
INTERVAL–TYPE OSCILLATION CRITERIA

FOR HALF–LINEAR PDE WITH DAMPING

ROBERT MAŘÍK
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Abstract. Using the Riccati substitution we derive new sufficient conditions which ensure

that the half-linear partial differential equation with p-Laplacian and damping in the form

div(‖∇u‖p−2 ∇u) +
D

~b(x) , ‖∇u‖p−2 ∇u
E

+ c(x)|u|p−2
u = 0, (E)

is oscillatory. These criteria, called interval criteria in theory of ODE’s, allow to eliminate

“bad parts” of the potential function c(x) from our considerations. Some of the results are

new even in the case when (E) becomes linear ordinary differential equation.
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1. Introduction

In the paper we investigate the equation with p-Laplacian and Emden-Fowler type nonlin-
earity

div(‖∇u‖p−2 ∇u) +
〈
~b(x) , ‖∇u‖p−2 ∇u

〉
+ c(x)|u|p−2u = 0, (E)

where p is a real number satisfying p > 1, ‖·‖ is the usual Euclidean norm and 〈· , ·〉 is the usual

scalar product in R
n. The potential function c(x) and damping function ~b(x) are supposed

to be locally Hölder continuous. Among others, we do not assume anything concerning either
the fixed sign or the radial symmetry of the potential c(x).

Equation (E) is sometimes referred as a half–linear equation, since a constant multiple of
every solution is a solution of the same equation. From this reason many of the qualitative
properties of half–linear equation (E) are similar to the properties of linear Schrödinger partial
differential equation

∆u + c(x)u = 0 (1)

which can be obtained from (E) for p = 2. Especially the Sturmian type theorems extend
from (1) also to (E), see Jaroš, et. al (2000) and Došlý, Mař́ık (2001).
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Notation. In the sequel we denote by S(a), Ω(a), Ω(a, b) and D the sets in R
n and R

2 as
follows:

S(a) = {x ∈ R
n : a = ||x||},

Ω(a) = {x ∈ R
n : a ≤ ||x||},

Ω(a, b) = {x ∈ R
n : a ≤ ||x|| ≤ b},

D = {(t, s) ∈ R
2 : t ≥ s}.

Throughout the paper, q denotes the conjugate number to p, i.e., q = p
p−1 and ~ν(x) denotes

the outside normal unit vector to the sphere S(x), i.e. ~ν(x) = (xi) ‖x‖
−1. Finally, dσ is the

integral element of the sphere S(x).
The oscillation theory of (1) deals with two types of oscillation. According to this theory,

equation (1) is said to be weakly oscillatory if every its solution has a zero outside of every ball
in R

n and strongly oscillatory if every solution has a nodal domain outside of every ball in R
n.

Moss and Piepenbrick (1978) showed that both definitions are equivalent if the function c(x)
is locally Hölder continuous. As far as the author knows, the possible equivalence between
both types of oscillation remains an open question for equation (E). In this paper the first
type of oscillation is used, as the following definition shows.

Definition 1. Let Ω be unbounded domain in R
n. Equation (E) is said to be oscillatory in

Ω if every its nontrivial solution defined on Ω ∩ Ω(t0) has zero in Ω ∩ Ω(t) for every t ≥ t0.
Equation (E) is said to be oscillatory, if it is oscillatory in R

n.

Kong (1999) used the Riccati technique and the two-parametric averaging function H(t, s)
(a technique originally due to Philos (1989)) to obtain new conjugacy criteria for linear second
order ordinary differential equation

(p(t)y′)′ + q(t)y = 0 (2)

and derived sufficient conditions which guarantee existence of infinitely many intervals with
pairs of conjugate points. These conditions allow to eliminate “bad parts” of the interval
(t0,∞) from the oscillation criteria and are applicable even if the integral of the function q(t)
is small, e.g. if

∫
∞

0 q(t) dt = −∞. The results of Kong (1999) have been extended by Wang
and Yang (2004) for half-linear ODE.

