Integral calculus Integration of partial fracions Interactive quizzes

Robert Mařík

July 23, 2006

Look at three or four or twenty my quizzes and then fill in my please!

Full Screen
Close
Quit

- Fill in blank fields and press Enter.
- The green boundary indicates correct answer, the red boundary indicates wrong answer.
- As usual, you can see the answer by pressing button. But don't use this button too much, please. All (or at least almost all) computations are easy. We have to learn the technique in these quizzes. The problems on exam are harder¹! If there are more fields to be filled, click repeatedly.
- As usual: If you have any comments or suggestions concerning this test, let me know, please!

bed ROBERT MAŘÍK

Partial fractions
filo int porteo to

Туре В

Туре С

Type D

.. -

Home Page

Print

Page 2 of 14

Go Back
Full Screen

Close

¹this means slightly longer computation of derivatives and integrals and so on

1. Type A

formula

Quiz The partial fraction of the type $\frac{A}{x-c}$ can be simply integrated by the

+C

$$\int \frac{A}{x-c} dx = A \ln(|x-c|) + C.$$

$$\int \frac{4}{} dx = +C$$

$$1. \int \frac{4}{x+3} dx = +C$$

$$2. \int \frac{3}{x-7} dx = +C$$

$$\int \frac{1}{x-7} dx = +C$$

$$\int \frac{5}{x+9} dx = +C$$

$$\int \frac{10}{x+9} dx = +$$

4.
$$\int \frac{10}{x+6} dx = +C$$

5. $\int \frac{5}{x+1} dx = +C$

$$3. \int \frac{5}{x+9} \mathrm{d}x =$$

Type B Type C Type D

Page 3 of 14 Go Back

Full Screen

Close Quit

2. Type B

Quiz The partial fraction od the type $\frac{A}{(x-c)^n}$, n>1 can be simply inte-

grated by the formula

$$\int \frac{A}{(x-c)^n} dx = \int A$$

 $\int \frac{A}{(x-c)^n} dx = \int A(x-c)^{-n} dx = A \frac{(x-c)^{-n+1}}{-n+1} = \frac{A}{(1-n)(x-c)^{n-1}} + C.$

1. $\int \frac{1}{(x+5)^2} dx =$

2. $\int \frac{5}{(x-2)^3} dx =$

3. $\int \frac{6}{(x-1)^7} dx =$

4. $\int \frac{6}{(x+5)^3} dx =$

 $5. \int \frac{5}{x^2} dx =$

+C

+C

+C

+C

Page 5 of 14

Go Back

Full Screen Close

3. Type C

The partial fracion of the type $\frac{Ax+B}{x^2+\beta^2}$ can be integated as follows: We

write the fraction as linear combination of two *special* fractions. The numerator of the first fraction is 2x (the derivative of denominator) and the numerator of the second fraction is the number 1. Then the first fraction can be integrated by the formula

$$\int \frac{f'(x)}{f(x)} dx = \ln|x| + C$$

and the second one by the formula

$$\int \frac{1}{x^2 + \beta^2} dx = \frac{1}{\beta} \arctan \frac{x}{\beta} + C$$

BOBERT MAŘÍK

P Partial fractions
file int-parfrac tex

Туре В

Type C
Type D

Home Page

Print

lo Poso

Title Page

Page 7 of 14

Go Back
Full Screen

Close

Quiz Write the function in the form suggested above and integate. Write the coeficients of linear combination (numbers) into blue fields and the antiderivative into the long white field.

1.
$$\int \frac{3x+7}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

2. $\int \frac{5x-2}{x^2+25} dx = \int \frac{2x}{x^2+25} + \frac{1}{x^2+25} dx$

3.
$$\int \frac{x+1}{x^2+4} dx = \int \frac{2x}{x^2+4} + \frac{1}{x^2+4} dx$$

$$\frac{1}{x^2+4}$$
 + $\frac{1}{x^2+4}$ dx

$$2x$$
 1 du

$$= 4. \int \frac{4x - 6}{x^2 + 3} dx = \int \frac{2x}{x^2 + 3} + \frac{1}{x^2 + 3} dx$$

