The partial derivatives

Robert Mařík

February 20, 2006

Contents

$(x+y)e^{-x}$		 									19
$\frac{x+y^2}{y-1} \cdot \cdot \cdot \cdot$		 									33
$\operatorname{arctg} \frac{y}{x} \dots$		 									48
$\sqrt{1-x^2-y^2}$		 									64
$(x^2 + y)e^{x^2 - y}$		 									75
$e^{x^2+y^2}$											

Remark. In all the following exercises the mixed partial derivatives $(z'_x)'_y$ and $(z'_u)'_x$ are identical and we make no difference between them.

$$z_x' = 2x + 1 \cdot y + 0$$

We differentiate the sum $(x^2 + xy + y^3)$ with respect to x.

- x^2 is differentiated as the function of one variable.
- ullet The variable y in the expression xy is considered to be a constant factor and we use the constant multiple rule

$$(xy)_x' = y(x)_x'.$$

The derivative of x with respect to x is the usual derivative.

• Term y^3 does not involve the variable x. Hence this term is treated to be constant and the derivative is zero.

$$z_x' = 2x + 1 \cdot y + 0 = 2x + y$$

$$z'_{x} = 2x + 1 \cdot y + 0 = 2x + y$$
$$z'_{y} = 0 + x \cdot 1 + 3y^{2}$$

We differentiate the sum $(x^2 + xy + y^3)$ with respect to y. • x^2 is differentiated as a constant, since it does not involve the

- variable y.
- The variable x in the expression xy is considered to be a constant factor and we use the constant multiple rule $|(xy)'_y = x(y)'_y|$. The derivative of y with respect to y is the usual derivative.
- Term y^3 is differentiated as one-variable function.

$$z'_x = 2x + 1 \cdot y + 0 = 2x + y$$

$$z'_y = 0 + x \cdot 1 + 3y^2 = x + 3y^2$$

$$z'_{x} = 2x + 1 \cdot y + 0 = \frac{2x + y}{2}$$

$$z'_{y} = 0 + x \cdot 1 + 3y^{2} = x + 3y^{2}$$

$$z''_{xx} = (2x + y)'_{x}$$

$$z'_{x} = 2x + 1 \cdot y + 0 = 2x + y$$

$$z'_{y} = 0 + x \cdot 1 + 3y^{2} = x + 3y^{2}$$

$$z''_{xx} = (2x + y)'_{x} = 2 \cdot 1 + 0$$

We use the sum rule, the constant multiple rule and the rule for the derivative of constant function.

$$z'_{x} = 2x + 1 \cdot y + 0 = 2x + y$$

$$z'_{y} = 0 + x \cdot 1 + 3y^{2} = x + 3y^{2}$$

$$z''_{xx} = (2x + y)'_{x} = 2 \cdot 1 + 0 = 2$$

$$z'_{x} = 2x + 1 \cdot y + 0 = 2x + y$$

$$z'_{y} = 0 + x \cdot 1 + 3y^{2} = x + 3y^{2}$$

$$z''_{xx} = (2x + y)'_{x} = 2 \cdot 1 + 0 = 2$$

$$z''_{xy} = (2x + y)'_{y}$$

To find z''_{xy} we differentiate z'_x with respect to y.

$$z'_{x} = 2x + 1 \cdot y + 0 = 2x + y$$

$$z'_{y} = 0 + x \cdot 1 + 3y^{2} = x + 3y^{2}$$

$$z''_{xx} = (2x + y)'_{x} = 2 \cdot 1 + 0 = 2$$

$$z''_{xy} = (2x + y)'_{y} = 0 + 1$$

We use the sum rule. Since x is treated to be a constant, (2x) is constant as well.

$$z'_{x} = 2x + 1 \cdot y + 0 = 2x + y$$

$$z'_{y} = 0 + x \cdot 1 + 3y^{2} = x + 3y^{2}$$

$$z''_{xx} = (2x + y)'_{x} = 2 \cdot 1 + 0 = 2$$

$$z''_{xy} = (2x + y)'_{y} = 0 + 1 = 1$$

 $z'_{x} = 2x + 1 \cdot y + 0 = 2x + y$

$$z'_{y} = 0 + x \cdot 1 + 3y^{2} = x + 3y^{2}$$

$$z''_{xx} = (2x + y)'_{x} = 2 \cdot 1 + 0 = 2$$

$$z''_{xy} = (2x + y)'_{y} = 0 + 1 = 1$$

$$z''_{yy} = (x + 3y^{2})'_{y}$$

To find z''_{uu} we differentiate z'_u with respect to y.

$$z'_{x} = 2x + 1 \cdot y + 0 = 2x + y$$

$$z'_{y} = 0 + x \cdot 1 + 3y^{2} = x + 3y^{2}$$

$$z''_{xx} = (2x + y)'_{x} = 2 \cdot 1 + 0 = 2$$

$$z''_{xy} = (2x + y)'_{y} = 0 + 1 = 1$$

$$z''_{yy} = (x + 3y^{2})'_{y} = 0 + 3 \cdot 2y^{1}$$

We use the sum rule, the derivative of constant function, the constant multiple rule and the power rule.

