Second order nonhomogeneous linear differential equation Interactive tests

Robert Mařík

July 14, 2006

Look at three or four or twenty my quizzes and then fill in my please!

1. Theory

Definition 1 (second order linear differential equation) Let p, q and f be functions continuous on the interval I. The equation

$$y'' + p(x)y' + q(x)y = f(x)$$

is said to be a second order linear differential equation. Under a solution of this equation we understand every function which has the second derivative on the interval I and satisfies (1) for every $x \in I$.

Definition 2 (associated homogeneous equation) Consider nonhomogeneous equation (1). Homogeneous equation

$$y'' + p(x)y' + q(x)y = 0.$$

with the left-hand side identical with equation (1) is called a *homogeneous equation associated to the nonhomogeneous equation* (1).

Theorem 1 (general solution) Let $y_1(x)$ and $y_2(x)$ be fundamental system of solutions of the homogeneous LDE (2) and $y_p(x)$ be an arbitrary particular solution of the nonhomogeneous LDE (1). Then the function

 $y(x) = Ay_1(x) + By_2(x) + y_p(x), \qquad A \in \mathbb{R}, \ B \in \mathbb{R}$

is a general solution of the nonhomogeneous LDE (1).

(1)

(3)

2. Tests

- Given an equation and the form of the particular solution, solve the equation.
- You have to adjust the real constants in the particular solution to make the equation true after substituting particular solution.
- When you find the particular solution, find also the general solution.
- Use constants *A* and *B* in the general solution. More precisely, for the equation y'' + y = 1 write the solution in any of the following forms

1.
$$y = 1 + A \sin(x) + B \cos(x)$$

2.
$$y = 1 + A \cdot \cos(x) + B \cdot \sin(x)$$

3. $y = [A \cos(x) + B \sin(x) + 1]$

Remark: The answer 1+A*(sin(x)+cos(x))+B*(sin(x)-cos(x))+cos(x) is marked as correct as well, since neither particular solution nor the fundamental system are unique.

Theory

Quiz 1. Solve y'' + 3y' - 4y = 2. Consider particular solution in the form $y_p = a$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** Find the value of the undetermined constant a =
- 4. Write the particular solution:

 $y_p =$

5. Write the general solution (use constants A and B):

Quiz 2. Solve y'' + 2y' + y = 5. Consider particular solution in the form $y_p = a$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** Find the value of the undetermined constant a =
- 4. Write the particular solution:

 $y_p =$

5. Write the general solution (use constants A and B):

Quiz 3. Solve $y'' + 2y' + y = 5e^x$. Consider particular solution in the form $y_p = ae^x$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** Find the value of the undetermined constant a =
- 4. Write the particular solution:

 $y_p =$

5. Write the general solution (use constants A and B):

Home Page Print Title Page 44 Page 6 of 24 Go Back Full Screen Close Quit

Quiz 4. Solve $y'' - 2y' + y = 5e^x$. Consider particular solution in the form $y_p = ax^2e^x$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** Find the value of the undetermined constant a =
- 4. Write the particular solution:

 $y_p =$

5. Write the general solution (use constants *A* and *B*):

Quiz 5. Solve $y'' + 4y = 5e^{3x}$. Consider particular solution in the form $y_p = ae^{3x}$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** Find the value of the undetermined constant a =
- 4. Write the particular solution:

 $y_p =$

5. Write the general solution (use constants *A* and *B*):

y =

Print
Title Page

Title Page

Page 8 of 24

Go Back

Full Screen

Close

Quit

Quiz 6. Solve $y'' - y = 3e^x$. Consider particular solution in the form $y_p = axe^x$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** Find the value of the undetermined constant a =
- 4. Write the particular solution:

 $y_p =$

5. Write the general solution (use constants A and B):

Quiz 7. Solve y'' + 2y' + y = x + 1. Consider particular solution in the form $y_p = ax + b$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** If an exponential factor appears in the equation, divide by this factor. Then build linear system for undetermined constants by comparing like powers of *x* and solve this system. $x^1:$ $x^2:$ $x^2:$ $x^2:$
- 4. Write the particular solution:

 $y_p =$

5. Write the general solution (use constants *A* and *B*):

Quiz 8. Solve y'' + y = x - 3. Consider particular solution in the form $y_p = ax + b$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** If an exponential factor appears in the equation, divide by this factor. Then build linear system for undetermined constants by comparing like powers of *x* and solve this system. $x^1:$ $x^2:$ $x^2:$ $x^2:$
- 4. Write the particular solution:

 $y_p =$

5. Write the general solution (use constants *A* and *B*):

Quiz 9. Solve $y'' - 2y' + 2y = x^2 - 1$. Consider particular solution in the form $y_p = ax^2 + bx + c$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** If an exponential factor appears in the equation, divide by this factor. Then build linear system for undetermined constants by comparing like powers of *x* and solve this system. x^2 : x^2 : x^1 : $a = b^2$

c =

$$x^{0}$$
:

4. Write the particular solution:

$$y_p =$$

5. Write the general solution (use constants *A* and *B*):

Quiz 10. Solve y'' + y' - 2y = 2x + 1. Consider particular solution in the form $y_p = ax + b$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** If an exponential factor appears in the equation, divide by this factor. Then build linear system for undetermined constants by comparing like powers of *x* and solve this system. $x^1:$ $x^2:$ $x^2:$ $x^2:$
- 4. Write the particular solution:

