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1 Algebraic linear space
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(" Definition (algebraic linear space). The set R™ of ordered n-tuples of)
real numbers (a1,as,...,a,) with the operations addition of vectors and
multiplication of a vector by a real number defined for every ¢ € R and
(a1,a2,...,a,),(b1,ba,...,b,) € R" by the relations

(al,CLQ,...,CLn)—l—(bl,bQ,...,bn):(a1+b1,a2—|—b2,...,an+bn)

c-(ar,a2,...,a,) =(c-ay,c-az,...,c-ap) (2)

is called an algebraic linear space, or an algebraic vector space, shortly a
vector space.

Definition (vectors). Consider the vector space R"™.

Elements of this space are called (algebraic) vectors. The fact that a variable
is a vector will be denoted by an arrow symbol over this variable: a.

The numbers aq, .. ., a, are called components of the vector (ay,as, ..., a,).

The number n is called a dimension of the space R". A vector from R" is
called an n-vector.
(<] Algebraic linear space (©Robert Matik, 2006




Remark 1 (column vector). The components of the vector can be also rearranged
into columns. In such a case we speak about a column vector, e.g.,

is a 3-dimensional column vector (or shortly, a column 3-vector).
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Remark 1 (column vector). The components of the vector can be also rearranged
into columns. In such a case we speak about a column vector, e.g.,

is a 3-dimensional column vector (or shortly, a column 3-vector).

Remark 2. The operations onvectors are defined as operations on the corre-
sponding components. From this reason these operations preserve their basic
properties known from the algebra of real numbers. Among others, the addi-
tion of vectors is associative, commutative and distributive with respect to the
multiplication by a real number.

< Algebraic linear space (©Robert Matik, 2006 [E§



Remark 1 (column vector). The components of the vector can be also rearranged
into columns. In such a case we speak about a column vector, e.g.,

is a 3-dimensional column vector (or shortly, a column 3-vector).

Remark 2. The operations onvectors are defined as operations on the corre-
sponding components. From this reason these operations preserve their basic
properties known from the algebra of real numbers. Among others, the addi-
tion of vectors is associative, commutative and distributive with respect to the
multiplication by a real number.

Remark 3 (zero vector). The vector 0 := (0,0,...,0) is called a zero vector.
From the definition of vector operations it follows that t6 = 0, 0+ « = @ and
0t = o for an arbitrary vector @ and an arbitrary real number ¢.
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Vector algebra. ‘

a=(1,2,1), b=(3,0,—1), ¢=(2,1,0), a=1(0,0,0)

i+2-b—¢
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Vector algebra. ‘

a=(1,2,1), b=(3,0,—1), ¢=(2,1,0), a=1(0,0,0)

(1,2,1)+2-(3,0,—1) — (2,1,0)
(1,2,1) + (6,0, —2) — (2,1,0)

i+2-b—¢




Vector algebra. ‘

a=(1,2,1), b=(3,0,—1), ¢=(2,1,0), a=1(0,0,0)

a+2-b—c¢=(1,2,1)+2-(3,0,-1) —(2,1,0)
= (17251)+(6505_2)_(27170)
=(14+6-22+0-1,1-2-0)
a+a




Vector algebra. ‘
a

a = (1727 1)1 g: (3707_1)' c= (2’ 1’0)' 0= (0’070)

i+2-b—c=(1,2,1)+2-(3,0,—1) — (2,1,0)
= (1,2,1) +(6,0,-2) - (2,1,0)
—(1+6-22+0-1,1-2-0)

= (5,1,-1)
a+o




Vector algebra. ‘

a=(1,2,1), b=(3,0,—1), ¢=(2,1,0), a=1(0,0,0)

d+o6=(1,2,1)+(0,0,0) = (1,2,1) =a




Vector algebra. ‘

a=(1,2,1), b=(3,0,—1), ¢=(2,1,0), d=(0,0,0)
a+0o=(1,2,1)+(0,0,0)=(1,2,1)=a

0-@+0-b40-2=(0,0,0)

ST
_|_
>
|
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The trivial linear combination gives zero vector. '




Vector algebra. ‘

a=(1,2,1), b=(3,0,—1), ¢=(2,1,0), d=(0,0,0)
a+0o=(1,2,1)+(0,0,0)=(1,2,1)=a

0-@+0-b40-2=(0,0,0)

d+b—2-¢=(1,2,1)+(3,0,—1) — (4,2,0)
= (0,0,0)

Sometimes it is possible to get the zero vector as nontrivial linear
combination. In this case we say that vectors @, b and ¢ are linear dependent.




(" Definition (linear combination). Let w7y, s, ..., U be a finite sequence of |
vectors from R™. The vector 4 which satisfies

U = LUy + totia + - - + tr U, (3)
for some real numbers ¢, t2, ..., t; is said to be a linear combination of|
vectors iy, s, ..., Ur. The numbersty, to, ..., t; are said to be coefficients

of this linear combination.
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Definition (linear combination). Let @1, da, ..., @ be a finite sequence of |
vectors from R™. The vector 4 which satisfies

U = L1ty + totly + - - - + Ly, (3)
for some real numbers ¢, t2, ..., t; is said to be a linear combination of|
vectors iy, s, ..., Ur. The numbersty, to, ..., t; are said to be coefficients

of this linear combination.

Remark 4 (trivial linear combination). If all coefficients in a linear combination
equal zero (trivial linear combination), the right-hand side of (3) gives the zero
vector. Hence the zero vector can be always written as a linear combination of
given vectors.
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Definition (linear combination). Let @1, da, ..., @ be a finite sequence of |
vectors from R™. The vector 4 which satisfies

U = LUy + totia + - - + tr U, (3)
for some real numbers ¢, t2, ..., t; is said to be a linear combination of|
vectors iy, s, ..., Ur. The numbersty, to, ..., t; are said to be coefficients

of this linear combination.

Remark 4 (trivial linear combination). If all coefficients in a linear combination
equal zero (trivial linear combination), the right-hand side of (3) gives the zero
vector. Hence the zero vector can be always written as a linear combination of
given vectors. Now we state an important question:

Is the trivial linear combination the unique linear combination with
this property? This means: Given a set U of vectors, is there a possi-
bility how to obtain the zero vector as a nontrivial linear combination
of vectors from U ?

The answer is: For some vectors yes and for some no. It turns out to be important
to distinguish these cases. This is a motivation for the following definition.

[<] Algebraic linear space (©Robert Matik, 2006 [E§



(" Definition (linear (in-)dependence of vectors).  Vectors iy, iz, ..., ik}
are said to be linearly dependent iff there exists at least one nontrivial linear
combination of all these vectors which yields the zero vector. More precisely,
the vectors are linearly dependent if there exist real numbers t1, to, ..., 1
such that at least one of these numbers is nonzero and

0=ty + totla + - - - + trUs (4)

holds. The vectors are said to be /inearly independent if they are not linearly
dependent.

[<] Algebraic linear space (©Robert Matik, 2006 [E§



2 Matrix

(" Definition (matrix). A rectangular array

a11 ai2 aiz - A1n

a21 ag2 A23 - a2n
A =

aml a/m2 P PR a/mn

where a;; € R for i = 1..m and j = 1..n is called an m x n matrix or shortly
a matrix.

The set of all m x n matrices will be denoted by R™*™. Shortly we write
A= (aij)i=1"j=1 or A= (aij).

An m x n matrix is called a square matrix if m = n and a rectangular matrix
otherwise.

The elements a;; are called elements of the main diagonal.
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[ Definition (transposed matrix). Let A = (a;;) € R™*™ be an m X n matrix.
The n x m matrix AT which is obtained from the matrix A by interchanging
the rows and the columns is called a transpose matrix to the matrix A, i.e.,

AT € R™™ and

AT = (ay),

where a;; are the elements of the matrix A.

[<] Matrix (©Robert Matik, 2006 [E§



Definition (basic matrix operations). Let A = (ai;), B = (bi;) be m x n}
matrices. Under a sum of the matrices A and B we understand the m x n
matrix C' = (c¢;;) with entries ¢;; = a;;+b;; for all 4, j. We write C = A+B.

Let A = (a;;) be an m x n matrix and ¢ € R be a real number. Under a
product of the number t and the matrix A we understand the m X n matrix
D = (d;;) with entries d;; = t.a;; for all ¢, j. We write D = tA.

2 -1 2 1 -2 1 3 =3 3

3 1 =2]1+10 1 3|=(3 2 1

2 0 1 2 4 1 4 4 2
2 -1 2 6 -3 6
3|3 1 -2)=19 3 -6
2 0 1 6 0 3
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(" Definition (matrix multiplication). Let A = (a;;) be an m x n matrix and
B = (bi;) be an n x p matrix. Under the product of the matrices A and B
(in this order!) we understand the m x p matrix G = (g;;) defined

Gij = aibij + aizbaj + - + ainbn;

for every i = 1..m, 7 = 1..p. In other words, a scalar product of the vector
from the i-th row of the matrix A and the j-th column of the matrix B is at
the position ij in the matrix G is. We write G = AB (in this order!).
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Scalar product in R?

From the high school you know that the scalar product of two vectors
U = (u1,us,us) and ¥ = (v1, va, v3) is the number

3
U-T=1ui 01+ U V3 +us- vy = E W04
i=1

From the definition of the matrix multiplication it follws that
vy
(u1 g U3) |2 ] = (ur - v1 +ug v +ug - v3)

V3

is simply another notation for the same operation.
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Multiply matrices '

2 -1 2 2 4
3 1 =2 -1 2
2 0 1 3 1
2 4 2 -1 2
-1 2 3 1 =2
3 1 2 0 1




Multiply matrices '

2 -1 2 2 4
3 1 =2 -1 2
2 0 1 3 1

2:24(—=1)-(-1)+2-3 2-4—1-242-1
= 3.241-(-1)-2-3 3.4+1.2-2.1
2.240-(-1)+1-3 2-440-2+1-1

2 4 2 -1 2
-1 2 3 1 =2
3 1 2 0 1

The element ¢;; of the matrix product C' si scalar product of the i-th row of
the matrix A and j-th column of the matix B. As a summary, the matrix
product AB consists of six scalar product.

EH d O B

Matrix

(©Robert Matik, 2006



Multiply matrices .

2 -1 2 2 4
31 -2 -1 2
2 0 1 31
2.24(-1)-(-1)+2-3 2-4—-1-2+2-1 11 8
=| 3.241-(-1)—2-3  3-441.2-2-1 | =|—-1 12
2.240-(-1)+1-3 2-440-2+1-1 79
2 4\ (2 -1 2
-1 2|3 1 -2
3 1 2 0 1

Matrix ©Robert Mafik, 2006
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Multiply matrices .