$$z'_{x} = 2x + 1 \cdot y + 0 = 2x + y$$

$$z'_{y} = 0 + x \cdot 1 + 3y^{2} = x + 3y^{2}$$

$$z''_{xx} = (2x + y)'_{x} = 2 \cdot 1 + 0 = 2$$

$$z''_{xy} = (2x + y)'_{y} = 0 + 1 = 1$$

$$z''_{yy} = (x + 3y^{2})'_{y} = 0 + 3 \cdot 2y^{1} = 6y$$

$$z'_{x} = 2x + 1 \cdot y + 0 = 2x + y$$

$$z'_{y} = 0 + x \cdot 1 + 3y^{2} = x + 3y^{2}$$

$$z''_{xx} = (2x + y)'_{x} = 2 \cdot 1 + 0 = 2$$

$$z''_{xy} = (2x + y)'_{y} = 0 + 1 = 1$$

$$z''_{yy} = (x + 3y^{2})'_{y} = 0 + 3 \cdot 2y^{1} = 6y$$

All derivatives up to the second order have been found.

$$z'_{x} = (x+y)'_{x} \cdot e^{-x} + (x+y) \cdot (e^{-x})'_{x}$$

- The function consists from the product of two factors $z = (x+y) \cdot e^{-x}$
- ullet Both factors involve the variable x and hence we differentiate by the product rule.

$$z'_x = (x+y)'_x \cdot e^{-x} + (x+y) \cdot (e^{-x})'_x$$

= $(1+0)e^{-x} + (x+y) \cdot e^{-x} \cdot (-1)$

The usual rules are employed and the variable y is treated as a constant.

$$z'_{x} = (x+y)'_{x} \cdot e^{-x} + (x+y) \cdot (e^{-x})'_{x}$$
$$= (1+0)e^{-x} + (x+y) \cdot e^{-x} \cdot (-1) = e^{-x} \cdot (1-x-y)$$

We take out the repeating factor e^{-x} .

$$\begin{split} z_x' &= (x+y)_x' \cdot e^{-x} + (x+y) \cdot (e^{-x})_x' \\ &= (1+0)e^{-x} + (x+y) \cdot e^{-x} \cdot (-1) = e^{-x} \cdot (1-x-y) \\ z_y' &= (x+y)_y' \cdot e^{-x} \end{split}$$

- \bullet We differentiate with respect to y. The function is a product of two factors $z = (x + y) \cdot e^{-x}$
- The green expression does not involve the variable and it is considered to be constant. Hence we have a constant multiple of the function (x + y) and work with the constant multiple rule.

$$z'_{x} = (x+y)'_{x} \cdot e^{-x} + (x+y) \cdot (e^{-x})'_{x}$$

$$= (1+0)e^{-x} + (x+y) \cdot e^{-x} \cdot (-1) = e^{-x} \cdot (1-x-y)$$

$$z'_{y} = (x+y)'_{y} \cdot e^{-x} = (0+1)e^{-x}$$

We use the sum rule, the variable x is considered to be a constant parameter.

$$z'_{x} = (x+y)'_{x} \cdot e^{-x} + (x+y) \cdot (e^{-x})'_{x}$$

$$= (1+0)e^{-x} + (x+y) \cdot e^{-x} \cdot (-1) = e^{-x} \cdot (1-x-y)$$

$$z'_{y} = (x+y)'_{y} \cdot e^{-x} = (0+1)e^{-x} = e^{-x}$$

$$\begin{aligned} z_x' &= (x+y)_x' \cdot e^{-x} + (x+y) \cdot (e^{-x})_x' \\ &= (1+0)e^{-x} + (x+y) \cdot e^{-x} \cdot (-1) = e^{-x} \cdot (1-x-y) \\ z_y' &= (x+y)_y' \cdot e^{-x} = (0+1)e^{-x} = e^{-x} \\ z_{xx}'' &= e^{-x} \cdot (-1) \cdot (1-x-y) + e^{-x}(0-1-0) \end{aligned}$$

- To find z''_{xx} we differentiate the first derivative z'_x with respect to x.
- The variable x is involved in both factors and we have to use the product rule.

$$z'_{x} = (x+y)'_{x} \cdot e^{-x} + (x+y) \cdot (e^{-x})'_{x}$$

$$= (1+0)e^{-x} + (x+y) \cdot e^{-x} \cdot (-1) = e^{-x} \cdot (1-x-y)$$

$$z'_{y} = (x+y)'_{y} \cdot e^{-x} = (0+1)e^{-x} = e^{-x}$$

$$z''_{xx} = e^{-x} \cdot (-1) \cdot (1-x-y) + e^{-x}(0-1-0)$$

$$= e^{-x}(-1+x+y-1)$$

We take out the common factor.

$$z'_{x} = (x+y)'_{x} \cdot e^{-x} + (x+y) \cdot (e^{-x})'_{x}$$

$$= (1+0)e^{-x} + (x+y) \cdot e^{-x} \cdot (-1) = e^{-x} \cdot (1-x-y)$$

$$z'_{y} = (x+y)'_{y} \cdot e^{-x} = (0+1)e^{-x} = e^{-x}$$

$$z''_{xx} = e^{-x} \cdot (-1) \cdot (1-x-y) + e^{-x}(0-1-0)$$

$$= e^{-x}(-1+x+y-1) = e^{-x}(x+y-2)$$

$$\begin{split} z_x' &= (x+y)_x' \cdot e^{-x} + (x+y) \cdot (e^{-x})_x' \\ &= (1+0)e^{-x} + (x+y) \cdot e^{-x} \cdot (-1) = e^{-x} \cdot (1-x-y) \\ z_y' &= (x+y)_y' \cdot e^{-x} = (0+1)e^{-x} = \frac{e^{-x}}{2} \\ z_{xx}'' &= e^{-x} \cdot (-1) \cdot (1-x-y) + e^{-x}(0-1-0) \\ &= e^{-x}(-1+x+y-1) = e^{-x}(x+y-2) \\ z_{xy}'' &= (e^{-x})_x' \end{split}$$

To find the mixed derivative we find either the derivative $(z_x')_y'$ or $(z_y')_x'$. The second possibility seems to be easier.

