Definition (expanded set of the real numbers). Under *an expanded set of the real numbers* \mathbb{R}^* we understand the set \mathbb{R} of the real numbers enriched by the numbers $\pm \infty$ in the following way: We set $\mathbb{R}^* = \mathbb{R} \cup \{\infty, -\infty\}$ and for $a \in \mathbb{R}$ we set:

 $a + \infty = \infty, \quad a - \infty = -\infty, \quad \infty + \infty = \infty, \quad -\infty - \infty = -\infty$ $\infty \cdot \infty = -\infty \cdot (-\infty) = \infty, \quad \infty \cdot (-\infty) = -\infty, \quad \frac{a}{\infty} = \frac{a}{-\infty} = 0$ $-\infty < a < \infty, \quad |\pm \infty| = \infty.$ Further, for a > 0 we set $a \cdot \infty = \infty$ $a \cdot (-\infty) = -\infty$, and for a < 0 we set $a \cdot \infty = -\infty$ $a \cdot (-\infty) = \infty.$ Another operations we define with the commutativity of the operation "+" and ".".

Remark 1 (indeterminate forms). The operations " $\infty - \infty$ ", " $\pm \infty$.0" and " $\frac{\pm \infty}{\pm \infty}$ " remain undefined. Of course, the division by a zero remains undefined as well.

Theorem 1 (uniqueness of the limit). *The function f possesses at the point a at most one limit (or one-sided limit).*

Theorem 2 (the relationship between the limit and the one-sided limits). The limit of the function f at the point $a \in \mathbb{R}$ exists if and only if both one-sided limits at the point a exist and are equal. More precisely: If the limits f(a-) and f(a+) exist and f(a-) = f(a+), then the limit $f(a\pm)$ exists as well and $f(a\pm) = f(a-) = f(a+)$. If one of the one-sided limits does not exist or if $f(a-) \neq f(a+)$, then the limit $f(a\pm)$ does not exist.

Theorem 3 (algebra of limits). Let $a \in \mathbb{R}^*$, $f, g : \mathbb{R} \to \mathbb{R}$. The following relations hold whenever the limits on the right exist and the formula on the right is well-defined.

$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) \tag{1}$$

$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$
(2)

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
(3)

The same holds for one sided limits as well.

Theorem 4 (limit of the composite function with continuous component). Let $\lim_{x \to a} f(x) = b$ and g(x) be a function continuous at b. Then $\lim_{x \to a} g(f(x)) = g(b)$, *i.e.*

$$\lim_{x \to a} g(f(x)) = g(\lim_{x \to a} f(x)).$$

The same holds for one-sided limits as well.

Theorem 5 (limit of the composite function). Let $\lim_{x\to a} f(x) = b$, $\lim_{y\to b} g(y) = L$ and let there exist a ring neighborhood of the point x = a such that $f(x) \neq b$ for all x in this neighborhood. Then $\lim_{x\to a} g(f(x)) = L$.

Theorem 6 (limit of the type " $\frac{L}{0}$ "). Let $a \in \mathbb{R}^*$, $\lim_{x \to a} g(x) = 0$ and $\lim_{x \to a} f(x) = L \in \mathbb{R}^* \setminus \{0\}$. Suppose that there exists ring neighborhood of the point a such that the function g(x) does not change its sign in this neighborhood. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \begin{cases} +\infty & \text{if } g(x) \text{ and } L \text{ have common sign,} \\ -\infty & \text{if } g(x) \text{ and } L \text{ have an opposite sign,} \end{cases}$$

in the neighborhood under consideration. The same holds for one sided limits as well.

Theorem 7 (limit of the polynomial or of the rational functions at $\pm \infty$). *It holds*

$$\lim_{x \to \pm \infty} (a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n) = \lim_{x \to \pm \infty} a_0 x^n,$$
$$\lim_{x \to \pm \infty} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m} = \lim_{x \to \pm \infty} \frac{a_0}{b_0} x^{n-m}.$$

