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1 Algebraic equations – general theory

We are able to solve linear and quadratic equations:

• If a 6= 0 and ax + b = 0, then x = −
b

a
.

• If a 6= 0 and ax2 + bx + c = 0, then x1,2 = −b ±
√

b2 − 4ac

2a
.

Now we wish to be able to solve higher order equations.
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Definition (polynomial). Let n be a nonnegative integer and

Pn(x) = a0x
n + a1x

n−1 + a2x
n−2 + · · · + an−2x

2 + an−1x + an (1)

be an n-degree polynomial with real coefficients a0, a1, . . . an, where a0 6= 0 (i.e., the
highest power really appears in the polynomial).

The coefficient a0 is called a leading coefficient of the polynomial Pn(x) and the coefficient
an is an absolute term of the polynomial Pn(x). The term a0x

n is called a leading term of

the polynomial Pn(x).

Example 1. The polynomial
y = 2x6 + x5 − 3x + 10

is a 6-degree polynomial with the leading term 2x6 and the absolute term 10.
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Definition (algebraic equation). Under an n-degree algebraic equation we understand the
equation of the form Pn(x) = 0, i.e.

a0x
n + a1x

n−1 + a2x
n−2 + · · · + an−2x

2 + an−1x + an = 0 (2)

Definition (zero of an algebraic equation). Under a zero of equation (2) (or a zero

of polynomial (1)) we understand the number c which satisfies Pn(c) = 0, i.e., which
substituted for x converts (2) into a valid relation.

A zero of an algebraic equation is sometimes called also a root of this equation or simply a
solution.

Example 2. The numbers x = 1 and x = −2 are zeros of the polynomial

P(x) = x3 + 2x2 − x − 2. (3)

Really, a quick evaluation shows P(1) = 0 and P(−2) = 0. The number x = 3 is not a zero
of this polynomial, since P(3) = 40.
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Theorem 1 (the basic theorem of algebra). Every algebraic equation has a solution in the
set of complex numbers.

Theorem 2 (Bezout). The number c is a zero of polynomial (1) (of equation (2)) if and E
only if the linear polynomial (x − c) is a factor of this polynomial, i.e., if and only if there
exists an (n − 1) degree polynomial Qn−1(x) with property

Pn(x) = (x − c)Qn−1(x). (4)

Definition (linear factor corresponding to the zero of algebraic equation). If c is a zero of
polynomial (1) (of equation (2)), then the linear polynomial (x − c) with an independent
variable x is said to be a linear factor of the polynomial (1) corresponding to the zero

x = c.

Example 3. Polynomial (3) can be written in each of the following equivalent forms

y = (x − 1)(x2 + 3x + 2), y = (x + 2)(x2 − 1), y = (x − 1)(x + 1)(x + 2).

The reader can check these relations by multiplying the parentheses.
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Remark 1 (Horner’s scheme). The Horner’s scheme is a numerical method for easy

• calculation of the value of the polynomial in given number x = a,
• division of a polynomial by a linear polynomial (x − a).

Consider an n-degree polynomial

Pn(x) = a0x
n + a1x

n−1 + a2x
n−2 + · · · + an−2x

2 + an−1x + an

and a real number a. Let us write the following scheme (an example follows)

a0 a1 a2 . . . ai−1 ai . . . an−1 an

a b0 b1 b2 . . . bi−1 bi . . . bn

where a0 = b0, b1 = a · b0 + a1, b2 = a · b1 + a2, . . . , bi = a · bi−1 + ai, . . . .
If

Qn−1 = b0x
n−1 + b1x

n−2 + b2n
n−3 + · · · + +bn−2x + bn−1,

then

Pn(a) = bn ,
Pn(x)
x − a

= Qn−1(x) + Pn(a)
x − a

, Pn(x) = (x − a)Qn−1(x) + Pn(a) .

If bn = 0, then x = a is a zero of the polynomial Pn(x).
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Example 4. Divide P(x) = x6 + 3x5 − 12x4 − 38x3 + 21x2 + 99x + 54

1. by the linear polynomial (x − 1)
2. by the linear polynomial (x + 1)

and establish the values P(1) and P(−1).
Solution: For x = 1 we have by the Horner’s scheme

1 3 −12 −38 21 99 54
1 1 4 −8 −46 −25 74 128

and hence
P(x) = (x5 + 4x4 − 8x3 − 46x2 − 25x + 74)(x − 1) + 128.

In a similar way, for x = −1 we get

1 3 −12 −38 21 99 54
−1 1 2 −14 −24 45 54 0

and hence
P(x) = (x5 + 2x4 − 14x3 − 24x2 + 45x + 54)(x + 1). (5)

The values P(1) and P(−1) are the last numbers in the second row of Horner’s scheme, hence
P(1) = 128 and P(−1) = 0.
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Definition (multiplicity of zero). Let c be a zero of the polynomial (1). The zero c is said
to be of the multiplicity k if there exists (n − k )-degree polynomial Qn−k (x) such that,

Pn(x) = (x − c)kQn−k (x) and Qn−k (c) 6= 0. (6)

Remark 2. A zero of multiplicity one is called a simple zero, a zero of multiplicity two is
called a double zero.

Theorem 3. Let x = c be a zero of the polynomial Pn(x) and let Qn−k (x) be polynomial
from the relation (6). Then the polynomials Pn(x) and Qn−k (x) have common zeros, including
multiplicity of these zeros, with exception of the zero x = c.