 $z'_{x} = (x+y)'_{x} \cdot e^{-x} + (x+y) \cdot (e^{-x})'_{x}$

$$= (1+0)e^{-x} + (x+y) \cdot e^{-x} \cdot (-1) = e^{-x} \cdot (1-x-y)$$

$$z'_y = (x+y)'_y \cdot e^{-x} = (0+1)e^{-x} = e^{-x}$$

$$z''_{xx} = e^{-x} \cdot (-1) \cdot (1-x-y) + e^{-x}(0-1-0)$$

$$= e^{-x}(-1+x+y-1) = e^{-x}(x+y-2)$$

$$z''_{xy} = (e^{-x})'_x = -e^{-x}$$

Since the function is a function of one variable, the partial derivative becomes to be the usual derivative. We use the chain rule as follows.

$$(e^{-x})' = e^{-x}(-x)' = e^{-x}(-1)$$

 $z'_{x} = (x+y)'_{x} \cdot e^{-x} + (x+y) \cdot (e^{-x})'_{x}$

$$= (1+0)e^{-x} + (x+y) \cdot e^{-x} \cdot (-1) = e^{-x} \cdot (1-x-y)$$

$$z'_{y} = (x+y)'_{y} \cdot e^{-x} = (0+1)e^{-x} = e^{-x}$$

$$z''_{xx} = e^{-x} \cdot (-1) \cdot (1-x-y) + e^{-x}(0-1-0)$$

$$= e^{-x}(-1+x+y-1) = e^{-x}(x+y-2)$$

$$z''_{xy} = (e^{-x})'_{x} = -e^{-x}$$

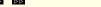
$$z''_{yy} = 0$$

To find the derivative z_{yy}'' we differentiate z_y' with respect to y. However, the variable y is missing in the expression for z_y' . Hence z_y' is constant and its derivative is zero.

$$\begin{aligned} z_x' &= (x+y)_x' \cdot e^{-x} + (x+y) \cdot (e^{-x})_x' \\ &= (1+0)e^{-x} + (x+y) \cdot e^{-x} \cdot (-1) = e^{-x} \cdot (1-x-y) \\ z_y' &= (x+y)_y' \cdot e^{-x} = (0+1)e^{-x} = e^{-x} \\ z_{xx}'' &= e^{-x} \cdot (-1) \cdot (1-x-y) + e^{-x}(0-1-0) \\ &= e^{-x}(-1+x+y-1) = e^{-x}(x+y-2) \\ z_{xy}'' &= (e^{-x})_x' = -e^{-x} \\ z_{yy}'' &= 0 \end{aligned}$$

$$z_x' = \frac{1}{y-1} \cdot (1+0)$$

- \bullet In order to differentiate the function with respect to x we write the function as the product of two factors: $\left| \frac{1}{y-1} \cdot (x+y^2) \right|$.
- The factor $\frac{1}{u-1}$ does not involve the variable x and it is a constant multiple. We use the constant multiple rule.
- It remains to differentiate the sum $(x+y^2)$ by the sum rule.



$$z'_{x} = \frac{1}{y-1} \cdot (1+0) = \frac{1}{y-1}$$

$$z_x' = \frac{1}{y - 1},$$

$$z'_{y} = \frac{(x+y^{2})'_{y}(y-1) - (x+y^{2})(y-1)'_{y}}{(y-1)^{2}}$$

To find z'_y we have to use the quotient rule, since the variable y is in both numerator and denominator. Hence we differentiate

$$\frac{x+y^2}{y-1}$$

$$z'_{x} = \frac{1}{y-1},$$

$$z'_{y} = \frac{(x+y^{2})'_{y}(y-1) - (x+y^{2})(y-1)'_{y}}{(y-1)^{2}}$$

$$= \frac{(0+2y)(y-1) - (x+y^{2})(1-0)}{(y-1)^{2}}$$

We evaluate the derivative of the numerator and denominator. To do this we use the sum rule, constant rule and power rule.

$$z'_x = \frac{1}{y-1}$$
,
$$z'_y = \frac{(x+y^2)'_y(y-1) - (x+y^2)(y-1)'_y}{(y-1)^2}$$

$$= \frac{(y-1)^2}{(y-1)-(x+y^2)(1-0)}$$

$$= \frac{2y^2 - 2y - (x+y^2)}{(y-1)^2}$$

We simplify.

$$z_x' = \frac{1}{y-1},$$

$$z'_{y} = \frac{(x+y^{2})'_{y}(y-1) - (x+y^{2})(y-1)'_{y}}{(y-1)^{2}}$$

$$= \frac{(0+2y)(y-1) - (x+y^{2})(1-0)}{(y-1)^{2}}$$

$$= \frac{2y^{2} - 2y - (x+y^{2})}{(y-1)^{2}}$$

$$= \frac{y^{2} - 2y - x}{(y-1)^{2}}$$

We simplify even more.

$$z'_x = \frac{1}{y-1}, \quad z'_y = \frac{y^2 - 2y - x}{(y-1)^2},$$

$$z'_{x} = \frac{1}{y-1}$$
, $z'_{y} = \frac{y^{2}-2y-x}{(y-1)^{2}}$, $z''_{xx} = 0$, $z''_{xx} = 0$

- To find z''_{xx} we differentiate z'_x with respect to x.
- Since z_x' does not involve the variable x, it is treated as a constant and the derivative is zero by the constant rule.

