Taylor polynomial

Robert Mařík

February 27, 2006

Motivation. Let f be a real function with the following properties.

- The value $f(x_0)$ is known.
- We have no effective method to evaluate the function at the other points, different from x_0 .
- The value of the first n derivatives of the function f at the point x_0 is known.

We state the following problem: Find an n-degree polynomial which approximates the function f in the neighbourhood of the point x_0 with the smallest possible error. The solution of this problem is introduced in the following definition.

Definition (Taylor polynomial). Let $n \in \mathbb{N}$ be a positive integer and f be a function defined at x_0 which has derivatives up to the order n at x_0 . The polynomial

$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

is called an *n*-degree Taylor polynomial of the function f at x_0 .

The point x_0 is called a *centre* of this polynomial.

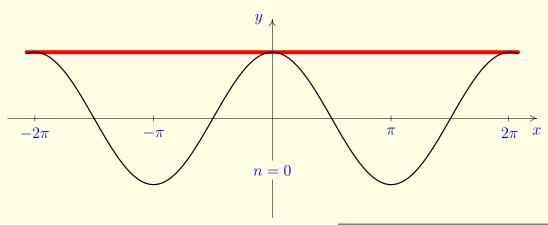
all $x \in N(x_0)$ $f(x) = T_n(x) + R_{n+1}(x)$. holds, where $T_n(x)$ is the *n*-degree Taylor polynomial of the function f in the point x_0 and

Theorem 1 (Taylor). Let f be a function defined in a neighborhood $N(x_0)$ of the point x_0 . Let $f'(x_0)$, $f''(x_0)$, ..., $f^{(n)}(x_0)$ be the values of the first n derivatives of the function f at the point x_0 . Suppose that the (n+1)st derivative is continuous in $N(x_0)$. Then for

$$R_{n+1}(x)$$
 a remainder. The remainder can be written in the form
$$R_{n+1}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1},$$

where
$$c$$
 is some number between x and x_0 .

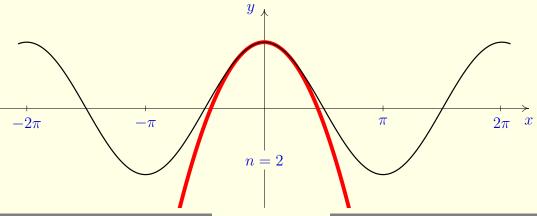
Remark 1. From the formula (1) it follows that the remainder is small if


- $(x-x_0)$ is small, i.e., x is close to x_0 ,
- n! is large, i.e., n is large,
- $|f^{(n+1)}(x)|$ is numerically small in the neighborhood of x_0

 $f(x) \approx T_n(x)$

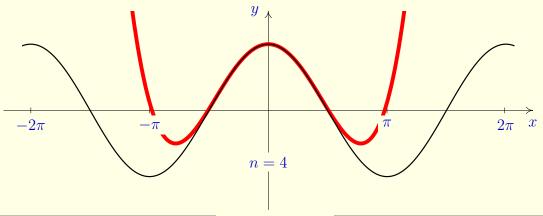
(1)

(2)


$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

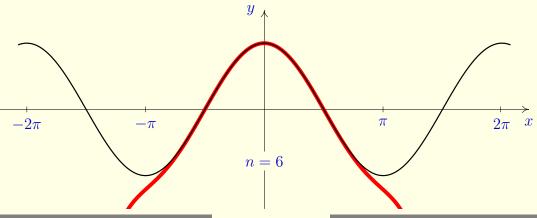
There is no shorter approximation

$$\cos x \approx 1 = T_0(x)$$


$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

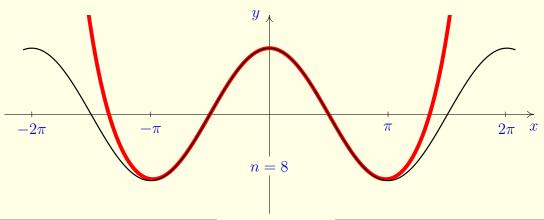
Click for shorter approximation

$$\cos x \approx 1 - \frac{x^2}{2} = T_2(x)$$


$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

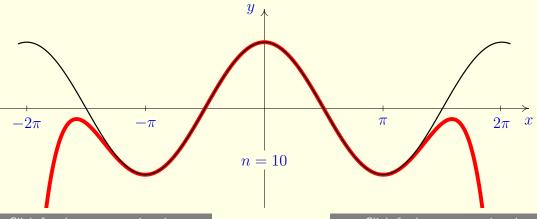
Click for shorter approximation

$$\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{24} = T_4(x)$$


$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

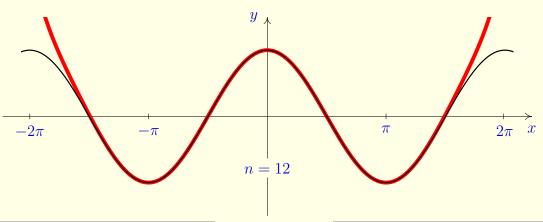
Click for shorter approximation

$$\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} = T_6(x)$$


$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

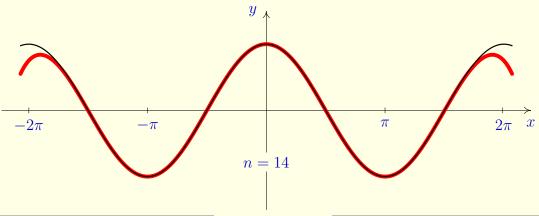
Click for shorter approximation

$$\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} = T_8(x)$$


$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

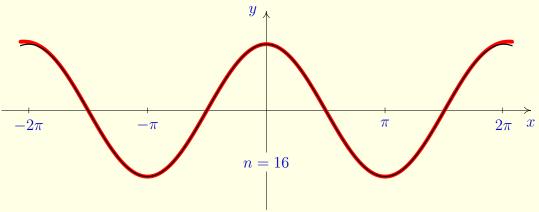
Click for shorter approximation

$$\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} = T_{10}(x)$$


$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

Click for shorter approximation

$$\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + \frac{x^{12}}{12!} = T_{12}(x)$$


$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

Click for shorter approximation

$$\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + \frac{x^{12}}{12!} - \frac{x^{14}}{14!} = T_{14}(x)$$

$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

Click for shorter approximation

Better approximation is too long.

$$\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + \frac{x^{12}}{12!} - \frac{x^{14}}{14!} + \frac{x^{16}}{16!} = T_{16}(x)$$

Applications

- Polynomial approximation for Einstein's formula for total energy of moving object einstein.pdf – the last part.
- Polynomial approximation for $\int e^{-x^2} dx$ (the error function) gauss-int.pdf.

Further reading

http://archives.math.utk.edu/visual.calculus/6/power.3/

Applets

- http://www2.norwich.edu/frey/TaylorPolynomials/
- http://math.furman.edu/~dcs/java/taylor.html