The aim of this paper is to extend the criteria from Kong (1999) and Wang, Yang (2004)
for equation (E). In addition, we offer an improvement of these results (see Remark 3 below)
which is new even in the case of the original equation (2) and it is closely related to the recent
result of Sun (2004).

Oscillation properties of equation (E) and several (less or more general) similar equations
have been studied by Riccati technique (see Lemma 1 below) in a series of papers by Xu (2005)
and Xu, Xing (2003, 2004). In these papers authors, starting with integration of the Riccati
equation over spheres in R

n centered in the origin, convert the n-dimensional problem into a
problem in one variable and then employ the corresponding techniques from the oscillation
theory of ordinary differential equations. The oscillation criteria obtained in this way detect
the oscillation only if the mean value of the potential function c(x) over the spheres centered
in the origin is “sufficiently large”.

In this paper, like already in Mař́ık (2004), we prefer an advanced approach than that
one used in papers by Xu: we use the averaging function which need not to preserve radial
symmetry. As a particular example, we use the (n + 1)-variable function H(t, ‖x‖)ρ(x),
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where x ∈ R
n, rather than the function of two variables H(t, s)k(s) with s ∈ R, used in Xu,

Xing (2003), where s corresponds to our ‖x‖. Following this approach we obtain oscillation
criteria which are applicable also to the cases when the equation is strongly asymmetric with
respect to origin and the mean value of the potential c(x) is small, as has been explained
in Mař́ık (2004, Remark 2.3). The author believes that such a criteria are more natural for
partial differential equations and provide much deeper insight into oscillation. Moreover, the
oscillation of radially symmetric PDE’s can be studied in the scope of ODE’s and oscillation
of PDE’s with “sufficiently large” mean value of the potential function can be detected via
oscillation of certain ordinary differential equation, as has been proved independently by
Jaroš, Kusano, Yoshida (2000) and by Došlý, Mař́ık (2001).

The method presented in this paper is applicable also to several similar equations, like (if
p = 2) the nonlinear equation

∆u +
〈
~b(x) , ∇u

〉
+ c(x)f(u) = 0, (3)

where the continuous function f satisfies sign condition uf(u) > 0 for u 6= 0 and equation
(3) is a “Sturmian majorant” of (E), e.g. if f ′(u) > µ > 0 for some µ ∈ R and every
u > 0. However, in order to make our ideas more transparent, we keep the term c(x)|u|p−2u

rather than replacing this term by a term of the type c(x)f(u) and hence consider the simpler
equation (E) only.

The following lemma introduces our main tool – Riccati-type substitution which converts
equation (E) into first order Riccati-type equation.

Lemma 1. Let u be a solution of equation(E) which has no zero on the domain Ω ⊆ R
n.

Then the vector variable ~w(x) defined on the domain Ω by

~w(x) =
‖∇u(x)‖p−2 ∇u(x)

|u(x)|p−2u(x)
(4)

solves the Riccati-type equation

div ~w + c(x) + (p − 1) ‖~w‖q +
〈

~w , ~b(x)
〉

= 0 (5)

on Ω.

Proof. By direct substitution, see Mař́ık (2004). �

In the sequel we define two classes of averaging functions: each of them will be used on one
of the parts of boundary ∂Ω(a, b) = S(a) ∪ S(b).

Definition 2. The function H(t, s) ∈ C(D, [0,∞)) is said to belong to the class H if

(i) H(t, s) = 0 if and only if t = s.
(ii) The partial derivative ∂H

∂s (t, s) exists.
(iii) Denoting

h2(t, s) = −
∂H

∂s
(t, s)H−1(t, s), for (t, s) ∈ D, t 6= s,

the function h
p
2(t, s)H(t, s) is locally integrable on each compact subset in D.