2 -1 2 2 4
3 1 =2 -1 2
2 0 1 3 1
2-2+(-1)-(-1)+2-3 2-4—-1-2+2-1 11 8
= 3-2+1-(-1)—2-3 3:44+1-2-2-1 ] =1(-1 12
2:240-(-1)+1-3 2:440-24+1-1 7 9
2 4 2 -1 2
-1 2 3 1 —2] = undefined
3 1 2 0 1

Matrix ©Robert Mafik, 2006
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Matrix product and linear combinations. '

1 20 1 1 1 -3
-1 1 1]-({0 -2]) =10 -1
2 1 3 1 2 5 6
1 2 0 -3
-1|-2|1]+2[1])=|-1
2 1 3 6
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Matrix product and linear combinations. '

1 20 1 1 1 -3
-1 1 1]-({0 =2]) =10 -1
2 1 3 1 2 5 6
1 2 0 -3
1{-1])-2|1]1+2|1]=]-1
2 1 3 6
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Theorem 1 (properties of the matrix multiplication). The matrix multiplication
is associative and distributive from both left and right, i.e., the following relations
hold whenever they have sense.

A(BC) = (AB)C (the associative law)
A(B+C)=AB+ AC (the left distributive law)
(B+C)A=BA+CA (the right distributive law)
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Theorem 1 (properties of the matrix multiplication). The matrix multiplication
is associative and distributive from both left and right, i.e., the following relations
hold whenever they have sense.

A(BC) = (AB)C (the associative law)
A(B+C)=AB+ AC (the left distributive law)
(B+C)A=BA+CA (the right distributive law)

Definition (identity matrix). Under an n x n identity matrix we understand
the n X n matrix with the numbers 1 in the main diagonal and the numbers
0 outside this diagonal. The n X n identity matrix is denoted by I,.

Example 1. The 3 x 3 identity matrix is the matrix

100
I3=10 1 0
0 01
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Theorem 1 (properties of the matrix multiplication). The matrix multiplication
is associative and distributive from both left and right, i.e., the following relations
hold whenever they have sense.

A(BC) = (AB)C (the associative law)
A(B+C)=AB+ AC (the left distributive law)
(B+C)A=BA+CA (the right distributive law)

Definition (identity matrix). Under an n x n identity matrix we understand
the n X n matrix with the numbers 1 in the main diagonal and the numbers
0 outside this diagonal. The n X n identity matrix is denoted by I,.

Example 1. The 3 x 3 identity matrix is the matrix

1 00
Is=10 1 0
0 0 1
Theorem 2 (properties of identity matrix). Let A be a matrix and I the identity

matrix. Then TA = A and Al = A whenever this product is defined.
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3 Rank

Definition (rank of a matrix). Let A be a matrix. Under the rank of the
matrix A we understand the maximal number of the linearly independent rows
of the matrix A. The rank of the matrix A will be denoted by rank (A).

[<] Rank (©Robert Matik, 2006 [E§



3 Rank

Definition (rank of a matrix). Let A be a matrix. Under the rank of the
matrix A we understand the maximal number of the linearly independent rows
of the matrix A. The rank of the matrix A will be denoted by rank (A).

(" Definition (pivot, row echelon form). Let A be an m x n matrix. The first}
nonzero element of each row of the matrix A is said to be a pivot of this row.
The matrix A is said to be in the row echelon form if

e all zero rows (if exists any) are at the bottom of the matrix,

e if two successive rows are non-zero, then the second row starts with
more zeros than the first one, i.e. the pivot of each row appears after
the pivot of the preceding row.

[<] Rank (©Robert Matik, 2006 [E§



Theorem 3 (rank of a matrix in the row echelon form). The rank of a matrix in
the row echelon form equals to the number of the nonzero rows of this matrix.
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Theorem 3 (rank of a matrix in the row echelon form). The rank of a matrix in
the row echelon form equals to the number of the nonzero rows of this matrix.

2 2 2 3 -1 5
. 001 0 0 3|..
Example 2. The matrix A = 000 —1 2 1| the row echelon
000 0 0 O

form and rank (4) = 3.
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Theorem 3 (rank of a matrix in the row echelon form). The rank of a matrix in
the row echelon form equals to the number of the nonzero rows of this matrix.

2 2 2 3 -15
Example 2. The matrix A = 8 8 (1) _01 (2) 515 is in the row echelon
000 0 0 O
22 2 3 -1 5
form and rank (A) = 3. Thematrix B= |0 0 1 0 0 3] isnotin
003 -1 2 1

the row echelon form.
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Theorem 3 (rank of a matrix in the row echelon form). The rank of a matrix in
the row echelon form equals to the number of the nonzero rows of this matrix.

2 2 2 3 -15
Example 2. The matrix A = 8 8 (1) _01 (2) 515 is in the row echelon
000 0 0 O
22 2 3 -1 5
form and rank (A) = 3. Thematrix B= |0 0 1 0 0 3] isnotin
003 -1 2 1

the row echelon form.

Remark 5 (linear (in—)dependence of vectors). Let A be an m x n matrix. The
rows of the matrix A are linearly independent n-vectors if and only if
rank (A) = m. Knowing the rank of the matrix, we can resolve the problem
concerning a linear dependence or independence of the rows of the matrix.
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Theorem 4 (row operations preserving the rank). The following row operations
preserve the rank of matrices.

1. Omitting a row which satisfies one of the following condition:

e it contains only zeros, or
e it equals to another row, or

e it equals to a constant multiple of another row.
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Theorem 4 (row operations preserving the rank). The following row operations
preserve the rank of matrices.

1. Omitting a row which satisfies one of the following condition:

e it contains only zeros, or
e it equals to another row, or

e it equals to a constant multiple of another row.

2. Multiplying any row by a nonzero real number.

<] Rank (©Robert Matik, 2006 [E§



Theorem 4 (row operations preserving the rank). The following row operations
preserve the rank of matrices.

1. Omitting a row which satisfies one of the following condition:

e it contains only zeros, or
e it equals to another row, or

e it equals to a constant multiple of another row.

2. Multiplying any row by a nonzero real number.

3. Interchanging the order of the rows in an arbitrary way.
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Theorem 4 (row operations preserving the rank). The following row operations
preserve the rank of matrices.

1. Omitting a row which satisfies one of the following condition:
e it contains only zeros, or
e it equals to another row, or
e it equals to a constant multiple of another row.

2. Multiplying any row by a nonzero real number.

3. Interchanging the order of the rows in an arbitrary way.

4. Keeping one row without any change and adding arbitrary multiples of this
row to arbitrary nonzero multiples of another rows.

<] Rank (©Robert Matik, 2006 [E§



Theorem 4 (row operations preserving the rank). The following row operations
preserve the rank of matrices.

1. Omitting a row which satisfies one of the following condition:
e it contains only zeros, or
e it equals to another row, or
e it equals to a constant multiple of another row.

2. Multiplying any row by a nonzero real number.

3. Interchanging the order of the rows in an arbitrary way.

4. Keeping one row without any change and adding arbitrary multiples of this
row to arbitrary nonzero multiples of another rows.

Theorem 5. Any matrix can be after application of a finite number of row
operations from Theorem 4 transformed into its row echelon form.
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Theorem 4 (row operations preserving the rank). The following row operations
preserve the rank of matrices.

1. Omitting a row which satisfies one of the following condition:
e it contains only zeros, or

e it equals to another row, or
e it equals to a constant multiple of another row.

2. Multiplying any row by a nonzero real number.

3. Interchanging the order of the rows in an arbitrary way.

4. Keeping one row without any change and adding arbitrary multiples of this
row to arbitrary nonzero multiples of another rows.

Theorem 5. Any matrix can be after application of a finite number of row
operations from Theorem 4 transformed into its row echelon form.

Arrangement: The process of conversion a matrix by row operations
preserving rank into its row-echelon form will be referred as row-reduction.
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Find rank of the matrix A. '

3 -1 0 1 -2
2 1 -1 2 -3
3 -2 -1 1 -2
2 -5 1 -2 2

A:
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Find rank of the matrix A. '

3 —1 0 1 -2 2 1 -1 2 -3
1 -1 2 -3
=2 =l 1 -2
) 1 -2 2

A:

DN O N

e We choose the red row to be the pivot row.

e This row remains and comes as first.

(©Robert Matik, 2006



Find rank of the matrix A. '

3 -1 0 1—2\2 2 1 -1 2 -3
a2 -1 2 30 5 3 -4 5

3 -2 -1 1 -2

2 -5 1 =2 2)




Find rank of the matrix A. '

SO 2 1 -1 2 -3
21 -1 2 3y ewl0 -5 3 4 5
3 -2 -1 1 -2
2 5 1 -2 2/

A:

o~
2

0 -7 1 -4 5




Find rank of the matrix A. '

3 -1 0 1 -2\ B 1 =il 2 =5
a2z v -1t o2 3y enfo 5 3 -4 5
13 -2 -1 1—2) 0 -7 1 —4 5
2 -5 1 -2 2) 0 -6 2 —4 5




Find rank of the matrix A. '

3 -1 0 1 -2 2 1 -1 2 -3

a2 11 23] 0o -5 38 -4 5|
3 -2 -1 1 =2 0 -7 1 -4 5
2 -5 1 -2 2 0 -6 2 —4 5

2 1 -1 2 -3

The first row remains. '




Find rank of the matrix A. '

3 —1 0 1 -2 2 1 -1 2 -3

A 2 1 -1 2 -3 N 0 =5 3 —4 ) N
3 -2 -1 1 -2 0 -7 1 -4 b)
2 -5 1 -2 2 0 —6 2 -4 5

[\]

1 -1 2 -3
-5 3 —4 5

o

e The next pivot row will be one of the red rows.

e However, it would be difficult to pivot directly on one of these rows and

produce zeros at azs and ays.

(©Robert Matik, 2006 |53



Find rank of the matrix A. '

§ -1 0 1 -2 9 1 -1 2 -3
a2 12 3 10 s s sy
3 -2 -1 1 -2 0 -7 1 -4 5%
9 -5 1 -2 2 0 -6 2 —4 5
2 1 -1 2 -3
0 -5 3 -4 5
0 2 2 0 0

e We choose the red row as a pivot row. This row remains.

e As the first step, we will decrease the numbers in the remaining rows.

Particularly, we perform Ry — R3 = ...

Rank (©Robert Maik, 2006 [E4



Find rank of the matrix A. '

A:

O O O N

|
[ IS

3
2

N o

-1
1
=2
)
-1
3
2
1

0
=l
=l

1

2
—4

0

0

1 -2 2 1
2 -3 0 -5
1 2 |7 1o -7
-5 9 0 -6
-3
5
0

0

-1
3
1
2

2
—4
—4
—4

-3

t

ot

(=1




Find rank of the matrix A. '

3 -1 0 1 -2 2 1 -1 2 -3
a2 11 23] 0o -5 3 -4 5|
3 -2 -1 1 =2 0 -7 1 -4 5
2 -5 1 -2 2 0 -6 2 —4 5
2 1 -1 2 -3
0 -5 3 -4 5
0 2 2 0 0
0o 1 1 0 0

The row R3 is a multiple of row R4 and one of these rows can be deleted. '




Find rank of the matrix A. '

3 -1 0 1 -2 2 1 -1 2 -3
4-12 1 -1 2 =31 105 3 -4 5]
3 -2 -1 1 =2 0 -7 1 -4 5
2 -5 1 -2 2 0 -6 2 —4 5
g_é _:15 _i _g 2 1 -1 2 -3
~l 01 1 0 o0

0 1 1 0 0

e The first row remains.

e The last row will be the next pivot row and comes as the second.

