Taylor polynomial

Robert Mat¥ik

February 27, 2006



Motivation. Let f be a real fucntion with the folowing properties.

e The value f(xq) is known.

e We have no effective method to evaluate the function at the other points, different
from x.

e The value of the first n derivatives of the function f at the point x( is known.

We state the following problem: Find an n-degree polynomial which approximates the
function f in the neighbourhood of the point xq with the smallest possible error.
The solution of this problem is introduced in the following definition.

( Definition (Taylor polynomial). Let n € N be a positive integer and f be a function
defined at xy which has derivatives up to the order n at xj. The polynomial

f'(x0) f" (o) J (2o

1 91 o (&= )

(x—x)* + -+

To(x) = f(w0) +

(l‘—l’o) -+

is called an n-degree Taylor polynomial of the function f at xg.

The point x; is called a centre of this polynomial.
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Theorem 1 (Taylor). Let f be a function defined in a neighborhood N(x() of the point
zo. Let f'(xq), f"(x0), ..., f™ (x0) be the values of the first n derivatives of the function
f at the point . Suppose that the (n + 1)st derivative is continuous in N(zg). Then for
all z € N(x)

f(z) = To(z) + Rnya1(2),

holds, where T,,(x) is the n-degree Taylor polynomial of the function f in the point xy and
R, 11(z) a remainder. The remainder can be written in the form

(n+1)
Rui(a) = £ @ = ), )

where ¢ is some number between = and x.
Remark 1. From the formula (1) it follows that the remainder is small if 7

o (x —x) is small, i.e., x is close to xy,
e n!is large, i.e., n is large,
o |V (z)| is numerically small in the neighborhood of

If these conditions are satisfied, we can write
f(z) = T, () (2)
in the neighborhood of zy and the error is small.
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Taylor approximation of the function f: y = cosx at © = 0.

! " (n)
To(z) = f(zo) + i (1x!0) (z — o) + f éifo) (— o)+ -+ / n(!xo) (x — x)"
Yy
—:271' —T ™ 2'7r T
n=>0

There is no shorter approximation Click fo better approximation

cosz ~ 1 =Ty(zx)}
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Taylor approximation of the function f: y = cosx at © = 0.
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Click for shorter approximation Click for better approximation
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Taylor approximation of the function f: y = cosx at © = 0.
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Click for shorter approximation Click for better approximation
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Taylor approximation of the function f: y = cosx at © = 0.
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Click for shorter approximation Click for better approximation
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Taylor approximation of the function f: y = cosx at © = 0.

f(n) (z0)
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Click for better approximation
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Taylor approximation of the function f: y = cosx at © = 0.

f(n) (z0)
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Click for shorter approximation Click for better approximation
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Taylor approximation of the function f: y = cosx at © = 0.

T,(2) = fao) + L2 (@ — ) +
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Click for shorter approximation Click for better approximation
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Taylor approximation of the function f: y = cosx at © = 0.

T,(2) = fao) + L2 (@ — ) +
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Click for shorter approximation Click for better approximation
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Taylor approximation of the function f: y = cosx at © = 0.

f'(x0) J® (o)
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f/l (xo)

o (= m)

(x —x0) + (x — xo)"

n!
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Applications

e Polynomial approximation for Einstein’s formula for total energy of moving object —
einstein.pdf — the last part.

e Polynomial approximation for /e_“"2 dz (the error function) — gauss-int.pdf.
Further reading

e http://archives.math.utk.edu/visual.calculus/6/power.3/
Applets

e http://www2.norwich.edu/frey/TaylorPolynomials/
e http://math.furman.edu/~dcs/java/taylor.html
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