
THE UNIVERSITY OF AKRON
Theoretical and Applied Mathematics

Extending the Exerquiz Package
Special Processing

D. P. Story

Needs revision

c© 1999-2001 dpstory@uakron.edu
Last Revision Date: July 24, 2009 Version 3.0

mailto:dpstory@uakron.edu

Table of Contents

1. Introduction
2. \RespBoxMath
3. The Compare Function

3.1. The randomPointCompare Function
4. A Custom Compare Function
5. The Response Function
6. Demo: Quizzes

6.1. A shortquiz
6.2. A quiz
Solutions to Quizzes

3

1. Introduction

The command \RespBoxMath is used to define a math fill-in question.
Normally, such a question takes a numerical answer, or takes a func-
tion of a single variable, x, that reduces to a number when x is given
a value.

When the user enters an answer into the response box, a document-
level JavaScript function, ProcResp is called to process the answer.
This function then calls another JavaScript function called random-
PointCompare, which randomly chooses points from a specified inter-
val. For each of the points chosen, randomPointCompare then calls
the (default) compare function to compare the author’s answer with
the user’s answer. The diagram below illustrates the normal program
flow for processing math fill-in questions.

User Input −−−−−→ ProcResp??y
compare function ←−−−−− randomPointCompare

Recently, \RespBoxMath and ProcResp have been rewritten to allow

4

the author to modify this normal program flow. By specifying some
optional arguments in the \RespBoxMath command, the author can
call a custom response function and use a custom compare function
as well. The sections that follow discuss the methods of redirecting
program flow and of writing new compare and response functions. An
extensive example is developed.

2. \RespBoxMath

The \RespBoxMath now has a ten parameters that can be used to
modify the default behavior of processing the user’s input. Here is
the syntax:
\RespBoxMath[#1]#2(#3)[#4]#5#6#7#8[#9]*#10

Parameters:
#1: Optional parameter used to modify the appearance of the text

field.

#2: The correct answer to the question. This must be a numeri-
cal value, or a function of one variable. JavaScript Note: In

Section 2: \RespBoxMath 5

JavaScript, functions such as sin(x) and cos(x) are meth-
ods of the Math object. It is not necessary, however, to type
Math.sin(x) or Math.cos(x); this is done by inserting the ex-
pression into a with(Math) group.

#3: An optional parameter, delimited by parentheses, that defines the
independent variable; x, is the default value. Note that this
parameter is set off by parentheses. For a multivariate question,
just list the variables in juxtaposition, (xyz).

#4: Optional, a named destination to the solution to the question. If
this parameter appears, then a solution must follow the ques-
tion, enclosed in a solution environment. There is an alternate
forth parameter, a ‘*’. In this case, an automatic naming scheme
is used.

#5: The number of samples points to be used, usually 3 or 4 is suffi-
cient.

#6: Precision required, the ε value, if you will.
#7: Parameters #7 and #8 are used to define the interval from which

to draw the sample points. There are two forms: (1) #7 is the

Section 2: \RespBoxMath 6

left-hand endpoint of the interval and #8 is the right-hand end-
point (the use of #7 and #8 in this form is deprecated); (2) the
interval is defined by standard interval notation, [a,b]. For a
multivariate question—one where parameter #2 lists more than
one variable, separate the intervals for each variable by a ‘x’,
[0,2]x[1,2]x[3,4]. Here, ‘x’ stands for Cartesian Product.

#8: (1) Parameter #8 is the right-hand endpoint of the interval (the
use of this parameter is deprecated); (2) in the second case, #8
is not used.

#9: This optional parameter is the name of a customized comparison
function.

#10: (Only detected if following an asterisk, ‘*’) The name of a
JavaScript function that is to be used to process the user in-
put.

Parameters #9 and #10 can be used to specify custom compare and
response functions, respectively. The compare function is discussed in
Section 3 followed by a discussion of the response function in Section 5.

7

You can write your own compare and response functions. An ex-
ample of a custom compare function is given in the file jquiztst.tex
as well as in the preamble of this document; this file also demonstrates
a custom response function. These JavaScript functions are defined
using the insdljs package.

3. The Compare Function

The way exerquiz determines whether a user’s response to a math fill-in
question is by randomly choosing a number of points (parameter #5)
from an interval of numbers (parameters #7 and #8) and comparing
the user’s answer with the author’s provided answer (parameter #2).
If at any of the comparisons, the two answers differ by more than
some acceptable value (parameter #6), the user’s answer is judged
incorrect.