(<] Rank ©Robert Mafik, 2006 B8



Find rank of the matrix A. '

3 -1 0 1 -2 2 1 -1 2 -3
a-]2 1 -1 2 -3 0 -5 3 —4 5
13 -2 -1 1 -2 0 -7 1 -4 5
2 -5 1 -2 2 0 -6 2 —4 5
AR R AN R
)~01100
0O 1 1 0 07/s 00 —£ 9

We pivot on the red row. 5R3 + Ry = ... '

[ <] Rank (©Robert Matik, 2006



Find rank of the matrix A. '

3 -1 0 1 -2

2 1 -1 2 -3
a2 1 -1 2 -3 0 -5 3 —4 5
13 -2 -1 1 -2 0 -7 1 -4 5
2 -5 1 -2 2 0 -6 2 -4 5
g_é_é_i_g 2 1 -1 2 -3
~l 01 1 0 o0
0O 1 1 0 0 0o B = 8

e The matrix is in the row echelon form.

o The row echelon form has three rows, hence rank (A) = 3.

a Rank (©Robert Mafik, 2006 |54



Find rank of the matrix B. "

1 2 -5 1 -2
3 1 —4 6 -2
-1 2 -1 1 6
0 1 3 —4 1

B =

[<] Rank (©Robert Matik, 2006 [E§



Find rank of the matrix B. "

1 2 -5 1 -2 1 2 =5 1 -2
3 1 —4 6 -2

-1 2 -1 1 6
0 1 3 —4 1

B =

e The row R; will be the pivot row.

e This row remains and comes as the first.

e We pivot on ay; = 1.

<] Rank ©Robert Mafik, 2006 B



Find rank of the matrix B. m

1 2 -5 1 72)73 1 2 -5 1 -2

3 1 —4 6 -2 0 -5 11 3 4
-1 2 -1 1 6

0 1 3 —4 1

B =

~

We clean the element as;. We use the operation —3R; + Rs. '




Find rank of the matrix B. m

1 2 -5 1 -2

3 1 —4 6 —2)
-1 2 -1 1 6

0 1 3 —4 1

2 -5 1 -2
-5 11 3 4
4 —6 2 4

B =

o O =

We clean the element a3;. We use the operation Ry + R3. '




Find rank of the matrix B. m

1 2 -5 1 -2 1 2 -5 1 -2

B— 3 1 —4 6 -2 N 0 -5 11 3 4
-1 2 -1 1 6 0 4 —6 2 4

0 1 3 —4 1 0 1 3 —4 1

The element a41 is zero and hence the last row remains. .




Fmd rank of the matrix B. ‘

1 2 1 -2 1 2 -5 1 -2
31—46—2 0 -5 11 3 4
2 1 61710 4 -6 2 4
3—41 0 1 3 -4 1
12—5 1 -2
0 1 4 1

e The first row remains.

e The new pivot row will be the last row (red), since the number a42 = 1

is more convenient for pivoting than the numbers as; = —5 and as3 = 4.
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Fmd rank of the matrix B. "

1 2 -5 1 -2
31 -4 6 -2
B=1 192 1 1 6|~
1
0
0

1 2 -5 1 -2

0 -5 11 3 4

0 4 —6 2 4)
0 1 3 —4 1 0 1 3 —4 17)5

We clean ag3. We use 5R4 + Rs. '




Find rank of the matrix B. "

1 2 -5 1 -2
31 -4 6 -2
B=1 192 1 1 6|~
1
0
0
0

1 2 -5 1 -2
0 -5 11 3 4
0 4 —6 2 4
0 1 3 —4 1 0 1 3 —4 17)-4

2 =5 1 -2
1 3 -4 1
0 26 —17 9
0 -18 18 0

We clean a3y. We use —4R4 + Rs. '
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Find rank of the matrix B. "

12 -5 1 —2 1 2 -5 1 -2

| 31 -4 6 2| (0 -5 11 3

12 -1 1 6 0 4 —6 2

0 4
1 1
0 0
0 0
0 0

0 1 3 -4 1

2

1 3 -4
0 26 —17
0 —18 18

O O =N




Fmd rank of the matrix B. ‘

1 2 1 -2 1 2 -5 1 -2
31—4 6 —2 0 -5 11 3
2 1 6710 4 -6 2
3—41 0 1 3 -4
12—5 J) 1
0 1 3 —4 1 0
“loo 2 -17 9]7|o
0 0 —18 18 0 0 11
1 2 -5 1 -2
01 3 -4 1
“loo 1 -1 o0

e The first two row remain.

e The number a3y = —1 is more convenient for pivoting than the number
a3z = 26. From this reason we use R4 as the new pivot row.
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Find rank of the matrix B.

26 —17

—18

0

0

0 0

1 2

o O

o O

It remains to clean as3. We use 26 R4 + Rs.




Find rank of the matrix B. "
1 2 -5 1 -2 1 2 -5 1 -2
3 1 —4 6 —2 0 =5 11 3
-1 2 -1 1 6|70 2
0 4
1
0
0
0

1 2 -5 J)

0 1 3 -4 1
“loo 26 -17 9|~

0 0 —18 18 0 -1 1

1 2 -5 1 -2

01 3 -4 1
“loo 1 -1 o0

00 0 9 9

B) =




4 Inverse Matrix
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Definition (invertible matrix, inverse matrix). Let A be an m X n square
matrix. If there exists an n x n matrix A~" which satisfies the relations

ATTA=T=A47", (5)

then the matrix A is said to be invertible. The matrix A~! is said to be the
inverse matrix to A.
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[ Definition (invertible matrix, inverse matrix). Let A be an n x n square )
matrix. If there exists an n x n matrix A~" which satisfies the relations

ATTA=T=A47", (5)

then the matrix A is said to be invertible. The matrix A~! is said to be the
inverse matrix to A.

(" Definition (reduced row echelon form). An m x n matrix A is said to be in}
the reduced row echelon form if

e A is in the row echelon form,

e pivots in all rows equal 1,

e each of the pivots is the only nonzero number in its column.
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Calculation of the inverse matrix. Given a square n X n matrix A, the
inverse matrix A~ can be calculated in the following steps.

1. We write the matrix A and the n x n identity matrix I,, together.

2. We convert the matrix A into its reduced row-echelon form by row opera-
tions from Theorem 4.

3. We distinguish two mutually different cases.

o If the reduced row echelon form of the matrix A is not the n x n
identity matrix, then A is not invertible.

e If the reduced row echelon form is the n X n identity matrix, then the
application of all of the steps which convert A into its reduced row
echelon form onto the identity matrix yields the inverse A~

4. Remark that we cannot use any of the column operations.
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Given a matrix A, find the inverse matrix A~*. '

6 -4 17
A=1-1 1 3
2 -1 -6
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Given a matrix A, find the inverse matrix A~*. '

6 -4 17
A=1-1 1 3
2 -1 -6
6 -4 —-17(1 0 O
=1l 1 310 1 0
2 -1 —-6|0 0 1

We write the matrix A and the 3 x 3 identity matrix. '
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Given a matrix A, find the inverse matrix A~*. '

6 -4 17
A=1-1 1 3
2 -1 -6
6 -4 —-17(1 0 O -1 1 3]0 1 0
=il 1 310 1 0 |~
2 -1 —-6|{0 0 1

We choose the second row as a pivot row. The reason is that the number
—1 is more convenient for pivoting than the numbers 6 or 2.

The pivot row comes as the first.

Inverse Matrix (©Robert Mafik, 2006 |



Given a matrix A, find the inverse matrix A~*. '

6 -4 17

A=1-1 1 3

2 -1 -6
6—4—17100\ -1 1 3|0 1 0
-1 1 310 1 07 6~ 0 2 1|1 6 O

2 -1 6|0 0 1)

We adjust the element a1; = 6 to zero. '




Given a matrix A, find the inverse matrix A~*. '

6 -4 -17
A=[-1 1 3
2 -1 -6

6 —4 —17|1 0 0 -1 1 3[0 10

-1 1310 1 0ye~| 02 11160

2 -1 6|0 0 1/ 01 0/0 21

We adjust the element a3y = 2 to zero. '




Given a matrix A, find the inverse matrix A~*. '

6 -4 17
A=1-1 1 3
2 -1 -6
6 -4 —-17(1 0 O -1 1 3|0 1 0
-1 1 3(0 1 0 |~ 0 2 1|1 6 O
2 -1 —-6|{0 0 1 01 0j0 2 1

~ 01 00

[N}
—_

e The new pivot can be either the second or the third row.

e We choose the last row. This row has to be written as the second.
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Given a matrix A, find the inverse matrix A~*. '

6 -4 17
A=1-1 1 3
2 -1 -6
6 -4 —-17(1 0 O -1 1 3|0 1 0
=1l 1 310 1 0 |~ 0 2 1|1 6 0)
2 -1 —-6|{0 0 1 01 0|0 2 17/(-1
-1 0 3|0 -1 -1
~ 01 00 2 1




Given a matrix A, find the inverse matrix A~*. '

6 -4 17
A=1-1 1 3

2 -1 -6

6 -4 —-17(1 0 O =l

=1l 1 310 1 0 |~ 0

2 -1 —-6|{0 0 1 0

= 0 -1 -1

0 2 1

1 2 -2

2
OO =
O = O
— O W

We adjust the element as2 = 2 to zero. '




Given a matrix A, find the inverse matrix A~*. '

6 -4 17
A=1-1 1 3
2 -1 -6
6 -4 —-17(1 0 O -1 1 0 1 0
=1l 1 3]0 1 0 |~ 0 2 1|1 6 O
2 -1 —-6|{0 0 1 0 1 0 2 1
-1 0 3|0 -1 -1
~ 01 00 2 1 |~
0 0 1]1 2 =2 00 111 2 =2

e The last pivot will be the last row.

e This row has to remain as the last row.
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Given a matrix A, find the inverse matrix A~*. '

6 -4 17
A=1-1 1 3
2 -1 -6
6 -4 —-17(1 0 O -1 1 0 1 0
=1l 1 3]0 1 0 |~ 0 2 1|1 6 O
2 -1 —-6|{0 0 1 0 1 0 2 1
-1 0 3|0 -1 -1
~ 01 00 2 1 |]~1 01 00 2 1
0 0 1]1 2 =2 0 111 2 -2

The second row is good. This row remains. '




Given a matrix A, find the inverse matrix A~*. '

6 -4 17
A=1-1 1 3
2 -1 -6
6 -4 —-17(1 0 O -1 1 3|0 1 0
=1l 1 310 1 0 |~ 0 2 1|1 6 O
2 -1 —-6|{0 0 1 01 0|0 2 1
-1 0 3|0 -1 —-1\-1n/1 0 0|3 7 =5
~ 01 00 2 1) ~ 0 1 0]0 2 1
0 0 1]1 2 —27)3 00 111 2 =2

We adjust the element a13 = 3 to zero. '




Given a matrix A, find the inverse matrix A~*. '

6 —4 —17
A=|-1 1 3
2 -1 -6
6 —4 —17|1 0 0 -1 1 3|0 1 0
-1 1 3|01 0]~ 0211 6 0
2 -1 —6/0 0 1 01 0[O0 2 1
-1 0 3|0 -1 -1 1 0 0[3 7 =5
~l 010/0 2 1 ]|~l010fl0 2 1
00 1]1 2 -2 00 1]1 2 =2
3 7 -5
At=10 2 1
1 2 =2

The matrix on the left is the identity matrix and hence the second matrix is
the inverse.
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Given a matrix A, find the inverse matrix A~*. '

1 0 4
A= 1 -1 1
1 2 6
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Given a matrix A, find the inverse matrix A~*. '

1 0 4 1 0 4|1 0 O
A= 1 -1 1 1 -1 1{]0 1 0
1 2 6 1 2 6|0 0 1

We start with the matrix and the 3 x 3 identity matrix. '
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Given a matrix A, find the inverse matrix A~*. '

1 0 4 1 0 4|1 0 O
A= 1 -1 1 1 -1 1|0 1 0
1 2 6 1 2 6|0 0 1

1 -1 1|0 1 O

We choose the second row to be a pivot row (contains the smallest

numbers).

