =
τ 2

T

∫
||x||=τ

||x||1−n〈w, j〉 dS

+
1

T

∫ T

τ

[
(3− n)t

∫
||x||=t

||x||1−n〈w, j〉 dS

− t2
∫
||x||=t

||x||1−n||w||2 dS

]
dt

+
1

T

∫ τ

1

t2
∫
||x||=t

||x||1−nc(x) dS dt

≤ τ 2

T
ρ(τ) +

1

T

∫ T

τ

[
(3− n)tρ(t)− 1

ωn
t2ρ2(t)

]
dt +

τ

T
H(τ) (2.21)

Using (2.17) we get

Tρ(T ) +H(T ) ≤ (3− n)2

4
ωn +

τ

T

(
τρ(τ) +H(τ)

)
. (2.22)

Denote R = lim supt→∞ tρ(t). Now if R = −∞, there is nothing to prove. Suppose R > −∞.
From (2.22) it follows that

R ≤ −H∗ +
(3− n)2

4
ωn.



From here we conclude that lemma is true for H∗ = (n−2)2−1
4

ωn. Suppose that H∗ >
(n−2)2−1

4
ωn. Then for each 0 < ε < H∗ − (n−2)2−1

4
ωn there exists tε ≥ a such that

tρ(t) ≤ R + ε ≤ −H∗ +
(3− n)2

4
ωn + ε < (3− n)

ωn
2

and
H(t) ≥ H∗ − ε

for t ≥ tε. The inequality (2.21) and the fact that the function (3− n)x− 1
ωn
x2 is increasing

for x ≤ (3− n)ωn

2
imply

tρ(t) ≤ε−H∗ +
tε
T

(
tερ(tε) +H(tε)

)
+

1

t

∫ t

tε

[
(3− n)sρ(s)− 1

ωn
s2ρ2(s)

]
ds

≤ε−H∗ +
tε
T

(
tερ(tε) +H(tε)

)
+

1

t

∫ t

tε

[
(3− n)(R + ε)− 1

ωn
(R + ε)2

]
dt

for every t ≥ tε. Hence

R ≤ −H∗ + (3− n)R− 1

ωn
R2

which implies (2.20).

Remark 2.1. From the proofs of Lemmas 2.2 and 2.3 it follows that the inequalities (2.18)
(2.21) and (2.22) are valid for every Q∗ and H∗.

3 Main results

The following theorem is a Hartman–Wintner type oscillation criterion (see [5] and [13] for
the case n = 1).

Theorem 3.1. If
−∞ < lim inf

t→∞
C(t) < lim sup

t→∞
C(t) ≤ ∞ (3.1)

or if
lim
t→∞

C(t) =∞, (3.2)

then the equation (1.1) is oscillatory.

Proof. Suppose, by contradiction, that (3.1) holds and there exists number r such that
positive solution of (1.1) on Ωr exists. Hence the corresponding solution of Riccati equation
is defined on Ωr. The first inequality in (3.1) and the (iii)=>(ii) part of Lemma 2.1 shows
that there exists a finite limit limt→∞C(t) which contradicts (3.1). The proof for (3.2) is the
same.

In view of this theorem the following text deals with the case when there exists a finite
limit (1.3).



Theorem 3.2. Let (1.3) hold and

lim sup
t→∞

t

ln t

(
C0 − C(t)

)
>

(n− 2)2

4
ωn. (3.3)

Then the equation (1.1) is oscillatory.

Proof. Suppose, by contradiction, that there exists number a ≥ 1 and a solution w(x) of the
Riccati equation defined on Ωa. We make use of Lemma 2.1. From (2.7) with respect to
(2.8) using integration by parts and from inequalities (2.16), (2.17) it follows that

t
(
C0 − C(t)

)
=

∫
a≤||x||≤t

||x||1−n〈w, j〉 dx

−
∫ t

a

∫
T≤||x||≤∞

||x||1−n||w||2 dx dT

+

∫ t

a

(1− n)

∫
T≤||x||≤∞

||x||−n〈w, j〉 dx dT + a
(
C0 − C(a)

