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• The swimmer swimms in river against the current.
• If he is too fast, he loose a lot of energy.
• If he is to slow, he is pulled down by the current.
• What is the optimal speed to reach the point B from the point A (optimal

in the sense of the minimal loss of energy).
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Cossing convenient units we can suppose
that ~v = 1.
The energy necessary to reach the
point B from A has to be minimal :
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Derivative vanishes if x =
1

2
, i.e. the speed of the fish is equal to one half of

the speed of the current. From the nature of the problem it follows, that this
stationary point is a minimum.
The stationary point x = −1 has no practical meaning in this problem.

• Consider a fish in the river. The speed of the current and the speed of
the fish is considered with respect to the observer on the river bank.

• A fish an excelent swimmer – it swimms at the speed which ensures as
small loss of energy as possible.

• The energy loss of the fish swimming is proprotional to the cube root of
the velocity with respect to the water, i.e. (x + v)3.
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• The loss of energy per a unit time is proportional to (x + 1)3.

• The fish will swimm
length
speed

time units and the time is propotional to
1

x
.
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From Calculus, an introduction to applied mathematics, H.P. Greenspan,
D. J. Benney, J. E. Turner, nakl. McGraw Hill (1986), page. 128.

Migrating fish know the solution of this problem!
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