This pivot row will be the first row.

A B B
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Given a matrix A, find the inverse matrix A~*. '

1 0 4 104100)\

A=|[1 -1 1 1 -1 1|0 1 0/ (D
1 26 1 2 6(00 1)
1 -1 10 10

~10 131 -10

We adjust the element a1; = 1 to zero. '




Given a matrix A, find the inverse matrix A~*. '

1 0 4 1 0 4|1 0 0)
A=|[1 -1 1 TN ORI o
1 26 1 2 6[0 0 1%
1 -1 10 10
~10 131 -10
0 3 5|0 —1 1

We adjust the element a3; = 1 to zero. '




Given a matrix A, find the inverse matrix A~*. '

1 0 4 1 0 4|1 0 O
A= 1 -1 1 -1 1]0 1 0
1 2 6 2 6|0 0 1

e We choose the second row as the next pivot row.

e This row remains as the second.
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Given a matrix A, find the inverse matrix A~*. '

1 0 4 1 0 4|1 0 O
A= 1 -1 1 1 -1 1|0 1 0
1 2 6 1 2 6|0 0 1
1 -1 1]0 1 0 10 4 1 0 0
~ {0 1 3|1 -1 0/]~| 0 1 3 1 10
0 3 5/0 -1 1

We adjust the element a2 = —1 to zero. '




Given a matrix A, find the inverse matrix A~*. '

1 0 4 1 0 4|1 0 0
A= 1 -1 1 1 -1 1[0 1 0
1 26 1 2 6/0 0 1
1 -1 10 1 0) 10 4/ 1 00
~0131—10)(—3)<0131—1o
0 3 5|0 -1 14 00 —4|-3 21

We adjust the element aso = 3 to zero. '




Given a matrix A, find the inverse matrix A~*. '

1 0 4 1 0 4|1 0 O
A= 1 -1 1 1 -1 1|0 1 0
1 2 6 1 2 6|0 0 1
1 -1 1]0 1 0 10 4 1 0 0
~ (0 1 3|1 -1 0 |~ 01 3 1 -1 0
0 3 5|0 -1 1 0 0 41 -3 2 1




Given a matrix A, find the inverse matrix A~*. '

1 0 4 1 0 4|1 0 O
A= 1 -1 1 1 -1 1|0 1 0
1 2 6 1 2 6|0 0 1
1 -1 1]0 1 0 10 4 1 0 0
~1 0 1 3|1 -1 0 |~ 01 3 1 -1 0y4
0 3 5|0 -1 1 0 0 —4|-3 2 173

2
o~ =
o
O

o




Given a matrix A, find the inverse matrix A~*. '

1 0 4 1 0 4|1 0 O
A= 1 -1 1 1 -1 1|0 1 0
1 2 6 1 2 6|0 0 1
1 -1 1]0 1 0 10 4 1 0 0
~ (0 1 3|1 -1 0 |~ 01 3 1 -1 O)
0 3 5|0 -1 1 0 0 41 -3 2 1
1 0 0]-2 2 1
~| 0 4 0]-5 2 3
00 4 3 -1 -1

We adjust the element a13 = 4 to zero. '




Given a matrix A, find the inverse matrix A~*. '

1 0 4 1 0 41 0 0
A=|1 -1 1 1 -1 1|0 1 0
1 26 1 2 60 0 1
1 -1 10 1 0 10 4] 1 00
~(0 131 -=10]~[01 3/ 1 -10
0 3 5[0 —1 1 00 —4[-3 2 1
100]-2 2 1
~(040/-5 2 3
00 4| 3 -1 -1
1 00| -2 2 1
~|l 01 0|-5/4 24 34
0 0 1| 3/4 —1/4 —1/4

We divide each row by the leftmost nonzero number. '




Given a matrix A, find the inverse matrix A~*. '

1 0 4 1 0 41 0 0
A= 1 -1 1 1 -1 1|0 1 0
1 26 1 2 60 0 1
1 -1 10 1 0 10 4] 1 00
~(0 131 -=10]~[01 3/ 1 -10
0 3 5/0 —1 1 00 —4[-3 2 1
100]-2 2 1
~(040/-5 2 3
00 4| 3 -1 -1
1 00| -2 2 1 L[ -8 8 4
~l 0 1 0|-5/4 2/4 34| ;A== -5 2 3
0 0 1| 3/4 —1/4 —1/4 4\ 3 2 1

The identity matrix is on the left. The inverse matrix is on the right. The

. 1
common denominator 1 can be taken out.

N d O B3
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5 Systems of linear equations

Consider the following problems: Find real numbers x1, z2, which satisfy:

4x1 +Dbre =17
Problem 1 : Lo
.77172.772:4

Problem 2 : (i‘) z1+ <52> 22 = (z)
S AT

All three problems are equivalent. The difference is in notation only.
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(" Definition (system of linear equations). Under a system of m linear equations
in n unknowns we understand the system of equations

a1171 + @122 + a1373 + - - + 1Ty = by

a21%1 + A22T2 + A23T3 + - -+ + A2 Ty = b2

a3121 + azaT2 + a33T3 + - - + a3, Ty = b3 (6)

A1 21 + Q222 + 323 + - - + GmnTn = by,

Variables 1, x2, ..., x, are said to be unknowns. Real numbers a;; are
said to be coefficients of the left-hand sides of equations, real numbers b;
coefficients of the right-hand sides or constant terms of equations.

Under a solution of the system (6) we understand the n-tuple of real numbers
which, substituted for the unknowns, convert the equations into identities.
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(" Definition (matrix of the system). Matrix

aix a2 aiz -+ Qin
a21 a2 a3 - a2n

A= . , _ . (7)
am1 Am2 Am3 e Amn

is said to be a matrix of the system (6) (or a coefficients matrix). Matrix

a1 ai2 a1z - Q1n b1

N a21 a2 a3 - A2n by
AT = . . . o (8)

Am1 Am2 am3 Tt Amn bm

is said to be an augmented matrix of the system (6).
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Remark 6 (vector notation of the system of linear equations). The system (6)
can written in an equivalent form of a vector equation. Really, denote

a1y a2 a13 a1n by
. an | asz | ass . asn | bo
ay = , A2 = , a3 = ) , Qp = 7b:

Am1 Am2 Am3 Amn bm

Clearly
101 + T2lo + X303 + - -+ + Tndy =b (10)

is equivalent to (6). Now we see that the problem to find a solution of linear
system (6) possesses the following equivalent formulation (we use the notation
introduced in (9)).

Write the vector b as a linear combination of vectors dy, da, ..., Gp,.
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Definition (homogeneous system). If )

by =by=---

holds, then system (6) is said to be homogeneous.

Remark 7 (trivial solution). Every homogeneous system possesses a solution.
Really, it is clear that the n-tuple xy =0, 2 =0, ..., z, = 0 is a solution of
an arbitrary homogeneous system. This solution is called a trivial solution.
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Remark 8 (matrix notation). The linear combination in (10) can be written as
a matrix product. This leads to the matrix equation

a1 a2 - Gln Ty by
a1 a2 - A2n 2 b2

=1 1. (11)
Am1 Am2 e Amn Tn bm

Denote by A the matrix (7) of the system, by b the column vector of the right-
hand sides and by Z the vector of unknowns , i.e.

by 1
= bo €2
b= . and 7=

bm xn

Using this notation, the linear system can be written as the matrix equation
Az =b. (12)

This form is used frequently in the engineering computations for simplicity and
brevity.
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Theorem 6 (Frobenius). System (6) has a solution if and only if the aug?
mented matrix of this system has the same rank as the matrix of this system,
i.e. rank (A) = rank (A").

Solution of linear system — Gauss elimination

1. We write the augmented matrix of the system. The i-th column contains
the coefficients at x; and the last column contains the right-hand sides.
The order of the rows is arbitrary.

2. We convert the augmented matrix into its row echelon form. We use row
operations! from Theorem 4.

3. We rewrite back the augmented matrix in the row echelon form into a sys-
tem of linear equations (in the original unknowns). The set of all solutions
of this new system is the same as the set of all solutions of the original
system.

4. We start with the last equation. Three mutually different cases are possible

tho operations on columns!
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(a) The last equation does not contain any unknown, i.e. it has the form
0 = a, where a is a nonzero number. In this case the system possesses
no solution.

(b) The last equation contains exactly one unknown. In this case we solve
the equation for this unknown and continue with the next step.

(c) There are k unknowns in the last equation (k > 1). In this case we
solve one arbitrary of these unknowns through the other (K —1) ones.
These (k—1) unknowns are called free unknowns. The free unknowns
can be considered as parameters and can take any real values.

5. We continue with the last but one equation. The unknowns which appeared
in the preceding steps are considered to be known already. Two cases can
occur.

(a) The equation contains one “new" unknown (i.e. all of the unknowns,
with exception of one unknown, are free or known already). We solve
the equation for this unknown. The formula for this unknown may
contain also the free unknowns.

(b) The equation contains at least two “new” unknowns. If there is [,

[ > 1, new unknowns, then we isolate one of them and the other
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(I — 1) will be free.

6. We repeat the last step until we reach the first equation. At this stage
the system is solved. We either calculate all of the unknowns (the system
has unique solution) or we calculate the non-free unknowns in terms of the
free ones. These free variables can be considered as parameters and can
take any real value. Hence, if at least one of the free variables is present,
then the system has infinitely many solutions.

Remark that the choice of the free unknowns is not unique and two equivalent
sets of solutions can be written in several, very different, forms.

Remark 9. The following three mutually different cases may occur: 7

1. The system has no solution if and only if rank (A) # rank (A*). This
occurs if the last line of the augmented matrix in the row echelon form
corresponds to the equation 0 = a where a is a real nonzero number.
This equation clearly has no solution and hence the whole system has no
solution.