)
= −t

∫
t≤||x||≤∞

||x||1−n||w||2 dx + a

∫
a≤||x||≤∞

||x||1−n||w||2 dx

−
∫ t

a

T

∫
||x||=T

||x||1−n||w||2 dS dT

+ (1− n)t

∫
t≤||x||≤∞

||x||−n〈w, j〉 dx

− (1− n)a

∫
a≤||x||≤∞

||x||−n〈w, j〉 dx

+ (2− n)

∫
a≤||x||≤t

||x||1−n〈w, j〉 dx + a
(
C0 − C(a)

)
≤ t

∫ ∞
t

[
−ω−1n T 2ρ2(T ) + (1− n)Tρ(T )

] dT

T 2

+

∫ t

a

[
−ω−1n T 2ρ2(T ) + (2− n)Tρ(T )

] dT

T

+ a
(
C0 − C(a)

)
+ (n− 1)a

∫
a≤||x||≤∞

||x||−n〈w, j〉 dx

+ a

∫
a≤||x||≤∞

||x||1−n||w||2 dx

≤ (n− 2)2ωn
4

ln t+ const

Hence
t

ln t

(
C0 − C(t)

)
≤ (n− 2)2

4
ωn +

const

ln t

which contradicts (3.3).



Corollary 3.1. Assume (1.3), Q∗ > −∞ and

lim sup
t→∞

1

ln t

∫
1≤||x||≤t

||x||2−nc(x) dx >
(n− 2)2

4
ωn. (3.4)

Then the equation (1.1) is oscillatory.

Proof. The definition of the function Q(t) and integration by parts gives

t
(
C0 − C(t)

)
= Q(t) + t

∫
1≤||x||≤t

||x||1−nc(x) dx

−
∫ t

1

∫
1≤||x||≤T

||x||1−nc(x) dx dT

= Q(t) +

∫ t

1

T

∫
||x||=T

||x||1−nc(x) dS dT

= Q(t) +

∫
1≤||x||≤t

||x||2−nc(x) dx .

Now the statement follows from Theorem 3.2.

For c(x) ≥ 0 Corollary 3.1 was proved in Müller–Pfeiffer [8].

Corollary 3.2. Let (1.3) holds and

lim inf
t→∞

[Q(t) +H(t)] >
(n− 2)2

2
ωn. (3.5)

Then the equation (1.1) is oscillatory.

Proof. Integration by parts gives∫ t

1

Q(s) ds = tQ(t)−Q(1)−
∫ t

1

sQ′(s) ds

= tQ(t)− C0 −
∫ t

1

sC0 ds +

∫ t

1

s

∫
1≤||x||≤s

||x||1−nc(x) dx ds

+

∫ t

1

s2
∫
||x||=s

||x||1−nc(x) dS ds =
1

2
[tQ(t) + tH(t)]− 1

2
C0.

Hence

Q(t) +H(t) =
2

t

∫ t

1

Q(s) ds +
C0

t
(3.6)

holds. Now the equality

t
(
C0 − C(t)

)
=

∫ t

1

Q(s)

s
ds + C0

= C0 +
1

t

∫ t

1

Q(s) ds +

∫ t

1

1

s2

∫ s

1

Q(u) du ds (3.7)

and Theorem 3.2 implies oscillation of the equation (1.1).



Corollary 3.3. Let (1.3) holds. Each of the conditions

Q∗ >
(n− 2)2

4
ωn, (3.8)

H∗ >
(n− 2)2

4
ωn (3.9)

guarantees the oscillation of the equation (1.1).

Proof. Follows immediately from Theorem 3.2 using equality (3.7) for the statement (3.8)
and equalities

C(t) = C(τ) +

∫ t

τ

ln s

s2
1

ln s

∫
1≤||x||≤s

||x||2−nc(x) dx ds

1

ln t

∫
1≤||x||≤t

||x||2−nc(x) dx =
H(t)

ln t
+

1

ln t

∫ t

1

1

s
H(s) ds ,

which can be checked directly using integration by parts, for the statement (3.9).

In the case n = 2 the conditions (3.3) and (3.4) can be weakened as follows.

Theorem 3.3. Let n = 2 and (1.3) holds. Each of the conditions

lim sup
t→∞

t

(
C0 − C(t)

)
=∞ (3.10)

Q∗ > −∞ and lim sup
t→∞

∫
1≤||x||≤t

c(x) dx =∞ (3.11)

guarantees the oscillation of the equation (1.1).