$$z'_{x} = \frac{1}{y-1}, \quad z'_{y} = \frac{y^{2} - 2y - x}{(y-1)^{2}}, \quad z''_{xx} = 0,$$
$$z''_{xx} = 0$$
$$z''_{xy} = -1 \cdot (y-1)^{-2} \cdot (1-0)$$

- To find z''_{xy} we differentiate z'_x with respect to y.
- Since the expression for z'_x does not involve the variable x, it is a one-variable function and the partial derivative is the usual derivative.

$$z'_{x} = \frac{1}{y-1}, \quad z'_{y} = \frac{y^{2} - 2y - x}{(y-1)^{2}}, \quad z''_{xx} = 0, \quad z''_{xy} = -\frac{1}{(y-1)^{2}}$$

$$z''_{xx} = 0$$

$$z''_{xy} = -1 \cdot (y-1)^{-2} \cdot (1-0) = -\frac{1}{(y-1)^{2}}$$

We simplify.

$$z'_{x} = \frac{1}{y-1}, \quad z'_{y} = \frac{y^{2} - 2y - x}{(y-1)^{2}}, \quad z''_{xx} = 0, \quad z''_{xy} = -\frac{1}{(y-1)^{2}}$$
$$z''_{yy} = \frac{(2y-2)(y-1)^{2} - (y^{2} - 2y - x) \cdot 2 \cdot (y-1) \cdot (1-0)}{(y-1)^{4}}$$

- To find z''_{yy} we differentiate $z'_y = \frac{y^2 2y x}{(y 1)^2}$ with respect to y. Since y is in both numerator and denominator, we use the quotient rule.
- The expression $(y-1)^2$ is differentiated by the chain rule.

$$z'_{x} = \frac{1}{y-1}, \quad z'_{y} = \frac{y^{2} - 2y - x}{(y-1)^{2}}, \quad z''_{xx} = 0, \quad z''_{xy} = -\frac{1}{(y-1)^{2}}$$

$$z''_{yy} = \frac{(2y-2)(y-1)^{2} - (y^{2} - 2y - x) \cdot 2 \cdot (y-1) \cdot (1-0)}{(y-1)^{4}}$$

$$= 2(y-1)\frac{(y-1)^{2} - (y^{2} - 2y - x)}{(y-1)^{4}}$$

We take out the common factor 2(y-1)

$$z'_{x} = \frac{1}{y-1}, \quad z'_{y} = \frac{y^{2} - 2y - x}{(y-1)^{2}}, \quad z''_{xx} = 0, \quad z''_{xy} = -\frac{1}{(y-1)^{2}}$$

$$z''_{yy} = \frac{(2y-2)(y-1)^{2} - (y^{2} - 2y - x) \cdot 2 \cdot (y-1) \cdot (1-0)}{(y-1)^{4}}$$

$$= 2(y-1)\frac{(y-1)^{2} - (y^{2} - 2y - x)}{(y-1)^{4}}$$

$$= 2\frac{x+1}{(y-1)^{3}}$$

We simplify the numerator by expanding the power of the sum and adding the corresponding terms.

$$z'_{x} = \frac{1}{y-1}, \quad z'_{y} = \frac{y^{2} - 2y - x}{(y-1)^{2}}, \quad z''_{xx} = 0, \quad z''_{xy} = -\frac{1}{(y-1)^{2}}$$

$$z''_{yy} = \frac{(2y-2)(y-1)^{2} - (y^{2} - 2y - x) \cdot 2 \cdot (y-1) \cdot (1-0)}{(y-1)^{4}}$$

$$= 2(y-1)\frac{(y-1)^{2} - (y^{2} - 2y - x)}{(y-1)^{4}}$$

$$= 2\frac{x+1}{(y-1)^{3}}$$

All derivatives up to the second order have been found.

$$z'_{x} = \frac{1}{1 + \frac{y^{2}}{2}} \cdot y \cdot (-1)x^{-2}$$

- We differentiate the $\arctan(\cdot)$ function by the rule $\left(\arctan f(x)\right)' = \frac{1}{1+f^2(x)} \cdot f'(x)$ (formula for arctangent and the chain rule).
- The expression $\frac{y}{x}$ is differentiated as the product or the constant factor and the power function, i.e. $\frac{y}{x} = y \cdot x^{-1}$.

$$z'_{x} = \frac{1}{1 + \frac{y^{2}}{2}} \cdot y \cdot (-1)x^{-2} = -\frac{x^{2}}{x^{2} + y^{2}} \cdot \frac{y}{x^{2}}$$

We simplify. Among others, we use

$$\frac{1}{1 + \frac{y^2}{x^2}} = \frac{x^2}{x^2 \left(1 + \frac{y^2}{x^2}\right)} = \frac{x^2}{x^2 + y^2}$$

and

$$x^{-2} = \frac{1}{x^2}.$$

$$z'_{x} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \cdot y \cdot (-1)x^{-2} = -\frac{x^{2}}{x^{2} + y^{2}} \cdot \frac{y}{x^{2}} = -\frac{y}{x^{2} + y^{2}}$$

We multiply the fractions. The term x^2 cancels.

$$z'_{x} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \cdot y \cdot (-1)x^{-2} = -\frac{x^{2}}{x^{2} + y^{2}} \cdot \frac{y}{x^{2}} = -\frac{y}{x^{2} + y^{2}}$$
$$z'_{y} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \cdot \frac{1}{x} \cdot 1$$