2. The system has exactly one solutions if and only if rank (4) = rank (A*) =

n.
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3. The system has infinitely many solutions if and only if
rank (A) = rank(A*) < mn. In this case the unknowns can be
computed in terms of (n — rank (A)) independent parameters, or, in other
words, in (n — rank (A4)) free variables.
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6x1+2x0— 234714 =
4x142x2—3T3+514 =

Solve the system
T1+ xo— x3— 14 =0

X1 + 3 =
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6x1+2x2— x3+7x4 =0

4x14+2x9—3x3+524 = —4
Solve the system
T1+ xo— x3— 14 =0

Tl + 3 =3
6 2 -1 7] 0
. 4 2 -3 5|—-4
A~ 01 1 21 o
10 1 0 3

We write the augmented matrix A* of the system. '




6x1+2x2— x3+7x4 =0

4x14+2x9—3x3+524 = —4
Solve the system
T1+ xo— x3— 14 =0

Tl + 3 =3
6 2 -1 7| 0 1 1 0] 3
. 4 2 -3 5|-4
A~y 1 1 21 o |
10 1 0| 3




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4

Solve the system
T1+ xo— x3— 14 =0

Tl + 3 =3

=l 7| O

-1 -1 O)
1 0 37)(=1)

=R O
O = NN
|
w
ot
|
i

O =




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4

Solve the system
T1+ xo— x3— 14 =0

X1 + T3 :3

=l 7| O

-1 -1 0

— = o
O~ NN
|
w
ot
|
v >~
N~—~7
2
O O =
o = O
|
[N}
I
—_
|
w




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4

Solve the system
T1+ xo— x3— 14 =0

X1 +$3 :3
6 2 -1 7| 0 10 1 0| 3
ool t2 -8 s (o1 2 -1 -3
11 -1 —-1] o 02 -7 5|-16
10 1 0| 3/ceo\o 2 -7 7]|-18




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4

Solve the system
T1+ xo— x3— 14 =0

Tl + 3 =3
6 2 -1 7 0 1 0 1 0 3
A* 4 2 =3 5| —4 N 01 -2 —-1| -3 N
11 -1 -1 0 0 2 -7 5| —16
1 0 1 0 3 0 2 -7 7| —18
1 0 1 0 3
01 -2 —-1| =3




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4

Solve the system
T1+ xo— x3— 14 =0

Tl + 3 =3
6 2 -1 7 0 1 0 1 0 3
A* 4 2 =3 5| —4 N 01 -2 -1 —3)(—3)

11 -1 -1 0 0 2 -7 5| —16
1 0 1 0 3 0 2 -7 7 —18)

1 0 1 0 3

01 -2 —-1| -3

0 0 -3 71 -10




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4

Solve the system
1+ To— x3— 4 =0

Tl + 3 =3
6 2 -1 7 0 1 0 1 0 3\
A* 4 2 =3 5| —4 N 01 -2 —-1| -3 (-2
11 -1 -1 0 0 2 -7 5 —16)
1 0 1 0 3 0 2 -7 7 —18)
1 0 1 0 3
01 -2 —-1| -3
0 0 -3 7| -10
0 0 -3 91 —-12

—2Ry + Ry = '




6x1+2x0— x3+7x4 =0
4x14+2x9—3x3+524 = —4

Solve the system
T1+ xo— x3— 14 =0

Tl + 3 =3

6 2 -1 7| 0 10 1 0] 3
o423 5|4 01 2 -1 =3

11 -1 1] 0 0 2 -7 5|-16

10 1 o] 3 02 -7 7|-18
10 1 o] 3 10 1 o0 3
01 -2 —1| -3 01 -2 —1| -3
00 -3 7/-10|" oo -3 7]-10
00 -3 9|-12




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4

Solve the system
T1+ xo— x3— 14 =0

Tl + 3 =3
6 2 -1 7| 0 10 1 o] 3
o423 5|4 01 2 -1 =3
11 -1 1] 0 0 2 -7 5|-16
10 1 o] 3 0 2 -7 7|-18
10 1 o] 3 10 1 0] 3
01 -2 -1 —3\M 01 -2 —1| -3
00 -3 7—10)<—1> 00 —3 7/|-10
00 -3 9|-124 00 0 2| -2




6x1+2x2— x3+7x4 =0

4x14+2x9—3x3+524 = —4
Solve the system
T1+ xo— x3— 14 =0

Tl + 3 =3
10 1 0 3
. 01 -2 —-1| -3
A~ g 0 23 7] 210
00 0 2| -2

The augmented matrix is row-equivalent to this (blue) matrix in the
row-echelon form.




6x1+2x0— x3+7x4 =0
4x14+2x9—3x3+524 = —4

T1+ xo— x3— 14 =0

Solve the system

Tl + 3 =3
10 1 0 3
. 01 -2 —1| -3
A~y 0 23 7] -10
00 0 2| —2
23}4:—2

The system has a solution, since rank (A) = rank (4*) = 4. Moreover n = 4
(the number of unknowns) and hence the system possesses a unique solution.
We start from the last row in the row-echelon form. We write the
corresponding equation . ..

[ <] Systems of linear equations (©Robert Matik, 2006



6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4

Solve the system
T1+ To— x3— x4 =0

T + x3 =3
10 1 0 3
. 01 -2 —-1| -3
A~y 0 23 7] -10
00 0 2| —2
2y = =2 = z4=—1

and solve for z4. .




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4
Solve the system

T1+ xo— x3— 14 =0

Tl + 3 =3

10 1 0 3
. 01 -2 —-1| -3
A~y 0 23 7] =10
00 0 2| -2
204 = —2 = Ty =—1

—3x3 + Ty = —10

We write the equation corresponding to the third row in the row-echelon form. '




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4
Solve the system

T1+ xo— x3— 14 =0

X1 + T3 :3

10 1 0 3
. 01 -2 —-1| -3
A~y 0 23 7] -10
00 0 2| -2
2@y = —2 = Ty =—1
—3x3+Trg=—-10 = 323 —7=-10

We substitute z, = —1 ... .




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4
Solve the system

T1+ xo— x3— 14 =0

Tl + 3 =3

1 0 1 0 3
. 01 -2 -1 -3
A~ 00 23 7]-10
0 0 0 21 =2
2@y = —2 = Ty =—1
—3x3 + Txy = —10 = —3z3—7=-10 = 3 =1

and solve for 3. .




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4
Solve the system

T1+ xo— x3— 14 =0

T + x3 =3
10 1 O 3
R R
00 0 2| -2
204 = —2 = Ty = —1
—3x3+ Tzxy = —10 = —3x3 —7=-10 = z3=1
To —2r3 — 14 = —3

We convert the second row of the row-echelon matrix to the terms of
unknowns.




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4
Solve the system

T1+ xo— x3— 14 =0

Tl + 3 =3

1 0 1 0 3
. 01 -2 -1 -3
A~ 00 23 7]-10
0 0 0 21 =2
2@y = —2 = Ty =—1
—3x3 + Txy = —10 = —3z3—7=-10 = z3 =1

To —2x3 — x4 = —3 = To—24+1=-3

We substitute 24, = —1 and 23 =1 ... .




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4
Solve the system

T1+ xo— x3— 14 =0

Tl + 3 =3

1 0 1 0 3
. 01 -2 -1 -3
A~ 00 23 7]-10
0 0 0 21 =2
2@y = —2 = Ty =—1
—3x3 + Txy = —10 = —3z3—7=-10 = z3 =1

To —2x3 — x4 = —3 = o —24+1=-3 = To = —2

and solve for zo. .




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4

Solve the system
T1+ xo— x3— 14 =0

Tl + 3 =3

1 0 1 0 >
. 01 -2 -1 -3
A~ 00 23 7]-10
0 0 0 2 -2
2@y = —2 = Ty =—1
—3x3+ Tzxy = —10 = —3x3 —7=-10 = x3 =1

To —2x3 — x4 = —3 = o —24+1=-3 = To = —2

T+ x3=3

The equation corresponding to the first row. '




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4

Solve the system
T1+ xo— x3— 14 =0

Tl + 3 =3

1 0 1 0 3
. 01 -2 -1 -3
A~ 00 23 7]-10
0 0 0 21 =2
2@y = —2 = Ty =—1
—3x3 + Txy = —10 = —3z3—7=-10 = z3 =1

To —2x3 — x4 = —3 = o —24+1=-3 = To = —2

1 +x3=3 = r1+1=3

Substitution z3 = 1. .




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4

Solve the system
T1+ xo— x3— 14 =0

Tl + 3 =3

1 0 1 0 3
. 01 -2 -1 -3
A~ 00 23 7]-10
0 0 0 21 =2
2@y = —2 = Ty =—1
—3x3 + Txy = —10 = —3z3—7=-10 = z3 =1

To —2x3 — x4 = —3 = o —24+1=-3 = To = —2

1 +x3=3 = r1+1=3 = T =2

We find 21 = 2. .




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4

Solve the system
T1+ xo— x3— 14 =0

Tl + 3 =3

10 1 0 3
w235

o0 0 2| -2
204 = —2 = Ty = —1
—3x3+ Tzxy = —10 = —3x3 —7=-10 = z3=1
To —2r3 — T4 = —3 = To—24+1=-3 = To = —2
1 +x3=3 = r1+1=3 = T =2
The unique solution is [z1 = 2,290 = —2,23 = 1,24 = —1].

Now we have all unknowns. '




6x1+2x2— x3+7x4 =0
4x14+2x9—3x3+524 = —4

Solve the system
T1+ xo— x3— 14 =0

Tl + 3 =3

1 0 1 0 3
. 01 -2 -1 -3
A~ 00 23 7]-10
0 0 0 21 =2
2@y = —2 = Ty =—1
—3x3 + Txy = —10 = —3z3—7=-10 = z3 =1

To —2x3 — x4 = —3 = o —24+1=-3 = To = —2
1 +x3=3 = r1+1=3 = T =2

The unique solution is [z1 = 2,290 = —2,23 = 1,24 = —1].

The problem is solved. '




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3

Solve the system
T1+2x2+223 =1

201 —6x0+4r3+2204—475 = 5

[<] Systems of linear equations ©Robert Matik, 2006



3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3

Solve the system
T1+2x2+223 =1

201 —6x0+4r3+2204—475 = 5

3 -2 6 2 —-4]5

. 1 02 -1 2|3
A~ 29 0 o1
2 6 4 2 —415

We write the augmented matrix. '




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3

Solve the system
T1+2x2+223 =1

201 —6x0+4r3+2204—475 = 5

—2 6 2 —4|5 1 02 -1 2| 3

3
. 1 02 -1 2|3
A~y 29 0 ol1 ™
2 -6 4 2 —-4|5

We choose the second row as a pivot row. This row will be the first new row. '




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3
T1+2x2+223 =1
201 —6x0+4r3+2204—475 = 5

Solve the system

2 6 2 —4|5y 102 -1 2| 3
02 -1 23 [0 20 5 -10(-4

22 0 0]1
—6 4 2 4|5

N = = W

We adjust the first row of the preceding matrix. '




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3
T1+2x2+223 =1
201 —6x0+4r3+2204—475 = 5

Solve the system

3 -2 6 2 —4]5) 1 02 -1 2| 3

ol 02 -1 208y cpl0 20 5 10| -4
1 22 0 01 0 20 1 -2[-2
2 —6 4 2—45)

We adjust the third row of the preceding matrix. '

[ <] Systems of linear equations (©Robert Matik, 2006



3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3
T1+2x2+223 =1
201 —6x0+4r3+2204—475 = 5

Solve the system

3 -2 6 2 —4]5) 1 02 -1 2| 3
|02 1 213y eaf 0 20 5 -10|—4
122001) 0 20 1 -2[-2
2 —6 4 245) 0 -6 0 4 -8|-1

We adjust the last row of the preceding matrix. '




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3
T1+2x2+223 =1
201 —6x0+4r3+2204—475 = 5

Solve the system

—2 6 2 —4|5 1 0

3 2 -1 2 3
A* 1 0 2 -1 213 1 .10 =20 5 —10| -4 |
1 2 2 0 01 0 2 0 1 -2| -2
2 -6 4 2 4|5 0 -6 0 4 -=-8]-1
1 0 2 -1 2 3
0 20 1 -2| -2

The red row will be the next pivot row. The first row remains and the pivot
row will be the second.