Remark 1. Remember that the function h2(t, s) has singularity for s = t, since H(t, t) = 0.
The same is true also for the function h∗

1(t, s) defined below.

Definition 3. The function H∗(t, s) ∈ C(D, [0,∞)) is said to belong to the class H∗ if
3



(i) H∗(t, s) = 0 if and only if t = s.
(ii) The partial derivative ∂H∗

∂t (t, s) exists
(iii) Denoting

h∗

1(t, s) =
∂H∗

∂t
(t, s)

[
H∗(t, s)

]
−1

, for (t, s) ∈ D, t 6= s,

the function
[
h∗

1(t, s)
]p

H∗(t, s) is locally integrable on each compact subset in D.

Remark 2. Note that the functions h∗

1, h2 play slightly different role in this paper than in

the paper Wang, Yang (2004) where h2(t, s) = ∂H
∂s (t, s)H−1/2(t, s) and h∗

1 is defined in the
similar way. The reason is that we wish to gain simpler formulas in our resulting oscillation
criteria.

2. Auxiliary results

Lemma 2. Let u be a solution of (E) such that u(x) > 0 for c ≤ ‖x‖ < b. Let ρ ∈ C1(Rn, R+)
be a smooth positive function and H be a function of the class H. The vector variable ~w(x)
defined by (4) satisfies the inequality

∫

Ω(c,b)
H(b, ‖x‖)c(x)ρ(x) dx ≤ H(b, c)

∫

S(c)
ρ(x) 〈~w(x) , ~ν(x)〉 dσ

+

∫

Ω(c,b)

∥∥∥∥~b(x) −
∇ρ(x)

ρ(x)
+ h2(b, ‖x‖)~ν

∥∥∥∥
p

ρ(x)H(b, ‖x‖)p−p dx .

(6)

Proof. Suppose that positive solution u of (E) exists for c ≤ ‖x‖ < b. Multiplying the Riccati
equation (5) by ρ(x) we get

c(x)ρ(x) = −ρ(x) div ~w − (p − 1)ρ(x) ‖~w‖q −
〈
ρ(x)~w , ~b(x)

〉

and hence

c(x)ρ(x) = − div(ρ(x)~w) − (p − 1)ρ(x) ‖~w‖q −

〈
ρ(x)~w , ~b(x) −

∇ρ(x)

ρ(x)

〉
. (7)

Integrating over the sphere S(s) of radius s, multiplying by H(t, s) and integrating with
respect to s over the interval (c, t), where t < b, we get

∫

Ω(c,t)
H(t, ‖x‖)ρ(x)c(x) dx = −

∫ t

c
H(t, s)

∫

S(s)
div(ρ(x)~w) dσ ds

− (p − 1)

∫

Ω(c,t)
H(t, ‖x‖)ρ(x) ‖~w‖q dx

−

∫

Ω(c,t)
H(t, ‖x‖)

〈
ρ(x)~w , ~b(x) −

∇ρ(x)

ρ(x)

〉
dx .
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Integration by parts in the first integral on the right hand side, Gauss-Ostrogradskii formula
and the definition of the function h2 give

∫

Ω(c,t)
H(t, ‖x‖)c(x)ρ(x) dx = H(t, c)

∫

S(c)
ρ(x) 〈~w , ~ν〉 dσ

−

∫

Ω(c,t)
h2(t, ‖x‖)H(t, ‖x‖)ρ(x) 〈~w , ~ν〉 dx

− (p − 1)

∫

Ω(c,t)
H(t, ‖x‖)ρ(x) ‖~w‖q dx

−

∫

Ω(c,t)
H(t, ‖x‖)

〈
ρ(x)~w , ~b(x) −

∇ρ(x)

ρ(x)

〉
dx .