Proof. Follows from the proofs of Theorem 3.2 and Corollary 3.1.

The following theorem completes Corollary 3.2.

Theorem 3.4. Let (1.3) and

lim sup
t→∞

[Q(t) +H(t)] >
(n− 2)2 + 1

2
ωn (3.12)

holds. Then the equation (1.1) is oscillatory.

Proof. Suppose that (1.1) has positive solution on Ωa for some a > 1. Inequalities (2.18)
and (2.22) (see also Remark 2.1) implied

Q(T ) +H(T ) ≤ (n− 1)2

4
ωn +

(3− n)2

4
ωn +

a

T

(
aρ(a) +H(a)

)
=

(n− 2)2 + 1

2
ωn +

a

T

(
aρ(a) +H(a)

)
which contradicts (3.12).



The following theorems treat with the case when the numbers Q∗, H∗ does not satisfy
the bound in (3.8), (3.9). We discus the cases with

(n− 2)2 − 1

4
ωn ≤ Q∗ ≤

(n− 2)2

4
ωn (3.13)

and (or)
(n− 2)2 − 1

4
ωn ≤ H∗ ≤

(n− 2)2

4
ωn. (3.14)

Theorem 3.5. If (1.3), (3.13) and

H∗ >
ωn
2

[
(n− 2)2 + 1

2
+

√
(n− 2)2 − 4Q∗

ωn

]
(3.15)

holds, then (1.1) is oscillatory.

Proof. Suppose, by contradiction, that there exists a solution of (1.1) positive on Ωa for
some a > 1, (1.3) and (3.13) holds. From the inequality (2.22) it follows

H∗ ≤ − lim inf
t→∞

tρ(t) +
(n− 3)2

4
ωn

and using (2.15) we get a contradiction with (3.15).

Theorem 3.6. If (1.3), (3.14) holds and if

Q∗ >
ωn
2

[
(n− 2)2 + 1

2
+

√
(n− 2)2 − 4H∗

ωn

]
, (3.16)

then the equation (1.1) is oscillatory.

Proof. Suppose, by contradiction, that there exists a solution of (1.1) positive on Ωa for
some a > 1, (1.3) and (3.14) holds. From (2.18) we get the inequality

Q∗ ≤ lim sup
t→∞

tρ(t) +
(n− 1)2

4
ωn,

and (2.20) leads to the contradiction with (3.16).

If both (3.13) and (3.14) holds, the constants in Theorems 3.4–3.6 can be decreased, as
shows the following theorem.

Theorem 3.7. Let (1.3), (3.13) and (3.14) holds. Denote

kn =
ωn
2

[√
(n− 2)2 − 4Q∗

ωn
+

√
(n− 2)2 − 4H∗

ωn

]
.

Then each of the conditions

Q∗ > Q∗ + kn (3.17)

H∗ > H∗ + kn (3.18)

lim sup
t→∞

[Q(t) +H(t)] > H∗ +Q∗ + kn (3.19)

guarantees the oscillation of the equation (1.1).



Proof. Suppose, by contradiction, that there exists a solution of (2.1) defined on Ωa for some
a ≥ 1, (1.3), (3.13), (3.14) hold and denote

m =
ωn
2

[
2− n−

√
(n− 2)2 − 4Q∗

ωn

]
(3.20)

M =
ωn
2

[
2− n+

√
(n− 2)2 − 4H∗

ωn

]
. (3.21)

Assume that Q∗ >
(n−2)2−1

4
ωn and H∗ >

(n−2)2−1
4

ωn hold. From (3.20), (3.21) and from Lem-

mas 2.2 and 2.3 it follows that for every 0 < ε < 1−min
{√

(n− 2)2 − 4Q∗
ωn
,
√

(n− 2)2 − 4H∗
ωn

}
there exists tε ≥ a such that

(1− n)
ωn
2
< m− ε ≤ tρ(t) ≤M + ε < (3− n)

ωn
2

(3.22)

and from here

(1− n)tρ(t)− 1

ωn
t2ρ2(t) ≤ (1− n)(m− ε)− 1

ωn
(m− ε)2 (3.23)