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3
T1+2x2+223 =1
201 —6x0+4r3+2204—475 = 5

Solve the system

3 =2 6 2 45 1 0 2 -1 2 3
A* 1 0 2 -1 213 1 .10 =20 5 —10| —4y| _
1 2 2 0 01 0 2 0 1 -2| -2
2 -6 4 2 4|5 0 -6 0 4 =-8|-1
1 0 2 -1 2 3
0 20 1 -2| -2
0 00 6 —12| -6

We adjust the second row of the preceding matrix. '




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3
T1+2x2+223 =1
201 —6x0+4r3+2204—475 = 5

Solve the system

3 -2 6 2 —4]5 1 02 -1 2| 3
oot 021 23 o 20 5—10—4\|~
1 22 0 01 020 1 -2)-2ys
2 -6 4 2 —4|5 0 -6 0 4 -—8|-14
102 -1 2| 3
020 1 -2|-2
000 6 —12|-6
000 7 —14|-7

We adjust the last row of the preceding matrix. '




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3
T1+2x2+223 =1
201 —6x0+4r3+2204—475 = 5

Solve the system

3 =2 6 2 45 1 0 2 -1 2 3
A* 1 0 2 -1 213 1 .10 =20 5 —10| -4 |

1 2 2 0 01 0 20 1 -2| -2
2 -6 4 2 4|5 0 -6 0 4 =-8|-1

1 0 2 -1 2 3 1 0 2 -1 2 3

0 2 0 1 -2| -2 0 2 0 1 -2 -2

0 0 O 6 —12|-6 |~ | 0 0 0 1 -2]-1

0 0 O 7T —14 | -7 0 0 O 1 -2]-1

The green rows can be divided by the numbers 6 and 7, respectively. '




3x1—2wo+6x3+2x4—425 =5 |
T +2x3— x4+2x5 =3
T1+2x9+2x3 =1
201 —6x0+4r3+2204—475 = 5

Solve the system

3 2 6 2 —-4]5 1 02 -1 2| 3
ol 02 -1 203 020 5 -10-4]|_

1 22 0 0|1 0 20 1 -2|-2

2 6 4 2 —4]5 0 -6 0 4 -8|-1
102 -1 2| 3 102 -1 2| 3
020 1 -2|-2 020 1 —2|-2
000 6 —-12/-6 71000 1 —2|-1
000 7 —14]|-7




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x44+225 =3

Solve the system
T1+2x2+223 =1

201 —6x0+4r3+2204—475 = 5

1 0 2 -1 2 3
A~ 0 2 0 1 -2 -2
0 0 0 1 -2] -1

The augmented matrix is in the row echelon form. The rank of the augmented |
matrix is 3, the rank of the coefficient matrix is also 3. Hence the system has
a solution. The number of free variables is unknowns — rank =5 — 3 = 2.

EH d O B3
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3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3
T1+2x2+223 =1

201 —6x0+4r3+2204—475 = 5

Solve the system

1 0 2 -1 2| 3
A"~ 0 2 0 1 -2 -2

0 0 0 1 -2(-1
T4 — 2.235 =-1

We write the equation corresponding to the last line of the matrix. '




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3
T1+2x2+223 =1

201 —6x0+4r3+2204—475 = 5

Solve the system

1 0 2 -1 2 3
A~ 0 2 0 1 -2 -2
0 0 O 1 -2|-1
Ty —2x5 = —1 = vy =2x5 — 1, 5 is free

There is one equation with two unknowns. We choose x5 to be a free variable
and solve for z4.



3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3
T1+2x2+223 =1

201 —6x0+4r3+2204—475 = 5

Solve the system

1 0 2 -1 2 3
A~ 0 2 0 1 -2 -2
0 0 O 1 —-2|-1
T4 —2x5 = —1 = x4 =2x5 — 1, 5 is free

209 + x4 — 205 = —2

We write the equation corresponding to the second line of the matrix. '




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3
T1+2x2+223 =1

201 —6x0+4r3+2204—475 = 5

Solve the system

1 0 2 -1 2 3
A~ 0 2 0 1 -2 -2
0 0 O 1 —-2|-1
T4 —2x5 = —1 = x4 =2x5 — 1, 5 is free

200 + x4 — 225 = —2 = 2x2+(2x5—1)—2x5:—2

We substitute for z4. x5 is free and only the variable x5 remains. '




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3
T1+2x2+223 =1

201 —6x0+4r3+2204—475 = 5

Solve the system

1 0 2 -1 2 3
A~ 0 2 0 1 -2 -2
0 0 O 1 —-2|-1
T4 —2x5 = —1 = x4 =2x5 — 1, 5 is free

1
200+ x4 — 205 = -2 = 2x904+ (2z5—1)—225=-2 = x2:—§

We solve the equation for zo. We have 2x5 = —2 — 225 + 1 + 225 and from
here we have z5.




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3

Solve the system
T1+2x2+223 =1

201 —6x0+4r3+2204—475 = 5

1 0 2 -1 2 3
A~ 0 2 0 1 -2 -2
0 0 O 1 —-2|-1
T4 —2x5 = —1 = x4 =2x5 — 1, 5 is free

1
2oyt wa—2w5==2 = 2w+ (25 —1)=2w5=-2 = 1=—3
1+ 233 — 24 + 225 = 3

We write the equation corresponding to the first line of the matrix. '




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3
T1+2x2+223 =1

201 —6x0+4r3+2204—475 = 5

Solve the system

1 0 2 -1 2 3
A*~[ 0 2 0 1 -2 -2
000 1 —-2|-1
T4 —2x5 = —1 = x4 =2x5 — 1, 5 is free
1
2+ a4 — 205 =-2 = 2x9+(225—-1)—225=-2 = T2 =—3

X1+ 223 — x4+ 205 =3 = x1+2x3— (205 — 1)+ 225 =3, 3 is free

We substitute for 4. The variable x5 is free and two new variables x; and z3
remain. We choose 23 to be the second free variable.



3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3

Solve the system ! ’ * §
T1+2x2+223 =1

201 —6x0+4r3+2204—475 = 5

10 2 -1 2|1 3
A"~ 0 2 0 1 -2| -2
0 0 O 1 -2| -1
T4 —2x5 = —1 = x4 =2x5 — 1, 5 is free
1
2oyt wa—2w5==2 = 2w+ (25 —1)=2w5=-2 = 1=—3

X1+ 223 — x4+ 205 =3 = x1+2x3— (205 — 1)+ 225 =3, 3 is free
$1:2—2x3

We solve the equation with respect to z. '




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3

Solve the system ! ’ * §
T1+2x2+223 =1

201 —6x0+4r3+2204—475 = 5

10 2 -1 2|1 3
A"~ 0 2 0 1 -2| -2
0 0 O 1 -2| -1
T4 —2x5 = —1 = x4 =2x5 — 1, 5 is free
1
2oyt wa—2w5==2 = 2w+ (25 —1)=2w5=-2 = 1=—3

X1+ 223 — x4+ 205 =3 = x1+2x3— (205 — 1)+ 225 =3, 3 is free
.771:272.’133

. 1
The solution is [x1 = 2 — 223,29 = —5r T3, %4 = 2x5 — 2, x5], where 3 and x5
are free variables.

The system is solved. '




3x1—2x9+6x3+2x4—4x5 =5 )
T +2x3— x4+2x5 =3

Solve the system
T1+2x2+223 =1

201 —6x0+4r3+2204—475 = 5

1 0 2 -1 2 3
A* ~ 0 2 0 1 2| -2
0 0 O 1 -2 -1
Ty —2x5 = —1 = Ty =2x5 — 1, x5 is free
1
200 + x4 — 225 = —2 = 2952—1—(2;165—1)—2;165:—2 = $2:—§

X1+ 223 — x4+ 205 =3 = x1+2x3— (205 — 1)+ 225 =3, w3 is free
1‘1:2—2$3

. 1
The solution is [x1 = 2 — 223,29 = —5y®3, %4 = 2x5 — 2, x5], where 3 and x5

are free variables.
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20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

[<] Systems of linear equations ©Robert Matik, 2006



20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

b

2 2 -2 1]1
. 12 1 —2|1
A~y 1 25

1 3 3 —2|4

We write the augmented matrix. '




20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

2 2 -2 1]1 1 2 1 —2| 1
. 12 1 -2]|1
A~y 1 95 | ™

1 3 3 —2|4

We choose the second row as a pivot row, since as; = 1. '




20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

g4

22 =2 1[1)\ (1 2 1 -2]1
A% 1 2 1 =217 -2 0 -2 —4 5| —1
3 4 -1 215
1 3 3 214
[(—2)32—1—1‘1’1

[<] Systems of linear equations ©Robert Matik, 2006 )



20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

g4

22 —2 11\ (1 2 1 -2| 1
A* 1 2 1 — 1) =3 0 -2 —4 5| —1
3 4 -1 215 0 -2 —4 8 2
1 3 3 —2|4
[(—3)32 + R3

[<] Systems of linear equations ©Robert Matik, 2006 )



20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

g4

22 —2 11\ (1 2 1 -2| 1
A% 1 2 1 =21y 0 -2 —4 5| —1

3 4 -1 2 5) 0 -2 —4 8 2

1 3 3 —-214 0 1 2 0 3
[(—1)32 + Ry

[<] Systems of linear equations ©Robert Matik, 2006 )



20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

g4

2 2 =2 111 1 2 1 = 1
A% 1 2 =211 1 [0 -2 —4 S51—1 1
3 4 -1 215 0 -2 -4 8 2
1 3 3 2|4 0 1 2 0 3
1 2 1 =21
0 1 2 0|3

The first row remains and the last row will be the next pivot row, since
aso = 1, which is better than ass = asz = —2.