Using the well-known Young inequality
∥∥∥ ~X

∥∥∥
q

q
±

〈
~X , ~Y

〉
+

∥∥∥~Y
∥∥∥

p

p
≥ 0 (8)

with

~X = ρ(x)
(
(p − 1)H(t, ‖x‖)

) 1
q

ρ
1
q
−1

(x)q
1
q ~w

and

~Y = H(t, ‖x‖)
(
~b(x) −

∇ρ(x)

ρ(x)
+ h2(t, ‖x‖)~ν

)(
(p − 1)H(t, ‖x‖)

)
−

1
q

ρ
1− 1

q (x)q
−

1
q

and using the obvious identities (p − 1)q = p, p
(
1 − 1

q

)
= 1 we get

∫

Ω(c,t)
H(t, ‖x‖)c(x)ρ(x) dx ≤ H(t, c)

∫

S(c)
ρ(x) 〈~w , ~ν〉 dσ

+

∫

Ω(c,t)

1

p
Hp(t, ‖x‖)

∥∥∥∥~b(x) −
∇ρ(x)

ρ(x)
+ h2(t, ‖x‖)~ν

∥∥∥∥
p

× ρ(x)
(
pH(t, ‖x‖)

)
−p/q

dx .

Now some easy simplifications, identity p
q = p − 1 and limit process t → b− give (6). �

Lemma 3. Let u be a solution of (E) such that u(x) > 0 for a < ‖x‖ ≤ c. Let ρ ∈ C1(Rn, R+)
be a smooth positive function and H∗ be a function of the class H∗. The vector variable ~w(x)
defined by (4) satisfies the inequality

∫

Ω(a,c)
H∗(‖x‖ , a)ρ(x)c(x) dx ≤ −H∗(c, a)

∫

S(c)
ρ(x) 〈~w(x) , ~ν〉 dσ

+

∫

Ω(a,c)

∥∥∥∥~b(x) −
∇ρ(x)

ρ(x)
− h∗

1(‖x‖ , a)~ν

∥∥∥∥
p

ρ(x)H∗(‖x‖ , a)p−p dx .

(9)
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Proof. We begin as in the proof of Lemma 2 and obtain (7). Integrating (7) over the sphere
S(s) of radius s, multiplying by H∗(s, t) and integrating with respect to s over the interval
(t, c), where a < t, we get

∫

Ω(t,c)
H∗(‖x‖ , t)c(x)ρ(x) dx = −

∫ c

t
H∗(s, t)

∫

S(s)
div(ρ(x)~w) dσ ds

− (p − 1)

∫

Ω(t,c)
H∗(‖x‖ , t)ρ(x) ‖~w‖q dx

−

∫

Ω(t,c)
H∗(‖x‖ , t)

〈
ρ(x)~w , ~b(x) −

∇ρ(x)

ρ(x)

〉
dx .

As in the proof of Lemma 3, the integration by parts in the first integral on the right hand
side, Gauss-Ostrogradskii formula and the definition of the function h∗

1 give
∫

Ω(t,c)
H∗(‖x‖ , t)c(x)ρ(x) dx = −H∗(c, t)

∫

S(c)
ρ(x) 〈~w , ~ν〉 dσ

+

∫

Ω(t,c)
h∗

1(‖x‖ , t)H∗(‖x‖ , t)ρ(x) 〈~w , ~ν〉 dx

− (p − 1)

∫

Ω(t,c)
H∗(‖x‖ , t)ρ(x) ‖~w‖q dx

−

∫

Ω(t,c)
H∗(‖x‖ , t)

〈
ρ(x)~w , ~b(x) −

∇ρ(x)

ρ(x)

〉
dx .