The listing of the default compare functions follows:
function diffCompare(_a,_c,_v,_F,_G) {

var aXY = _c.split(",");

var n = aXY.length

with(Math) {

Section 3: The Compare Function 8

for (var i=0; i< n; i++)

eval ("var "+_v[i] + " = " + aXY[i] + ";");

_F = eval(_F);

if (app.viewerVersion >= 5)

{

var rtnCode = 0;

eval("try { if(isNaN(_G = eval(_G))) rtnCode=-1; }"

+ " catch (e) { rtnCode=1; }");

switch(rtnCode)

{

case 0: break;

case 1: return null;

case -1: return -1;

}

}

else

if(isNaN(_G = eval(_G))) return -1;

return abs (_F - _G);

}

}

Where ‘ a’ is an string of comma delimited numbers representing the
endpoints of the intervals from which to sample points; the param-

Section 3: The Compare Function 9

eter ‘ c’ is a comma delimited string of randomly chosen point(s);
the parameter ‘ v’ is a string listing the independent variables of the
questions; ‘ F’ is the author’s answer, and ‘ G’ is the user’s answer.
(Note: We give these parameters special names, beginning with an
underscore, to protect the function from the user. Without these
underscores, it is possible for the user to enter an answer such as
‘cos(x) + c the value of ‘c’ has been passed to function from the
calling function. When we perform the eval(G), the value for ‘c’ will
be substituted in; this might lead to unexpected results. It is un-
likely, however, that the user will enter an expression like ‘cos(x) +
c. With the underscores, ‘c’ is undefined, and an exception will be

thrown.)
JavaScript 1.5, the core JavaScript used by Acrobat 5.0, now

throws an exception if an error occurs. (Prior versions of JavaScript
do not.) Typically, you can try to catch any critical error, for better
error handling. Notice the line
eval("try { if(isNaN(_G = eval(_G))) rtnCode=-1; }"

+ " catch (e) { rtnCode=1; }");

We make the evaluation of G within a try/catch Recall that expres-

Section 3: The Compare Function 10

sion the user enters is passed to this function as the parameter G.
If the user has entered any grossly incorrect expression, an exception
will be thrown when we try to evaluate it at c.

In Acrobat 4.0–4.05, try/catch are reserved words and cannot be
used. Therefore, I have made the relevant code into a string which gets
evaluated, in the case the user is viewing the document in Acrobat
Reader 5.0 or above. If a Reader prior to 5.0 is being used, the
reserved words are in a string, and are not parsed by the JavaScript
interpreter.

To understand the code, consider a simplified form of the try/-
catch:
try { if(isNaN(_G = eval(_G))) return -1; }

catch (e) { return null; }

consider the following three examples.

I Example 1: User enter a good expression:
var x = 4;

var _G = "Math.sqrt(x)";

try {

if(isNaN(_G = eval(_G))) app.alert("-1");

Section 3: The Compare Function 11

else app.alert("_G = " + _G);

} catch (e) { app.alert("null"); }

If this script is executed, G = 2 appears in the alert box.

I Example 2: User enters a functions whose domain falls outside the
domain of the correct answer. Suppose the user enters the expression,
sqrt(-x).
var x = 4;

var _G = "Math.sqrt(-x)";

try {

if(isNaN(_G = eval(_G))) app.alert("-1");

else app.alert("_G = " + _G);

} catch (e) { app.alert("null"); }

When this script is executed, −1 is appears in the alert box; i.e., iNaN
returned a true. No exception was thrown here. This is considered
an error. The user entered a function the domain of which did not
contain the range of numbers that are to be tested.

I Example 3: User enters an express that throws an exception:
var x = 4;

var _G = "Math.sqrt(t)";

Section 3: The Compare Function 12

try {

if(isNaN(_G = eval(_G))) app.alert("-1");

else app.alert("_G = " + _G);

} catch (e) { app.alert("null"); }

The declaration of G has been changed to "Math.sqrt(t)". Now,
when we try to evaluate G, an exception is thrown, and null appears
in the alert dialog. The error message generated by this exception is
ReferenceError: t is not defined. This kind of error is consid-
ered a typo, and the user is not penalized.