Formula
$$\arctan \left(\arctan \left(f(x)\right)\right)' = \frac{1}{1+f^2(x)}f'(x)$$
 is used and the expression $\frac{y}{x}$ is treated as a product or the constant factor and the power

 $\frac{y}{x}$ is treated as a product or the constant factor and function, i.e. $y = \frac{1}{x} \cdot y$.

$$z'_{x} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \cdot y \cdot (-1)x^{-2} = -\frac{x^{2}}{x^{2} + y^{2}} \cdot \frac{y}{x^{2}} = -\frac{y}{x^{2} + y^{2}}$$
$$z'_{y} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \cdot \frac{1}{x} \cdot 1 = \frac{x^{2}}{x^{2} + y^{2}} \cdot \frac{1}{x}$$

$$z'_{x} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \cdot y \cdot (-1)x^{-2} = -\frac{x^{2}}{x^{2} + y^{2}} \cdot \frac{y}{x^{2}} = -\frac{y}{x^{2} + y^{2}}$$
$$z'_{y} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \cdot \frac{1}{x} \cdot 1 = \frac{x^{2}}{x^{2} + y^{2}} \cdot \frac{1}{x} = \frac{x}{x^{2} + y^{2}}$$

$$z'_x = -\frac{y}{x^2 + y^2}$$
, $z'_y = \frac{x}{x^2 + y^2}$

The first derivatives are known.

$$z'_x = -\frac{y}{x^2 + y^2}$$
, $z'_y = \frac{x}{x^2 + y^2}$

 $z''_{mn} = -\mathbf{v} \cdot (-1) \cdot (x^2 + y^2)^{-2} \cdot (2x + 0)$

We differentiate
$$z_x' = -y \cdot (x^2 + y^2)^{-1}$$
 with respect to x . The factor $(-y)$ is a constant multiple and the constant multiple rule is followed by the chain rule for $(x^2 + y^2)^{-1}$.

$$z'_x = -\frac{y}{x^2 + y^2}$$
, $z'_y = \frac{x}{x^2 + y^2}$,

$$z_{xx}'' = -y \cdot (-1) \cdot (x^2 + y^2)^{-2} \cdot (2x + 0) = \frac{2xy}{(x^2 + y^2)^2}$$

$$z'_{x} = -\frac{y}{x^2 + y^2}, \quad z'_{y} = \frac{x}{x^2 + y^2},$$

$$z''_{xx} = -y \cdot (-1) \cdot (x^2 + y^2)^{-2} \cdot (2x + 0) = \frac{2xy}{(x^2 + y^2)^2}$$

$$z''_{xy} = -\frac{1 \cdot (x^2 + y^2) - y \cdot (0 + 2y)}{(x^2 + y^2)^2}$$

We differentiate
$$z_x' = -\frac{y}{x^2 + y^2}$$
 with respect to y by the quotient rule.

Find derivatives of $z(x,y) = \arctan \frac{y}{x}$ up to the 2nd order.

$$z'_x = -\frac{y}{x^2 + y^2}$$
, $z'_y = \frac{x}{x^2 + y^2}$,

$$z_{xx}'' = -y \cdot (-1) \cdot (x^2 + y^2)^{-2} \cdot (2x + 0) = \frac{2xy}{(x^2 + y^2)^2}$$
$$z_{xy}'' = -\frac{1 \cdot (x^2 + y^2) - y \cdot (0 + 2y)}{(x^2 + y^2)^2} = -\frac{x^2 - y^2}{(x^2 + y^2)^2}$$

We simplify the numerator.

$$z'_{x} = -\frac{y}{x^2 + y^2}, \quad z'_{y} = \frac{x}{x^2 + y^2},$$

$$z''_{xx} = -y \cdot (-1) \cdot (x^2 + y^2)^{-2} \cdot (2x + 0) = \frac{2xy}{(x^2 + y^2)^2}$$

$$z''_{xy} = -\frac{1 \cdot (x^2 + y^2) - y \cdot (0 + 2y)}{(x^2 + y^2)^2} = -\frac{x^2 - y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

We multiply the fraction by -1 which stays in the front of the fraction.

$$\begin{split} & z'_{x} = -\frac{y}{x^2 + y^2} \Big|, \quad z'_{y} = \frac{x}{x^2 + y^2} \Big|, \\ & z''_{xx} = -y \cdot (-1) \cdot (x^2 + y^2)^{-2} \cdot (2x + 0) = \frac{2xy}{(x^2 + y^2)^2} \\ & z''_{xy} = -\frac{1 \cdot (x^2 + y^2) - y \cdot (0 + 2y)}{(x^2 + y^2)^2} = -\frac{x^2 - y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} \\ & z''_{yy} = \mathbf{x} \cdot (-1) \cdot (x^2 + y^2)^{-2} \cdot (0 + 2y) \end{split}$$

We differentiate $z'_{y} = \mathbf{x} \cdot (x^2 + y^2)^{-1}$ with respect to y, treating x as a constant and $(x^2 + y^2)^{-1}$ as a power function with inside function $(x^2 + y^2).$

$$z'_{xx} = -\frac{y}{x^2 + y^2}, \quad z'_{y} = \frac{x}{x^2 + y^2},$$

$$z''_{xx} = -y \cdot (-1) \cdot (x^2 + y^2)^{-2} \cdot (2x + 0) = \frac{2xy}{(x^2 + y^2)^2}$$

$$z''_{xy} = -\frac{1 \cdot (x^2 + y^2) - y \cdot (0 + 2y)}{(x^2 + y^2)^2} = -\frac{x^2 - y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$z_{yy}'' = x \cdot (-1) \cdot (x^2 + y^2)^{-2} \cdot (0 + 2y) = -\frac{2xy}{(x^2 + y^2)^2}$$