(3− n)tρ(t)− 1

ωn
t2ρ2(t) ≤ (3− n)(M + ε)− 1

ωn
(M + ε)2 (3.24)

for every t ≥ tε. Now (2.18) and (2.21) imply for t ≥ tε

Q(t) ≤ tρ(t) + t

∫ ∞
t

[
(1− n)sρ(s)− 1

ωn
s2ρ2(s)

] ds

s2

≤ tρ(t) + (1− n)(m− ε)− 1

ωn
(m− ε)2,

H(t) ≤ −tρ(t) +
τ

t

(
τρ(τ) +H(τ)

)
+

1

t

∫ t

tε

[
(3− n)sρ(s)− 1

ωn
s2ρ2(s)

]
ds ≤

≤ −tρ(t) + (3− n)(M + ε)− 1

ωn
(M + ε)2 +

τ

t

(
τρ(τ) +H(τ)

)
,

Q(t) +H(t) ≤ (3− n)(M + ε)− 1

ωn
(M + ε)2

+ (1− n)(m− ε)− 1

ωn
(m− ε)2 +

τ

T

(
τρ(τ) +H(τ)

)
.

These inequalities together with Lemmas 2.2 and 2.3 imply

Q∗ ≤M + (1− n)m− 1

ωn
m2,

H∗ ≤ −m+ (3− n)M − 1

ωn
M2

lim sup
t→∞

[Q(t) +H(t)] ≤ (3− n)M − 1

ωn
M2 + (1− n)m− 1

ωn
m2 (3.25)



respectively. Now direct computation leads to the contradiction with (3.17), (3.18), (3.19)

respectively. If Q∗ = (n−2)2−1
4

ωn or H∗ = (n−2)2−1
4

ωn the statement (3.17), (3.18) follows from
Theorems 3.6, 3.5, respectively. In this case m = 1−n

2
ωn, M = 3−n

2
ωn, respectively and using

estimation

(1− n)tρ(t)− 1

ωn
t2ρ2(t) ≤ (1− n)2

4
ωn = (1− n)m− 1

ωn
m2,

(3− n)tρ(t)− 1

ωn
t2ρ2(t) ≤ (3− n)2

4
ωn = (3− n)M − 1

ωn
M2

instead of (3.23) and (3.24) respectively, we again conclude (3.25) which leads to the con-
tradiction with (3.19).

4 Remarks and comments

Remark 4.1. If the limit

lim
t→∞

∫
1≤||x||≤t

||x||1−nc(x) dx (4.1)

exists, then the limit (1.3) exists too and both limits are equal. If the limit (4.1) is finite
then Q(t) takes the form

Q(t) = t

∫
t≤||x||≤∞

||x||1−nc(x) dx .

In this case the criteria in Corollary 3.3 are for n = 1 and c ≥ 0 due to Hille [6] and Nehari
[9]. If limt→∞

∫
1≤||x||≤t ||x||

1−nc(x) dx =∞ then (1.1) is oscillatory by Theorem 3.1. Remark

that the existence of (4.1) is not necessary for existence of the limit (1.3).

Remark 4.2. An example of the equation

∆u+
(n− 2)2

4||x||2
u = 0

which possesses positive solution ||x|| 2−n
2 shows that the right–hand sides in (3.3)–(3.5),

(3.8),(3.9) and (3.17)–(3.19) cannot be decreased. This example also shows that the condition

lim
t→∞

∫
1≤||x||≤t

c(x) dx =∞

is not sufficient for oscillation of the equation (1.1) as in the one-dimensional case, as it is
mentioned in [11]. In fact the above condition guarantees oscillation of the equation (1.1)
for n ≤ 2, see [10, 11].

Remark 4.3. As it can be seen from the Definition 1.1, the above oscillation criteria give
the sufficient condition for nonexistence of nonoscillatory solution, but does not guarantee
existence of oscillatory solution. Nevertheless in the case when the function c(x) is Hölder
continuous, which is often studied in the literature, our criteria give the sufficient conditions
for existence of oscillatory solution and also the sufficient condition for nodal oscillation of
the equation (1.1).
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