Young inequality (8) with

~X = ρ(x)
(
(p − 1)H∗(‖x‖ , t)

) 1
q

ρ
1
q
−1

(x)q
1
q ~w

and

~Y = H∗(‖x‖ , t)
(
~b(x) −

∇ρ(x)

ρ(x)
− h∗

1(‖x‖ , t)~ν
)(

(p − 1)H∗(‖x‖ , t)
)
−

1
q

ρ
1− 1

q (x)q−
1
q ,

some simplifications and limit process t → a+ give (9), similarly as in the proof of Lemma 3.
�

3. Main results

Theorem 1. Suppose that there exist real number c ∈ (a, b), positive smooth function ρ(x)
and averaging functions H(t, s) ∈ H, H∗(t, s) ∈ H∗, such that

1

H∗(c, a)

∫

Ω(a,c)
H∗(‖x‖ , a)ρ(x)c(x) dx +

1

H(b, c)

∫

Ω(c,b)
H(b, ‖x‖)ρ(x)c(x) dx

>
1

H∗(c, a)

∫

Ω(a,c)

∥∥∥∥~b(x) −
∇ρ(x)

ρ(x)
− h∗

1(‖x‖ , a)~ν

∥∥∥∥
p

ρ(x)H∗(‖x‖ , a)p−p dx

+
1

H(b, c)

∫

Ω(c,b)

∥∥∥∥~b(x) −
∇ρ(x)

ρ(x)
+ h2(b, ‖x‖)~ν

∥∥∥∥
p

ρ(x)H(b, ‖x‖)p−p dx .

(10)

Then every solution of (E) has at least one zero inside Ω(a, b).
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Proof. Suppose, by contradiction, that a solution u with no zero in the interior of Ω(a, b) exists.
Without loss of generality we can suppose that the function c is positive inside Ω(a, b). Then
(6) and (9) hold. Dividing these inequalities by 1

H(b,c) and 1
H∗(c,a) respectively and summing

up we obtain an opposite inequality to (10). This contradiction shows that Theorem 1 holds.
�

Theorem 2. If there exist t0 > 0, H ∈ H, H∗ ∈ H∗, ρ ∈ C1(Ω(t0), R
+) such that for every

τ > t0 the inequalities

lim sup
t→∞

∫

Ω(τ,t)

[

H(t, ‖x‖)ρ(x)c(x)

−
ρ(x)H(t, ‖x‖)

pp

∥∥∥∥~b(x) −
∇ρ(x)

ρ(x)
+ h2(t, ‖x‖)~ν

∥∥∥∥
p
]

dx > 0

(11)

and

lim sup
t→∞

∫

Ω(τ,t)

[

H∗(‖x‖ , τ)ρ(x)c(x)

−
ρ(x)H∗(‖x‖ , τ)

pp

∥∥∥∥~b(x) −
∇ρ(x)

ρ(x)
− h∗

1(‖x‖ , τ)~ν

∥∥∥∥
p
]

dx > 0.

(12)

hold, then equation (E) is oscillatory.

Main idea of the proof. If the assumptions of Theorem 2 hold, then for every T > t0 there
exist numbers a < c < b such that (10) holds and hence the equation has arbitrarily large
zeros. Here we omit the details, since the proof is completely analogous to the one-dimensional
case, see e.g. Wang, Yang (2004, Theorem 3). �

Remark 3. If n = 1, ~b = ~o and H(t, s) = H∗(t, s), then Theorem (1) correspond to Wang,
Yang (2004, Theorem 3) with r ≡ 1. Remark that, as far as the author knows, all relevant
results in the literature suppose H(t, s) = H∗(t, s), i.e. the same weighting function is used on
both ends of the interval (a, b). Hence the possibility H(t, s) 6≡ H∗(t, s) causes that Theorem 2
is new even for linear ODE (2). Another, very similar, approach which allows to use different
weighting functions on both ends of the interval (a, b) has been presented by Sun (2004) for

n = 1 and by Xu (2005) for n ≥ 2. Namely, these authors use the function Ĥ(r, s, l) of three
variables which corresponds, in some sense, to our product H(r, s)H∗(s, l).