We simplify.

$$z''_{xx} = -\frac{y}{x^2 + y^2}, \quad z'_{y} = \frac{x}{x^2 + y^2},$$

$$z''_{xx} = -y \cdot (-1) \cdot (x^2 + y^2)^{-2} \cdot (2x + 0) = \frac{2xy}{(x^2 + y^2)^2}$$

$$z''_{xy} = -\frac{1 \cdot (x^2 + y^2) - y \cdot (0 + 2y)}{(x^2 + y^2)^2} = -\frac{x^2 - y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$z''_{yy} = x \cdot (-1) \cdot (x^2 + y^2)^{-2} \cdot (0 + 2y) = -\frac{2xy}{(x^2 + y^2)^2}$$

All derivatives have been found.

$$z'_{x} = \frac{1}{2}(1 - x^{2} - y^{2})^{-1/2}(-2x)$$

We use the power rule with power
$$\frac{1}{2}$$
 and the chain rule

$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

$$z'_{x} = \frac{1}{2}(1 - x^{2} - y^{2})^{-1/2}(-2x) = -\frac{x}{\sqrt{1 - x^{2} - y^{2}}}$$

$$z'_{x} = \frac{1}{2}(1 - x^{2} - y^{2})^{-1/2}(-2x) = -\frac{x}{\sqrt{1 - x^{2} - y^{2}}}$$
$$z'_{x} = \frac{1}{2}(1 - x^{2} - y^{2})^{-1/2}(-2y)$$

We use the power rule with power $\frac{1}{2}$ and the chain rule

$$\left(f(g(x))\right)' = f'(g(x)) \cdot g'(x)$$

$$z'_{x} = \frac{1}{2}(1 - x^{2} - y^{2})^{-1/2}(-2x) = -\frac{x}{\sqrt{1 - x^{2} - y^{2}}}$$
$$z'_{x} = \frac{1}{2}(1 - x^{2} - y^{2})^{-1/2}(-2y) = -\frac{y}{\sqrt{1 - x^{2} - y^{2}}}$$

$$z_{xx}'' = -\frac{1 \cdot \sqrt{1 - x^2 - y^2}}{1 - x^2 - y^2} \frac{\sqrt{1 - x^2 - y^2}}{1 - x^2 - y^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$z_x' = -\frac{x}{\sqrt{1 - x^2 - y^2}}$$

$$z_y' = -\frac{y}{\sqrt{1 - x^2 - y^2}}$$

$$z''_{xx} = -\frac{1 \cdot \sqrt{1 - x^2 - y^2} - x \cdot \frac{1}{2} \cdot (1 - x^2 - y^2)^{-1/2} (-2x)}{1 - x^2 - y^2}$$
$$= -\frac{(1 - x^2 - y^2) + x^2}{(1 - x^2 - y^2)^{3/2}}$$

We multiply both numerator and denominator by the expression $\sqrt{1-x^2-y^2}$. This removes the composite fraction.

$$z'_{x} = -\frac{x}{\sqrt{1 - x^2 - y^2}}$$

$$z'_{y} = -\frac{y}{\sqrt{1 - x^2 - y^2}}$$

$$= -\frac{(1-x^2-y^2)+x^2}{(1-x^2-y^2)^{3/2}} = \frac{y^2-1}{(1-x^2-y^2)^{3/2}}$$

 $z_{xx}'' = -\frac{1 \cdot \sqrt{1 - x^2 - y^2} - x \cdot \frac{1}{2} \cdot (1 - x^2 - y^2)^{-1/2} (-2x)}{2 \cdot (1 - x^2 - y^2)^{-1/2} (-2x)}$ $1 - x^2 - y^2$

We simplify.

$$z''_{xx} = -\frac{1 \cdot \sqrt{1 - x^2 - y^2} - x \cdot \frac{1}{2} \cdot (1 - x^2 - y^2)^{-1/2} (-2x)}{1 - x^2 - y^2}$$

$$= -\frac{(1 - x^2 - y^2) + x^2}{(1 - x^2 - y^2)^{3/2}} = \frac{y^2 - 1}{(1 - x^2 - y^2)^{3/2}}$$

$$z''_{xy} = -x \left(-\frac{1}{2}\right) (1 - x^2 - y^2)^{-3/2} (-2y)$$

We write the derivative with respect to x in the form of $z'_x = -x \cdot (1 - x^2 - y^2)^{-1/2}$, treat x as a constant (we differentiate with respect to y) and use the constant multiple rule and the chain rule.

Find derivatives of $z(x,y) = \sqrt{1-x^2-y^2}$ up to the 2nd order.

$$z'_{x} = -\frac{x}{\sqrt{1 - x^2 - y^2}}$$

$$z'_{y} = -\frac{y}{\sqrt{1 - x^2 - y^2}}$$

$$z_{xx}'' = -\frac{1 \cdot \sqrt{1 - x^2 - y^2} - x \cdot \frac{1}{2} \cdot (1 - x^2 - y^2)^{-1/2}(-2x)}{1 - x^2 - y^2}$$

$$= -\frac{(1 - x^2 - y^2) + x^2}{(1 - x^2 - y^2)^{3/2}} = \frac{y^2 - 1}{(1 - x^2 - y^2)^{3/2}}$$

$$z_{xy}'' = -x\left(-\frac{1}{2}\right)(1 - x^2 - y^2)^{-3/2}(-2y) = -\frac{xy}{(1 - x^2 - y^2)^{3/2}}$$

We simplify.