$$\frac{1}{4}$$
 ax

+C

Page 8 of 14

Go Back Full Screen Close Quit

Type B

Type D

Home Page

5.
$$\int \frac{7x+1}{x^2+5} dx = \int \frac{2x}{x^2+5} + \frac{1}{x^2+5} dx$$

$$= +C$$
4.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= +C$$
4.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= +C$$
4.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= +C$$
6.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= +C$$
6.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= +C$$
6.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
6.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
6.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
6.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
6.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
6.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
6.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
6.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
7.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
7.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
7.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
7.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
8.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
8.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
8.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
8.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} + \frac{1}{x^2+9} dx$$

$$= -C$$
8.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} dx$$

$$= -C$$
9.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} dx$$

$$= -C$$
1.
$$\int \frac{4-3x}{x^2+9} dx = \int \frac{2x}{x^2+9} dx$$
1.
$$\int \frac{4-3x}{x^2+9} dx$$
1.
$$\int \frac{4-3x}{x^2+9} dx$$
1.
$$\int \frac{4-3x}{x^2+9} dx$$
1.
$$\int \frac{4-3x}{x^2+9} dx$$
2.
$$\int \frac{4-3x}{x^2+9} dx$$
3.
$$\int \frac{4-3x}{x^2+9} dx$$
4.
$$\int \frac{4-3x}{x^2+9} dx$$
4.
$$\int \frac{4-3x}{x^2+9} dx$$
4.
$$\int \frac{4-3x}{x^2+9} dx$$
4.
$$\int \frac{4-3x}{x^2+9} dx$$
5.
$$\int \frac{4-3x}{x^2+9} dx$$
6.
$$\int \frac{4-3x}{x^2+9} dx$$
6.
$$\int \frac{4-3x}{x^2+9} dx$$
7.
$$\int \frac{4-3x}{x^2+9} dx$$
8.
$$\int \frac{4-3x}{x^2+9} dx$$
8.
$$\int \frac{4-3x}{x^2+9} dx$$
9.
$$\int \frac{4-3x}{x^2+9} dx$$
9.
$$\int \frac{4-3x}{x^2+9$$

4. Type D

The partial fracion of the type $\frac{Ax+B}{x^2+\beta x+\gamma}$ can be integated as follows:

We write the fraction as linear combination of two *special* fractions. The numerator of the first fraction is $2x + \beta$ (the derivative of denominator) and the numerator of the second fraction is the number 1. Then the first fraction can be integrated by the formula

$$\int \frac{f'(x)}{f(x)} dx = \ln|x| + C$$

and the second one by the formula

$$\int \frac{1}{(x+m)^2 + n^2} dx = \frac{1}{n} \operatorname{atan} \frac{x+m}{n} + C,$$

where m and n have to be found by completing square in the denominator.

BOBERT MAŘÍK

Partial fractions
file int-parfracte

Туре В

Type C

Home Page

Print

Title Page

Page 10 of 14

Go Back

Full Screen

Quiz

- Complete the pattern for the integration and find the antiderivative.
- The answer in the blue field is a number.
- The answer in the red field is derivative of denominator.
- The answer in the white field is the antiderivative. Omit the constant of integration, please.

1.
$$\int \frac{x}{x^2 + 2x + 2} dx = \int \frac{1}{(x + 0)^2 + 0} dx$$

2.
$$\int \frac{2x+1}{x^2+4x+9} dx = \int \frac{1}{x^2+4x+9} + \frac{1}{(x+x)^2+1} dx$$

= +C

advi Robert Mak

Type C

Туре D

Home Page

Print

Title Page

Title Pa

4

•

Page 11 of 14

Go Back

Full Screen

7.
$$\int \frac{3x+7}{x^2+10x+29} dx = \int \frac{1}{x^2+10x+29} + \frac{1}{(x+)^2+} dx$$

$$= +C$$
8.
$$\int \frac{x-1}{x^2-4x+6} dx = \int \frac{1}{x^2-4x+6} + \frac{1}{(x+)^2+} dx$$

$$= +C$$
9.
$$\int \frac{x+7}{x^2-4x+8} dx = \int \frac{1}{x^2-4x+8} + \frac{1}{(x+)^2+} dx$$

$$= +C$$
10.
$$\int \frac{x}{x^2-x+1} dx = \int \frac{1}{x^2-x+1} + \frac{1}{(x+)^2+} dx$$

$$= +C$$
10.
$$\int \frac{x}{x^2-x+1} dx = \int \frac{1}{x^2-x+1} + \frac{1}{(x+)^2+} dx$$

$$= +C$$
Quit