3.1. The randomPointCompare Function

The compare function is called by randomPointCompare. It is this
function that randomly chooses a number of points from the specified
interval, then calls the compare function to evaluate and compare the
correct answer with the user’s answer. It is randomPointCompare that
processes the return value of the compare function. Below is a snippet
of randomPointCompare so you can see how it processes the return
value of the compare function.
error = comp(a,cXY,indepVar,CorrAns,userAns);

13

if (error == null)

return null; // this is considered a typo

if ((error == -1) || (error > epsilon))

{

j=-1; // j=-1 signals an error

break;

}

4. A Custom Compare Function

The custom compare function in the preamble of this document does
a compare appropriate to comparing two indefinite integrals. We list
the version of this compare function that uses try/catch, Acrobat
Reader 5.0 or later is needed.
function indefCompare(_a,_c,_v,_F,_G) {

var eqC;

var aAB = _a.split(",");

var aXY = _c.split(",");

var n = aXY.length

with(Math) {

for (var i=0; i< n; i++)

eval ("var "+_v[i] + " = " + aAB[2*i] + ";");

Section 4: A Custom Compare Function 14

% var C = 0 is used to designate an arbitrary constant

var C = 0;

if (app.viewerVersion >= 5)

{

var rtnCode = 0;

eval("try {"

+ " if(isNaN(eqC = eval(_F)-eval(_G))) rtnCode=-1;}"

+ " catch (e) { rtnCode=1; }");

switch(rtnCode)

{

case 0: break;

case 1: return null;

case -1: return -1;

}

}

else

if (isNaN(eqC = eval(_F)-eval(_G))) return -1;

for (var i=0; i< n; i++)

eval ("var "+_v[i] + " = " + aXY[i] + ";");

_F = eval(_F);

if (app.viewerVersion >= 5)

{

var rtnCode = 0;

Section 4: A Custom Compare Function 15

eval("try { if(isNaN(_G = eval(_G))) rtnCode=-1; }"

+ " catch (e) { rtnCode=1; }");

switch(rtnCode)

{

case 0: break;

case 1: return null;

case -1: return -1;

}

}

else

if(isNaN(_G = eval(_G))) return -1;

return abs(_F - _G - eqC);

}

}

First, we evaluate each at the left-hand endpoint (a) and store this
value as eqC. Then we compare the two function F and G and the
randomly supplied point c. We then return the abs(F - G - eqC).
If the two supplied are both correct, they would differ by a constant.

Here is an example of usage of this custom compare function:

I
∫

sin(x) dx =

16

5. The Response Function

The response function is a JS function that is called when the math
fill-in data is committed by the user. Basically, it strips out all
white space; calls ParseInput() (which scans the user input for syn-
tax errors, converts exponents to the pow() functions, etc.); calls
randomPointCompare() which returns true or false depending on
whether the user’s answer was close enough to the author’s answer;
and finally, notifies the field of the result (calls notifyField()).

The default response function is the JavaScript ProcResp(), but
this function can be replaced by a “custom response function”, such as
the one in the preamble of this document. The listing of ProcResp()
follows:
function ProcResp(flag,CorrAns,n,epsilon,a,indepVar,comp)

{

if (!ProcessIt) return null;

ok2Continue = true;

var success;

var fieldname = event.target.name;

var UserAns = event.value;

CorrAns = ParseInput(CorrAns);

Section 5: The Response Function 17

if (!ok2Continue) {

app.alert("Syntax error in author’s answer!"

+ " Check console.", 3);

console.println("Syntax Error: " + CorrAns);

return null;

}

UserAns = ParseInput(UserAns);

if (!ok2Continue) return null;

success=randomPointCompare

(n,a,indepVar,epsilon,CorrAns,UserAns,comp)

if (success == null)

{ app.alert(\eqSyntaxErrorUndefVar,3); return null; }

return notifyField(success, flag, fieldname);

}

ProcResp takes eight arguments, flag, CorrAns, n, epsilon, a,
b, indepVar, comp. The flag indicates whether we are in ‘silent
mode’ (no immediate reporting back of results); obviously, CorrAns
is the author’s correct answer; n is the number of points to sample;
epsilon is the acceptance level; arguments a and b are the left and
right hand endpoints, respectively; indepVar is a string indicating the
independent variable, the default is "x"; and finally, comp is the name

18

of the compare function that is to be called.
The JS function changeToX uses regular expressions to replace the

declared indepVar with an internal variable. After changing variables,
we call randomPointCompare, then notifyField of the results.