Find derivatives of $z(x,y) = \sqrt{1-x^2-y^2}$ up to the 2nd order.

$$z_x' = -\frac{x}{\sqrt{1 - x^2 - y^2}}$$

$$z_y' = -\frac{y}{\sqrt{1 - x^2 - y^2}}$$

$$\begin{split} z_{xx}'' &= -\frac{1 \cdot \sqrt{1 - x^2 - y^2} - x \cdot \frac{1}{2} \cdot (1 - x^2 - y^2)^{-1/2} (-2x)}{1 - x^2 - y^2} \\ &= -\frac{(1 - x^2 - y^2) + x^2}{(1 - x^2 - y^2)^{3/2}} = \frac{y^2 - 1}{(1 - x^2 - y^2)^{3/2}} \\ z_{xy}'' &= -x \left(-\frac{1}{2}\right) (1 - x^2 - y^2)^{-3/2} (-2y) = -\frac{xy}{(1 - x^2 - y^2)^{3/2}} \\ z_{yy}'' &= \frac{x^2 - 1}{(1 - x^2 - y^2)^{3/2}} \end{split}$$

An evaluation of z''_{yy} is similar to z''_{xx} .

$$z'_{x} = 2x \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (2x)$$

$$(\mathbf{u} \cdot \mathbf{v})' = \mathbf{u}' \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{v}'$$

$$z'_{x} = 2x \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (2x) = 2xe^{x^{2} - y} (x^{2} + y + 1)$$

We simplify by taking out the factor
$$2xe^{x^2-y}$$
.

$$z'_{x} = 2x \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (2x) = 2xe^{x^{2} - y} (x^{2} + y + 1)$$
$$z'_{y} = \mathbf{1} \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (-1)$$

We use the product rule

$$(\mathbf{u} \cdot \mathbf{v})' = \mathbf{u}' \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{v}'$$

$$z'_{x} = 2x \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (2x) = 2xe^{x^{2} - y} (x^{2} + y + 1)$$
$$z'_{y} = 1 \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (-1) = e^{x^{2} - y} (1 - x^{2} - y^{2})$$

We simplify by taking out the factor e^{x^2-y} .

$$z'_{x} = 2x \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (2x) = 2xe^{x^{2} - y} (x^{2} + y + 1)$$
$$z'_{y} = 1 \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (-1) = e^{x^{2} - y} (1 - x^{2} - y^{2})$$

$$z''_{xx} = e^{x^2 - y}(2x) \cdot (2x^3 + 2xy + 2x) + e^{x^2 - y}(6x^2 + 2y + 2)$$

We write the derivative z_x' in the form

$$z_x' = e^{x^2 - y} \cdot \left(2x^3 + 2xy + 2x\right)$$

and use the product rule

$$(\mathbf{u} \cdot \mathbf{v})' = \mathbf{u}' \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{v}'$$

$$z'_{x} = 2x \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (2x) = 2xe^{x^{2} - y} (x^{2} + y + 1)$$
$$z'_{y} = 1 \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (-1) = e^{x^{2} - y} (1 - x^{2} - y^{2})$$

$$z_{xx}'' = e^{x^2 - y} (2x) \cdot (2x^3 + 2xy + 2x) + e^{x^2 - y} (6x^2 + 2y + 2)$$
$$= 2e^{x^2 - y} (2x^4 + 2x^2y + 2x^2 + 3x^2 + y + 1)$$

We factorize, the repeating factor is $2e^{x^2-y}$.

$$z'_{x} = 2x \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (2x) = 2xe^{x^{2} - y} (x^{2} + y + 1)$$
$$z'_{y} = 1 \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (-1) = e^{x^{2} - y} (1 - x^{2} - y^{2})$$

$$z''_{xx} = e^{x^2 - y}(2x) \cdot (2x^3 + 2xy + 2x) + e^{x^2 - y}(6x^2 + 2y + 2)$$
$$= 2e^{x^2 - y}(2x^4 + 2x^2y + 2x^2 + 3x^2 + y + 1)$$
$$= 2e^{x^2 - y}(2x^4 + 2x^2y + 5x^2 + y + 1)$$

We simplify in the parenthesis.

$$z'_{x} = 2x \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (2x) = 2xe^{x^{2} - y} (x^{2} + y + 1)$$
$$z'_{y} = 1 \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (-1) = e^{x^{2} - y} (1 - x^{2} - y^{2})$$

$$z_{xy}'' = e^{x^2 - 1}(2x) \cdot (1 - x^2 - y) + e^{x^2 - y} \cdot (-2x)$$

$$z_{y}^{\prime}=e^{x^{2}-y}(1-x^{2}-y^{2})$$

and differentiate with respect to x by the product rule

$$(\mathbf{u} \cdot \mathbf{v})' = \mathbf{u}' \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{v}'$$

$$z'_{x} = 2x \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (2x) = 2xe^{x^{2} - y} (x^{2} + y + 1)$$
$$z'_{y} = 1 \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (-1) = e^{x^{2} - y} (1 - x^{2} - y^{2})$$

 $z_{xy}^{"} = e^{x^2 - 1}(2x) \cdot (1 - x^2 - y) + e^{x^2 - y} \cdot (-2x)$

$$=2xe^{x^2-y}(1-x^2-y-1)$$

We factorize, the repeating factor is $2xe^{x^2-y}$.