 $y_p =$

5. Write the general solution (use constants A and B):

Quiz 11. Solve y'' - y' - 2y = 4x + 5. Consider particular solution in the form $y_p = ax + b$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** If an exponential factor appears in the equation, divide by this factor. Then build linear system for undetermined constants by comparing like powers of *x* and solve this system. $x^1:$ $x^0:$ $x^0:$ $x^$
- 4. Write the particular solution:

 $y_p =$

5. Write the general solution (use constants *A* and *B*):

Quiz 12. Solve y'' + 2y' + y = 5x. Consider particular solution in the form $y_p = ax + b$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** If an exponential factor appears in the equation, divide by this factor. Then build linear system for undetermined constants by comparing like powers of *x* and solve this system. $x^1:$ $x^0:$ $x^0:$ $x^$
- 4. Write the particular solution:

 $y_p =$

5. Write the general solution (use constants *A* and *B*):

Quiz 13. Solve $y'' - y = xe^x$. Consider particular solution in the form $y_p = e^x(ax^2 + bx)$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** If an exponential factor appears in the equation, divide by this factor. Then build linear system for undetermined constants by comparing like powers of *x* and solve this system. $x^1:$ $x^0:$ $x^0:$ $x^$
- 4. Write the particular solution:

 $y_p =$

5. Write the general solution (use constants A and B):

Quiz 14. Solve $y'' - y = 3xe^x$.

Consider particular solution in the form $y_p = (ax^2 + bx)e^x$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** If an exponential factor appears in the equation, divide by this factor. Then build linear system for undetermined constants by comparing like powers of *x* and solve this system. $x^1:$ $x^0:$ $x^0:$ $x^0:$ $x^0:$
- 4. Write the particular solution:

 $y_p =$

5. Write the general solution (use constants *A* and *B*):

Quiz 15. Solve $y'' - y = (3x - 2)e^x$. Consider particular solution in the form $y_p = (ax^2 + bx)e^x$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** If an exponential factor appears in the equation, divide by this factor. Then build linear system for undetermined constants by comparing like powers of *x* and solve this system. $x^1:$ $x^0:$ $x^0:$ $x^0:$ $x^0:$
- 4. Write the particular solution:

 $y_p =$

5. Write the general solution (use constants A and B):

Quiz 16. Solve $y'' + 2y' + y = 2x^2 + 1$. Consider particular solution in the form $y_p = ax^2 + bx + c$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** If an exponential factor appears in the equation, divide by this factor. Then build linear system for undetermined constants by comparing like powers of *x* and solve this system. x^2 : x^2 : x^1 : $a = b^2$

c =

$$x^{0}:$$

4. Write the particular solution:

$$y_p =$$

5. Write the general solution (use constants *A* and *B*):

Quiz 17. Solve $y'' + 4y = x^2$.

Consider particular solution in the form $y_p = ax^2 + bx + c$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** If an exponential factor appears in the equation, divide by this factor. Then build linear system for undetermined constants by comparing like powers of *x* and solve this system. x^2 : x^2 : x^1 : a = b = b = b

c =

$$x^{0}$$
:

4. Write the particular solution:

$$y_p =$$

5. Write the general solution (use constants *A* and *B*):

Home Page	
Print	
Title Page	
•	*
Page 20 of 24	
Go Back	
Full Screen	
Close	
Quit	

Quiz 18. Solve $y'' + 2y' - 3y = 6x^3 + 2x + 1$. Consider particular solution in the form $y_p = ax^3 + bx^2 + cx + d$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** If an exponential factor appears in the equation, divide by this factor. Then build linear system for undetermined constants by comparing like powers of *x* and solve this system. x^3 :

$$y_p =$$

5. Write the general solution (use constants *A* and *B*):

Quiz 19. Solve $y'' + 2y' + y = x^3$. Consider particular solution in the form $y_p = ax^3 + bx^2 + cx + d$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- **3.** If an exponential factor appears in the equation, divide by this factor. Then build linear system for undetermined constants by comparing like powers of *x* and solve this system. x^3 :

$$y_p =$$

5. Write the general solution (use constants *A* and *B*):

Quit

Quiz 20. Solve $y'' - 4y = \sin x$. Consider particular solution in the form $y_p = b \sin(x) + c \cos(x)$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- 3. Build the linear system for constants a and b by comparing coefficients at corresponding trigonometric functions and solve this system sin(x): $\implies b = c = c = c$

 $\cos(x)$:

4. Write the particular solution:

 $y_v =$

5. Write the general solution (use constants *A* and *B*):

Quiz 21. Solve $y'' - 4y' + 4y = \sin x$. Consider particular solution in the form $y_p = b \sin(x) + c \cos(x)$.

1. Find the first two derivatives

$$y'_p = y''_p =$$

- 2. Substitute particular solution and its derivatives into the equation:
- 3. Build the linear system for constants a and b by comparing coefficients at corresponding trigonometric functions and solve this system sin(x): $\implies b = c = c = c$

 $\cos(x)$:

4. Write the particular solution:

 $y_v =$

5. Write the general solution (use constants *A* and *B*):