20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

g4

2 2 =2 111 1 2 1 -2 1
A* 1 2 =211 [0 -2 -4 5| —=1x|
3 4 -1 215 0 -2 -4 8 2)
1 3 3 2|4 0 1 2 0 37)2
1 2 1 =21
0 1 2 0|3
0 00 59




20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5
r1+3r9+3r3—2x4 = 4

g4

2 2 =2 111 1 2 1 -2 1
A* 1 2 =211 [0 -2 -4 S51—1 1

3 4 -1 215 0 -2 -4 8 2)
1 3 3 2|4 0 1 2 0 37)2

1 2 1 =21

0 1 2 0|3

0 00 5|95

0 0 0 818




20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5
r1+3r9+3r3—2x4 = 4

g4

2 2 -2 1]1 1 2 1 -2] 1
o2 12| o -2 4 5 -1
3 4 -1 2|5 0 -2 —4 8| 2
1 3 3 -2|4 0o 1 2 0| 3

1 2 1 —2]1 1 2 1 —2]1
012 0|3 012 03
000 5|5 |
000 8|8




20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5
r1+3r9+3r3—2x4 = 4

1 2 1 -2] 1

2 2 -2 1]1

o2 12| o -2 4 5 -1
3 4 -1 2|5 0 -2 —4 8| 2
1 3 3 -2|4 0o 1 2 0| 3

1 2 1 —2]1 1 2 1 —2]1

012 0|3 012 03

000 551 [ooo 11

000 8|8 000 11




20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5
r1+3r9+3r3—2x4 = 4

1 2 1 -2] 1

2 2 -2 1]1

o2 12| o -2 4 5 -1
3 4 -1 2|5 0 -2 —4 8| 2
1 3 3 -2|4 0o 1 2 0| 3

1 2 1 —2]1 1 2 1 —2]1

012 0|3 012 03

000 55| [ooo 11

000 8|8 000 11




20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5
r1+3r9+3r3—2x4 = 4

2 2 -2 1]1 1 2 1 -2] 1
o2 12| o -2 4 5 -1
3 4 -1 2|5 0 -2 —4 8| 2
1 3 3 -2|4 0o 1 2 0| 3

1 2 1 —2]1 1 2 1 —2]1
012 0|3 012 03
000 55| [ooo 11

000 8|8




20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

1 2 1 -2]1
A"~ 0 1 2 013
0 0 O 111
T €2 3 T4

o We row-reduced the augmented matrix of the system.

e rank (4) =3, rank (A*) =3, n=14

e The system possesses infinitely many solutions with one parameter.
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20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

b

1 2 1 =21
A"~ 0 1 2 03

0 0 0 1)1
T X9 T3 Ty = 1
a0 = |l

We write the equation corresponding to the last row. '




20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

b

1 2 1 =21
A* ~ 0 1 2 0]3
0 0 O 1|1
T X9 T3 Ty = 1
a0 = |l
To + 2x3 = 3,

We write the equation corresponding to the middle row. '




20142x9—2x3+ x4 =1}
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

1 21 211
A~ |1 0 1 2 0|3

0 0 O 11
T To x3 is free; T4 =1
Ty =1

To + 2x3 = 3, x3 is free =

e We have two unknowns in this equation. We choose one of them to be
free.

e We choose 3 to be free and solve the equation for x5, since this is easier
than solving for 3.
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20142x0—2x3+ x4 =1
T1+2x9+ x3—224 =1
Solve the system ! ? ’ *
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

1 2 1 -2]1
AR 01 2 03

0 0 O 1]1
1 Ty =3 — 2x3: x3 is free; x4=1
Ty = 1

To + 2x3 = 3, x3 is free = 10 = 3 — 223

We have xs. '




20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

1 2 1 =271
AR 01 2 03

0 0 O 1]1
1 Ty =3 — 2x3: x3 is free; x4=1
Ty = 1

To + 2x3 = 3, x3 is free = 190 = 3 — 223
1 +2x9+ 13 — 204 =1

We write the equation corresponding to the first row. '




20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

1 2 1 -2]1
AR 01 2 03

0 0 O 1]1
1 Ty =3 — 2x3: x3 is free; x4=1
Ty = 1

To + 2x3 = 3, x3 is free = 190 = 3 — 223
1 +2x9+x3 — 204 =1
$1+2(3—2JJ3)+JJ3—2-1:1

We substitute for o and z4. The variable z3 is free. '




20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

1 2 1 -2]1
AR 01 2 03

0 0 O 1]1
1 Ty =3 — 2x3: x3 is free; x4=1
Ty = 1

To + 2x3 = 3, x3 is free = 190 = 3 — 223
1 +2x9+x3 — 204 =1
Z‘1+2(3—2$3)+$3—21:1

vy —4drs+ax3+4=1

We simplify. '
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20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

1 2 1 -2]1
AR 01 2 03

0 0 O 1]1
1 Ty =3 — 2x3: x3 is free; x4=1
Ty = 1

To + 2x3 = 3, x3 is free = 190 = 3 — 223
1 +2x9+x3 — 204 =1
Z‘1+2(3—2$3)+$3—21:1

r1 —4drs+ax3+4=1

x1—3x3=—3

We simplify. '

[ <] Systems of linear equations (©Robert Matik, 2006




20142x0—2x3+ x4 =1
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

1 21 =21
A*~ [ 0 1 2 03
0 0 0 111

r1 = —3 4+ 3x3; To = 3 — 2x3; x3 is free;

$4:1

Ty =1

To + 2x3 = 3, x3 is free = 190 = 3 — 223

1 +2x9+x3 — 204 =1
Z‘1+2(3—2$3)+$3—21:1
r1 —4drs+ax3+4=1
x1—3x3:—3

:,U1=3{E3—3

1 is known. '




20142x9—2x3+ x4 =1}
T1+2x0+ x3—214 =1
Solve the system
3r1+4xo— x3+2x4 =5

r1+3r9+3r3—2x4 = 4

1 21 =21
A*~ [ 0 1 2 03
0 0 0 111

r1 = —3 4+ 3x3; To = 3 — 2x3; x3 is free; gon = 11

a0 = |l

To + 2x3 = 3, x3 is free = 190 = 3 — 223

(The solution is R
r1 = —3+ 3x3

x2:3—2$3

ggq = 1l

\wWhere z3 is a free variable. )
™ y
A 3 B i i
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(" Definition (determinant). Let A be an n x n square matrix. Under a de)
terminant of the matrix A we understand the real number det A which is
assigned to the matrix by the following three—step recursive algorithm.

1. If the matrix A is 1 x 1 matrix, i.e. if A= (a11), then det A = aq;.

2. Suppose that the determinant of (n — 1) X (n — 1) matrix is defined.
Denote by M;; the determinant of the (n — 1) x (n — 1) matrix which
has arisen from the matrix A by omitting the i-th row and the j-th
column. We define cofactor A;; of the element a;; in the matrix A as
the product A;; = (—1)" M;;.

3. Finally, we define the determinant of the matrix A by the relation

det A =a;1 A1 +appAip + -+ ainAin (13)

where i € {1,2,...n} is the index of arbitrary row.

Remark 10 (notation). Determinant of the matrix A is denoted also by |A|. If
A = (a;), we write also |a;;| instead of |(as;)|.
<] Determinants ©Robert Matik, 2006 |4




Remark 11 (Is the definition correct?). The formula (13) is called an expansion
of the determinant along the i-th row. This formula allows to write the deter-
minant of the n X n matrix in terms of n determinants of (n — 1) x (n — 1)
matrices. Each of these determinants can be written in terms of determinants
of the (n — 2) x (n — 2) matrices and so on. We end after a finite number of
steps when we obtain determinants of 1 x 1 matrices. It should be noted that
the index i in the expansion can be chosen arbitrary. The proof of this fact can
be found in the literature under the name Laplace theorem. In this sense the
expansion (13) is called the Laplace expansion of the determinant along the i-th
row.

Many of the most important properties of matrices depend on the fact whether
the determinant of the matrix equals zero or not. It is fruitful to distinguish
these cases by the following definition.

Definition (regular and singular matrix). Let A be a square matrix. The
matrix A is said to be singular if det A = 0 and it is said to be regular in the
opposite case.

[<] Determinants (©Robert Matik, 2006 [E§



Evaluate the determinant m

a b
ij
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Evaluate the determinant m

a
J

| = a2y

Laplace expansion along the first row. '

Determinants (©Robert Matik, 2006




Evaluate the determinant m

a b
1

' — a(—1)"* 5] + B(=1)"+

Laplace expansion along the first row. '

Determinants (©Robert Matik, 2006




Evaluate the determinant m

a b . ; . .
i j' = a(=1)""Hj] + b(=1)"*?}i| = aj — bi

We S|mpI|fy '




Evaluate the determinant m

a b
ij

' = a(—1)"j| + b(=1)""?|i| = aj — bi

The rule: multiply the main diagonal and subtract the product in the auxiliary
diagonal.



Evaluate the following determinant '

a b c - ik P
i § k|l =a(-1)* T 1)t +o(—1)'*3 ]‘
y 2 T oz Y
T Yy z
=a(jz — ky) — b(iz — kzx) + c(iy — jx)
=ajz — aky — biz + bkx + ciy — cjx
a b c
Therule: | @ j§ k |=ajz+iyc+ xbk — (cjx + kya + 2bi)
Ty z

[<] Determinants (©Robert Matik, 2006 [E§



Evaluate the following determinant '

a b c - ik P
i § k|l =a(-1)* T 1)t +o(—1)'*3 ]‘
y 2 T oz Y
T Yy z
=a(jz — ky) — b(iz — kzx) + c(iy — jx)
=ajz — aky — biz + bkx + ciy — cjx
The rule: = ajz + iyc+ axbk — (cjx + kya + 2bi)

=L Q8 =.Q
Lo s o
FTTO N IO

[<] Determinants (©Robert Matik, 2006 [E§



Theorem 7 (operations preserving the value of the determinant). The following
operations preserve the value of the determinant:

1. Leaving one row (column) without any change and adding arbitrary mul-
tiples of this row (column) to the remaining rows (columns).

2. Transposition of the matrix.

Remark 12 (Laplace expansion for columns). Theorem 7 shows that changing
rows of the determinant into columns (and vice versa) does not change the value
of the determinant. Thus all statements concerning the determinant and rows
can be reformulated also for columns. Among others, the Laplace expansion
along a column reads as follows: for an arbitrary column index j € {1,2,...,n}
we have

det A = Cllelj + CLQjAQj P 000 ap ClnjAnj,

where A;; is the ij-th cofactor of the matrix A. This formula is called the Laplace
expansion along the j-th column.