I Important: Any custom response function must use the above
eight arguments, and finish off by returning a true or false value.
In the above example, the return value of notifyField is used.

6. Demo: Quizzes

We illustrate the ProcVec and indefCompare function through a
shortquiz and quiz by extending exerquiz to be able to process vector
answers. Other extensions are possible, such as processing functions
of several variables, for example.

I Click on the “Ans” button to see the answer. If the “Ans” button
has a green boundary, that problem has a solution. Shift-click on
“Ans” to jump to the solution.

Section 6: Demo: Quizzes 19

6.1. A shortquiz

Instructions: Enter vectors with angle brackets, e.g., <1,2,3>. You
can also enter scalar multiples of vectors, e.g., 4*<1,2,3>.

Quiz Let ~a = 〈1, 2, 3〉, ~b = 〈3, 2, 1〉 and ~f(t) = 〈et, t2, sin(t)〉. Calculate
each of the following.

1. ~a+~b =

2. ~a ·~b =

3. ~a×~b =

4. ~f ′(t) =

5.
∫

~f(t) dt =

Section 6: Demo: Quizzes 20

6.2. A quiz

Instructions: Same instructions as in the shortquiz.

Begin Quiz Let ~a = 〈1, 2, 3〉, ~b = 〈3, 2, 1〉 and ~f(t) = 〈et, t2, sin(t)〉.
Calculate each of the following.
1. ~a+~b =

2. ~a ·~b =

3. ~a×~b =

4. ~f ′(t) =

5.
∫

~f(t) dt =

End Quiz

Answers:

21

Solutions to Quizzes

Solution to Quiz: ∫
sin(x) dx = − cos(x) + C

�

Solutions to Quizzes 22

Solution to Quiz: We load the vectors

~a =< 1, 2, 3 > and ~b =< 3, 2, 1 >

into a 3× 3 determinant, like so:

~a×~b =

∣∣∣∣∣∣
~i ~j ~k
1 2 3
3 2 1

∣∣∣∣∣∣
=
∣∣∣∣2 3
2 1

∣∣∣∣~i− ∣∣∣∣1 3
3 1

∣∣∣∣~j +
∣∣∣∣1 2
3 2

∣∣∣∣~k
= (2− 6)~i− (1− 9)~j + (2− 6)~k

= −4~i+ 8~j − 4~k
=< −4, 8,−4 >
= 4 < −1, 2,−1 >

�

Solutions to Quizzes 23

Solution to Quiz: We simply integrate componentwise:∫
~f(t) dt =

∫
〈 et, t2, sin(t) 〉 dt

= 〈
∫
et dt,

∫
t2 dt,

∫
sin(t) dt〉

= 〈et, 1
3 t

3,− cos(t)〉+ ~C

In the syntax of this document, the answer is <e^t,t^3/3,-cos(t)>.
�

Solutions to Quizzes 24

Solution to Quiz: We load the vectors

~a =< 1, 2, 3 > and ~b =< 3, 2, 1 >

into a 3× 3 determinant, like so:

~a×~b =

∣∣∣∣∣∣
~i ~j ~k
1 2 3
3 2 1

∣∣∣∣∣∣
=
∣∣∣∣2 3
2 1

∣∣∣∣~i− ∣∣∣∣1 3
3 1

∣∣∣∣~j +
∣∣∣∣1 2
3 2

∣∣∣∣~k
= (2− 6)~i− (1− 9)~j + (2− 6)~k

= −4~i+ 8~j − 4~k
=< −4, 8,−4 >
= 4 < −1, 2,−1 >

�

Solutions to Quizzes 25

Solution to Quiz: We simply integrate componentwise:∫
~f(t) dt =

∫
〈 et, t2, sin(t) 〉 dt

= 〈
∫
et dt,

∫
t2 dt,

∫
sin(t) dt〉

= 〈et, 1
3 t

3,− cos(t)〉+ ~C

In the syntax of this document, the answer is <e^t,t^3/3,-cos(t)>.
�

	Table of Contents
	1 Introduction
	2 \RespBoxMath
	3 The Compare Function
	3.1 The randomPointCompare Function

	4 A Custom Compare Function
	5 The Response Function
	6 Demo: Quizzes
	6.1 A shortquiz
	6.2 A quiz

	 Solutions to Quizzes