$$z'_{x} = 2x \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (2x) = 2xe^{x^{2} - y} (x^{2} + y + 1)$$
$$z'_{y} = 1 \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (-1) = e^{x^{2} - y} (1 - x^{2} - y^{2})$$

$$z''_{xy} = e^{x^2 - 1}(2x) \cdot (1 - x^2 - y) + e^{x^2 - y} \cdot (-2x)$$
$$= 2xe^{x^2 - y}(1 - x^2 - y - 1)$$
$$= -2xe^{x^2 - y}(x^2 + y)$$

We simplify.

$$z'_{x} = 2x \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (2x) = 2xe^{x^{2} - y} (x^{2} + y + 1)$$
$$z'_{y} = 1 \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (-1) = e^{x^{2} - y} (1 - x^{2} - y^{2})$$

 $z_{yy}'' = e^{x^2 - y}(-1) \cdot (1 - x^2 - y) + e^{x^2 - y} \cdot (-1)$

 $z'_{y} = e^{x^2 - y}(1 - x^2 - y^2)$

To find
$$z_{yy}''$$
 we start with

and use the product rule

$$(\mathbf{u} \cdot \mathbf{v})' = \mathbf{u}' \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{v}'.$$

$$z'_{x} = 2x \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (2x) = 2xe^{x^{2} - y} (x^{2} + y + 1)$$
$$z'_{y} = 1 \cdot e^{x^{2} - y} + (x^{2} + y) \cdot e^{x^{2} - y} (-1) = e^{x^{2} - y} (1 - x^{2} - y^{2})$$

 $z''_{yyy} = e^{x^2 - y}(-1) \cdot (1 - x^2 - y) + e^{x^2 - y} \cdot (-1)$

$$= (-1)e^{x^2 - y}(2 - x^2 - y)$$

The repeating factor is $(-1)e^{x^2-y}$

$$z_x' = e^{x^2 + y^2} \cdot 2x$$

$$\left(f(g(x))\right)' = f'(g(x)) \cdot g'(x).$$

$$z'_{x} = e^{x^{2}+y^{2}} \cdot 2x$$
$$z'_{y} = e^{x^{2}+y^{2}} \cdot 2y$$

$$\left(f(g(x))\right)' = f'(g(x)) \cdot g'(x).$$

$$z'_{y} = e^{x^{2}+y^{2}} \cdot 2y$$
$$z''_{xx} = e^{x^{2}+y^{2}} 2x \cdot 2x + e^{x^{2}+y^{2}} \cdot 2$$

 $z_x' = e^{x^2 + y^2} \cdot 2x$

$$(\mathbf{u} \cdot \mathbf{v})' = \mathbf{u}' \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{v}'.$$

$$z'_{x} = e^{x^{2}+y^{2}} \cdot 2x$$

$$z'_{y} = e^{x^{2}+y^{2}} \cdot 2y$$

$$z''_{xx} = e^{x^{2}+y^{2}} 2x \cdot 2x + e^{x^{2}+y^{2}} \cdot 2 = 2e^{x^{2}+y^{2}} (1+2x^{2})$$

$$z'_{x} = e^{x^{2}+y^{2}} \cdot 2x$$

$$z'_{y} = e^{x^{2}+y^{2}} \cdot 2y$$

$$z''_{xx} = e^{x^{2}+y^{2}} 2x \cdot 2x + e^{x^{2}+y^{2}} \cdot 2 = 2e^{x^{2}+y^{2}} (1+2x^{2})$$

$$z''_{xy} = 2x \cdot e^{x^{2}+y^{2}} 2y$$

$$z'_{x} = e^{x^{2}+y^{2}} \cdot 2x$$

$$z'_{y} = e^{x^{2}+y^{2}} \cdot 2y$$

$$z''_{xx} = e^{x^{2}+y^{2}} 2x \cdot 2x + e^{x^{2}+y^{2}} \cdot 2 = 2e^{x^{2}+y^{2}} (1 + 2x^{2})$$

$$z''_{xy} = 2x \cdot e^{x^{2}+y^{2}} 2y = 4xye^{x^{2}+y^{2}}$$

 $z_x' = e^{x^2 + y^2} \cdot 2x$

$$z'_{y} = e^{x^{2}+y^{2}} \cdot 2y$$

$$z''_{xx} = e^{x^{2}+y^{2}} 2x \cdot 2x + e^{x^{2}+y^{2}} \cdot 2 = 2e^{x^{2}+y^{2}} (1 + 2x^{2})$$

$$z''_{xy} = 2x \cdot e^{x^{2}+y^{2}} 2y = 4xye^{x^{2}+y^{2}}$$

$$z''_{yy} = e^{x^{2}+y^{2}} 2y \cdot 2y + e^{x^{2}+y^{2}} \cdot 2$$

The product rule

$$(\mathbf{u} \cdot \mathbf{v})' = \mathbf{u}' \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{v}'.$$

$$z'_{x} = e^{x^{2}+y^{2}} \cdot 2x$$

$$z'_{y} = e^{x^{2}+y^{2}} \cdot 2y$$

$$z''_{xx} = e^{x^{2}+y^{2}} 2x \cdot 2x + e^{x^{2}+y^{2}} \cdot 2 = 2e^{x^{2}+y^{2}} (1+2x^{2})$$

$$z''_{xy} = 2x \cdot e^{x^{2}+y^{2}} 2y = 4xye^{x^{2}+y^{2}}$$

$$z''_{yy} = e^{x^{2}+y^{2}} 2y \cdot 2y + e^{x^{2}+y^{2}} \cdot 2 = 2e^{x^{2}+y^{2}} (1+2y^{2})$$

That's all ...