Definition 2.1 (Excellent number)

Let n be positive integer. The number n is said to be excellent, if the last digit of the number α defined by the relation

$$
\alpha=n^{2}+\int_{0}^{2 \pi} \sin x \mathrm{~d} x
$$

equals 1.

Definition 2.1 (Excellent number)

Let n be positive integer. The number n is said to be excellent, if the last digit of the number α defined by the relation

$$
\alpha=n^{2}+\int_{0}^{2 \pi} \sin x \mathrm{~d} x
$$

equals 1.

Definition 2.2 (Happy number)
Let n be positive integer. The number n is said to be happy, if the last digit of the number n equals 1 .

Figure: Sine curve

Theorem 2.4

Let $f(x)$ be integrable in the sense of Riemann on $[a, b]$. Let $F(x)$ be a function continuous on $[a, b]$ which is an antiderivative of the function f on the interval (a, b). Then

$$
\int_{a}^{b} f(x) \mathrm{d} x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

holds.

Theorem 2.5 (Characterization of excellent numbers)
The positive integer n is excellent if and only if the last digit of the number n is either 1 or 9 .