<] Determinants (©Robert Matik, 2006 [E§



Theorem 8 (another operations with determinant). The following operations
change the value of the determinant in a known way:

1. Interchange two rows (or two columns) of the determinant changes the
sign of the determinant.

2. Dividing an arbitrary row (an arbitrary column) by a nonzero number a
decreases the value of the determinant a-times.

<] Determinants (©Robert Matik, 2006 [E§



Evaluate the following determinant. "

O = = N
|
W ks = O
— 00 W W
I
N O = W
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Evaluate the following determinant. "

— 00 W W
I

O = = N
|

Wk = O

N O = W

The second row is the pivot row. '




Evaluate the following determinant. "

|0 -8 -9 5
-2 4 3 -1

= 00 W W

3
1
0
2

O = = N
|
W s = O

We adjust the first row. We don't interchange rows! '




Evaluate the following determinant. "

2 0-3 3| |[0-8-9 5
1 4 3 -1y 4 3 -1
1 -4 8 01 |0-8 5 1
0 3 -1 2

We adjust the third row. '




Evaluate the following determinant. "

2 0-3 3 0-8-9 5
1 4 3 -1} |1 4 3 -1
1 -4 8 0| |0-8 5 1
0 3 -1 2 0 3 -1 2

The last row remains. '




Evaluate the following determinant. "

= 1 (_1)2+ | _
1 -4 8 0] -8 5 1_1'( D g_?;
0 3 -1 2 3 -1 2

e We expand the determinant along the first column.

e The red element remains and it will be multiplied by (—1) * column,

e We omit the first column and the second row.
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Evaluate the following determinant. "

2 0-3 3 0 -8 -9 5
1 4 3-1| |1 4 3—1_1(_1)2+1 :g_g?
1 -4 8 0] |0-8 5 1| '3_12
0 3 -1 2 0 3 -1 2
=—-1|-852+(-8)(-1).5+3.(-9).1
—(5.5.3+1.(—1).(=8) +2.(—9).(-8))
(We evaluate the 3 x 3 determinant by the rule: )

-8 -9 5
-8 5 1

3 -1 2
-8 -9 5
-8 5 1




Evaluate the following determinant. "

— 00 W W
I

O = = N
|

Wk = O

N O = W

EH E 3 B3

= =1.(-1)*". ] -8 51
0-8 5 1 5 1 3
0 3 -1 2

=-1 {—8.5.2 4 (=8)(=1).5+3.(=9).1
— (5:5.3+ 1.(=1).(=8) +2.(=9).(-8))]

= —1{—80+40—27— (75+8+144)}
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Evaluate the following determinant. "

O = = N
|
W ks = O
— 00 W W
I
N O = W

EH E 3 B3

A 5

= =1.(-1)*"' ] -8 51
0-8 5 1 5 1 3
0 3 -1 2

-1 {—8.5.2 +(—8)(—1).5+3.(-9).1
— (553 +1.(—1).(-8) + 2.(—9)-(—8))]
_ _1[_80+4o_27— (75+8 + 144)}

= — |67 2271]
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Evaluate the following determinant. "

— 00 W W
I

O = = N
|

Wk = O

N O = W

EH E 3 B3

A 5

= =1.(-1)*"' ] -8 51
0-8 5 1 5 1 3
0 3 -1 2

-1 {—8.5.2 +(—8)(—1).5+3.(-9).1
— (553 +1.(—1).(-8) + 2.(—9)-(—8))]
_ _1[_8o+4o_ 27 — (75+ 8 + 144)}

- [—67 - 227} — 204

Determinants ©Robert Mafik, 2006



Evaluate the determinant. '

-3 =5
8 2
2 2

-5 —4
0 0

EH E 3 B3

3
2
2
=T
0

1
=7
=7

)

0

2

— o O

Determinants
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Evaluate the determinant. '

-3 -5 3 1 2
8 2 2 =2
2 2 2 =2

-5 -4 -7 5
0 0 0 0

=N =)
Il

e The last row contains only one nonzero element.

e We use the Laplace expansion along the last row.
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Evaluate the determinant. '

-3 -5 3 1 2
8 2 2 =2
2 2 2 =2

-5 -4 -7 5
o 0 0 O

= =)
Il
—

e The only nonzero element is as; = 1.

e The Laplace expansion starts with this element.
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Evaluate the determinant. '

-3 -5 3 1 2
8 2 2 =2
2 2 2 =2

-5 -4 -7 5
o 0 0 O

1- (_1)5+5

= =)
Il

We continue with the factor (—1)rv+eelumn,
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Evaluate the determinant. '

-3 -5 3 1 2
8 2 2 =2
2 2 2 =2

-5 -4 -7 5
o 0 0 O

=1l o (_1)5+5 .

— o kO

And the determinant 4 x 4 . .. .




Evaluate the determinant. '

-3
8
2

-5

-5
2
2
—4

3
2
2
=T

1
=7
=7

5

. (_1)5+5 .




Evaluate the determinant. '

-3
8
2
)
0

-5
2
2
—4
0

.9

3
2
2
=T
0
-3
4
1
)

1
=7
=7

5)

0
-5

1

1
—4

: 3 -5 3 1
s 2 2 -2
_1.(_1)\5t5 .
o=t 2 2 2 -2
X 5 4 -T 5
31
1 -1
1 -1
7 5

e The product on the begin of the determinant equals one.

o We take a common factor 2 from the second row and from the third row.

e From both rows there arise number 2 in the front of determinant.

A B B

(©Robert Maik, 2006 [B4
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Evaluate the determinant. '

-3 -5 3 1 2
8 2 2 -2 0 =0 =9 & 1
2 2 2 -2 4

-5 -4 -7 5 6
0 0 0 01

-3 =5 3 1
4 1 1 -1
-5 —4 -7 5)

We use the third row as a pivot row. '




Evaluate the determinant. '

-3 -5 3 1 2
8 2 2 -2 0 =0 =9 & 1
2 2 2 -2 4

-5 -4 -7 5 6
0 0 0 01

-3 -5 3 1
4 1 1 -1

=1-2-2-0 0 7 1 9T 1 1 1 1
-5 —4 -7 5

Pivot row remains. We keep the order of rows! '




Evaluate the determinant. '

-3 -5 3

8 2 2

2 2 2

-5 -4 -7

0o 0 O

-3

4

=1.2.2. 5
)

1
=7
=7

5

0
-5

1

1
—4

2




Evaluate the determinant. '

-3 -5 3

8 2 2

2 2 2

-5 -4 -7

0o 0 O

-3

4

=1.2.2. 5
)

1
=7
=7

5

0
-5

1

1
—4

2




Evaluate the determinant.

— A AN O
(.
M AN AN b~

I
0 A <A
| I
™M 0 AN 1O
| I

0

IT

0

—~

—

N

Al

Il
NO <O -
120%50
32240
Kwn/dn/HA_xO

-3
8

—4

o2




Evaluate the determinant. '

-3 -5 3 1 2
8 2 2 -2 0 =0 =9 & 1
2 2 2 -2 4

-5 -4 -7 5 6
0 0 0 01

-3 -5 3 1 -2 —4 4 0
4 1 1 -1 3 0 0 0
=220 0 0 1 a7 1 1 1 41
-5 —4 -7 5 0 1 -2 0




Evaluate the determinant. '

-3 -5 3 1 2
8 2 2 -2 0 =0 =9 & 1
2 2 2 -2 4

-5 -4 -7 5 6
0 0 0 01

-3 -5 3 1 -2 —4 4 0
4 1 1 -1 3 0 0 0
= Lo2o2 101 01 1= 1 1 1 -1
-5 —4 -7 5 0 1 -2 0

=4 (=1) - (-1

and continue with the Laplace expansion along the last column:
(the only nonzero element) - (—1)rovFeelumn
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Evaluate the determinant. '

-3 -5 3 1 2
8 2 2 -2 0 =0 =9 & 1
2 2 2 -2 4

-5 -4 -7 5 6
0 0 0 01

-3 -5 3 1 -2 —4 4 0
4 1 1 -1 3 0 0 0
= Lo2o2 101 01 1= 1 1 1 -1
-5 —4 -7 5 0 1 -2 0

=4 (=1) - (-1




Evaluate the determinant. '

-3 -5 3 1 2
8 2 2 -2 0 = =5 g |

2 2 2 —2 4 |=1-(-1)**5. R
2 2 2 =2
-5 —4 -7 5 6 5 4 o &
0 0 0 01
-3 -5 3 1 -2 —4 4
4 1 1 -1 3 0 0
=220 0y 1 |74 —1
5 —4 -7 5 0 1 -2
-2 —4 4

=4-(-1)-(=1)3*| 3 0 0




Evaluate the determinant. '

-3 -5 3 1 2
8 2 2 -2 0 =0 =9 & 1
2 2 2 -2 4

-5 -4 -7 5 6
0 0 0 01

-3 -5 3 1 -2 —4 4 0
4 1 1 -1 3 0 0 0
=2 11 1 1|74 1 1 1 -
-5 -4 -7 5 0 1 -2 0
-2 -4 4
=4-(-1)-(=1)3*| 3 0 0
0 1 -2




Evaluate the determinant. '

-3 -5 3 1 2
8 2 2 -2 0
2 2 2 -2 4

-5 -4 -7 5 6
0 0 0 0 1

-3 -5 3 1 —
4 1 1 -1
=122 | | | _;|=4
-5 —4 -7 5
-2 —4 4
=4-(-1)-(=1)3| 3 0 0
0 1 -2

=4-3.(-1)*"

We use the expansion along the third row:

(the only nonzero element) - (—1)rowFeelumn
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Evaluate the determinant. '

-3 -5 3 1 2

8 2 2 -2 0 o s
2 2 2 —2 4 |=1-(-1)**5. R
2 2 2 =2
-5 -4 -7 5 6 5 4 o &
0 0 0 01
-3 -5 3 1 -2 —4 4 0
4 1 1 -1 30 0 0
=122 11 1 1|74 1 1 1
5 -4 -7 5 0 1 -2 0
-4 4
=4-(-1)-(=1)3*| 3
1 -2




Evaluate the determinant. '

-3 -5 3 1 2

8 2 2 -2 0 o s
2 2 2 —2 4 |=1-(-1)**5. R
2 2 2 =2
-5 -4 -7 5 6 5 4 o &
0 0 0 01
-3 -5 3 1 -2 -4 4 0
4 1 1 -1 30 0 0
=122 11 1 1|74 1 1 1
5 -4 -7 5 0 1 -2 0
-2 —4 4
=4-(-1)-(=1)3*| 3 0 0
0 1 -2
_ ap1| —4 4]
=4-3.(-1) ] _2‘_—12




Evaluate the determinant. '

-3 -5 3 1 2 I
8 2 2 -2 0 5 9 9 -
2 2 2 —2 4 |=1-(-1)**5.
2 2 2 -2
-5 —4 -7 5 6 =R -
0O 0 0 01
-3 -5 3 1 -2 —4 4 0
4 1 1 -1 3 0 0 0
= Lo2o2 101 01 174 1 1 1 -
-5 —4 -7 5 0 1 -2 0
-2 —4 4
=4-(-1)-(=1)3*| 3 0 0
0 1 -2
=4-3. (1) -4 =-12-(8—4)
1 -2
[and the 2 x 2 determinant can be evaluated by the rule ch 2 = ad — be.

N d 3O B3
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Evaluate the determinant. '

-3 -5 3 1 2

8 2 2 -2 0 o s
2 2 2 —2 4 |=1-(-1)**5. R
2 2 2 =2
-5 -4 -7 5 6 5 4 o &
0 0 0 01
-3 -5 3 1 -2 —4 4 0
4 1 1 -1 30 0 0
=122 11 1 1|74 1 1 1
5 -4 -7 5 0 1 -2 0
-2 —4 4
=4-(-1)-(=1)3*| 3 0 0
0 1 -2

‘:—12-(8—4):—48




Evaluate the determinant.

-5
2
2
—4

-3

-5
2

-3
8

2 2
2 -2
=T

8
2

=1l o (_1)5+5 .

-2 4
6
1

2
=T

2
—4

)

—4

o2

-4 =7

)

(©Robert Matik, 2006
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