In the following theorem we utilize this idea and use the product H(t2, ‖x‖)H
∗(‖x‖ , t1) as

an averaging function in the procedure from Lemma 2. As a result we obtain an oscillation
criterion which is simpler than (11)–(12) in the sense that it consists of one inequality only,
but it contains more complicated function in the integral. This theorem is an n-dimensional
extension of Sun (2004, Theorem 2.5) and non-radial extension of Xu (2005, Theorem 2.2)
with slightly different meaning of h∗

1, h2, as mentioned above.
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Theorem 3. Suppose that for every T > t0 there exist t1 > T , H ∈ H and H∗ ∈ H∗ such

that

lim sup
t→∞

∫

Ω(t1,t)
H(t, ‖x‖)H∗(‖x‖ , t1)

[

ρ(x)c(x)

−
ρ(x)

pp

∥∥∥∥~b(x) −
∇ρ(x)

ρ(x)
+

[
h2(t, ‖x‖) − h∗

1(‖x‖ , t1)
]
~ν

∥∥∥∥
p
]

dx > 0

(13)

Proof. As in the proof of Lemma 2 we get (7). Integrating over the sphere S(s) of radius s,
multiplying by H(t, s)H∗(s, t1) and integrating with respect to s over the interval (t1, t) we
get

∫

Ω(t1,t)
H(t, ‖x‖)H∗(‖x‖ , t1)ρ(x)c(x) dx

= −

∫ t

t1

H(t, s)H∗(s, t1)

∫

S(s)
div(ρ(x)~w) dσ ds

− (p − 1)

∫

Ω(t1,t)
H(t, ‖x‖)H∗(‖x‖ , t1)ρ(x) ‖~w‖q dx

−

∫

Ω(t1,t)
H(t, ‖x‖)H∗(‖x‖ , t1)

〈
ρ(x)~w , ~b(x) −

∇ρ(x)

ρ(x)

〉
dx .

Integration by parts in the first integral on the right hand side, Gauss-Ostrogradskii formula
and the definition of the function h2 give

∫

Ω(t1,t)
H(t, ‖x‖)H∗(‖x‖ , t1)ρ(x)c(x) dx

= −

∫

Ω(t1,t)

[
h2(t, ‖x‖) − h∗

1(‖x‖ , t1)
]

× H(t, ‖x‖)H∗(‖x‖ , t1)ρ(x) 〈~w , ~ν〉 dx

− (p − 1)

∫

Ω(t1,t)
H(t, ‖x‖)H∗(‖x‖ , t1)ρ(x) ‖~w‖q dx

−

∫

Ω(t1,t)
H(t, ‖x‖)H∗(‖x‖ , t1)

〈
ρ(x)~w , ~b(x) −

∇ρ(x)

ρ(x)

〉
dx .

The Young inequality yields
∫

Ω(t1,t)
H(t, ‖x‖)H∗(‖x‖ , t1)ρ(x)c(x) dx ≤

∫

Ω(t1,t)

1

p

[
H(t, ‖x‖)H∗(‖x‖ , t1)

]p

×

∥∥∥∥~b(x) −
∇ρ(x)

ρ(x)
+

[
h2(t, ‖x‖) − h∗

1(‖x‖ , t1)
]
~ν

∥∥∥∥
p

× ρ(x)
(
pH(t, ‖x‖)H∗(‖x‖ , t1)

)
−p/q

dx .

Using some algebraic simplifications we find that the integral from the left hand side of (13) is
bounded from above by zero for every t > t1 which contradicts the assumption (13). Theorem
is proved. �
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Remark 4. The sharpness of the method presented in this paper can be shown on convenient
examples of radially symmetric equations which follow the corresponding examples for n = 1
and therefore we omitted the details.

Several effective criteria can be derived from criteria in this paper by choosing particular
averaging functions. The most typical functions of the classes H and H∗ are

H(t, s) = (t − s)α, and H∗(t, s) = (t − s)β,

where min{α, β} > p−1 (this restriction follows from the condition (iii)). With this averaging
functions the oscillation criteria are called Kamenev-type criteria.
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