Theorem 4 (multiplicity of zeros and the derivatives). The number c is a zero of the poly-
nomial (1) (equation (2)) of the multiplicity k if and only if

Pn(c) = P ′
n(c) = P ′′

n (c) = · · · = P(k−1)
n (c) = 0 and P(k )

n (c) 6= 0,

i.e. if and only if c is a zero of the polynomial and all its derivatives up to the order (k − 1)
(including (k − 1)) and it is not a zero of the derivative of the order k .
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Remark 3 (a geometric consequence). The zeros of a polynomial are the x-intercepts of the
graph of this polynomial. In a neighbourhood of this zero the polynomial either changes its
sign or not. Which of these two possibilities actually occurs depends on the multiplicity of
this zero. More precisely, the following holds:

• At the zero of an odd multiplicity the polynomial changes the sign. If the multiplicity
is at least 3, the zero is also a stationary point of the polynomial (tangent in this point
is horizontal) and also a point of inflection.

• At the zero of an even multiplicity the polynomial does not change the sign. Hence
there is a local extremum at this point; a local maximum, if the sign of the polynomial
is negative in a neighbourhood of the zero and a local minimum, if the sign of the
polynomial is positive.

Theorem 5 (the number of zeros of polynomial). Every n-degree polynomial has exactly n
zeros in the field of complex numbers, counted with multiplicity.

Theorem 6 (the number of real zeros). Every n-degree polynomial has in the field of real E
numbers either exactly n zeros or n − l zeros, where l is an even number. Each zero is in this
amount counted with multiplicity.
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2 Basic numerical methods for algebraic equations

The problem to find all zeros of a given polynomial is not solvable in general. From this
reason it is sometimes is necessary to use approximation methods. Some of the methods
available for working with polynomials are presented in the following paragraphs. Our aim is

• to find the interval which contains all zeros of the polynomial,
• to find the system of intervals with the property that each interval contains exactly one

zero (separation of zeros),
• to approximate zeros of the polynomial with error not higher than a given number.

Theorem 7 (estimate for zeros of algebraic equation). Let xi (for i = 1..n) be zeros (real or
complex) of equation (2). The following estimate holds for all of these zeros

|xi| < 1 + A

|a0|
, (7)

where A = max{|ai|, i = 1..n}.
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Theorem 8 (estimate for the number of real zeros, Descartes). Let p be the number of
positive zeros of the polynomial (1) and s the number of the changes of the sign in the
sequence of its coefficients a0, a1, a2, . . ., an, (the coefficients which are equal to zero are not
considered in this sequence). Then either p = s or p < s and in the latter case the number
s − p is and even number.

Example 5. The polynomial P(x) = x8 − x5 + x3 + x2 − x + 1 has either 4 or 2 or no positive
zero. These zeros (if there are at least two) are in the interval (0, 2).

Example 6. The polynomial P(x) = 2x6 − x3 + 4x2 + x − 6 has either 3 or 1 positive zero
in the interval (0, 4).
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Remark 4 (number of negative zeros – a modification of Descarte’s rule). To estimate the
number of negative zeros we use the simple fact that

P(x) = P(−(−x)) = P(−x), where P(x) := P(−x).

Hence to find negative zeros of the polynomial P(x), suffices to find the positive zeros of P(x).
Practically, we work in the following steps.

• We write the polynomial P(x) := P(−x) substituting −x for x in the polynomial P(x).
This gives a new polynomial which differs form the polynomial P(x) i the signs of the
coefficients at the odd powers of x .

• We establish the number of the sign changes in the sequence of the coefficients in the
polynomial P(x).

• The number of negative zeros of the polynomial P(x) is equal to the numbers of the
sign changes from the preceding step or less by an even number.

Example 7. For polynomial P(x) = 2x6 − x3 + 4x2 + x − 6 we have P(x) = P(−x) =
2x6 + x3 + 4x2 − x − 6 and the polynomial P(x) has one negative zero. This zero is in the
interval (−4, 0).
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Remark 4 (number of negative zeros – a modification of Descarte’s rule). To estimate the
number of negative zeros we use the simple fact that

P(x) = P(−(−x)) = P(−x), where P(x) := P(−x).

Hence to find negative zeros of the polynomial P(x), suffices to find the positive zeros of P(x).
Practically, we work in the following steps.

• We write the polynomial P(x) := P(−x) substituting −x for x in the polynomial P(x).
This gives a new polynomial which differs form the polynomial P(x) i the signs of the
coefficients at the odd powers of x .

• We establish the number of the sign changes in the sequence of the coefficients in the
polynomial P(x).

• The number of negative zeros of the polynomial P(x) is equal to the numbers of the
sign changes from the preceding step or less by an even number.

Example 7. For polynomial P(x) = 2x6 − x3 + 4x2 + x − 6 we have P(x) = P(−x) =
2x6 + x3 + 4x2 − x − 6 and the polynomial P(x) has one negative zero. This zero is in the
interval (−4, 0).

⊳⊳ ⊳ ⊲ ⊲⊲ Basic numerical methods for algebraic equations c©Robert Mǎŕık, 2006 ×
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Let us study the polynomials (algebraic equations) with integer coefficients first. In this case
it is easy to find all its integer zeros (if exists any).

Theorem 9 (necessary condition for polynomial with integer coefficients). Suppose that all
coefficients of a given polynomial (1) are integers. Suppose that c ∈ Z is an integer zero of
this polynomial. Then the absolute term must be divisible by the number c, i.e. c|an.

Remark 5 (practical). From Theorem 9 it follows that it is sufficient to look for integer zeros
of a polynomial with integer coefficients in the set of all integers factors of the term a0. An
importance of this idea is in the fact that the set of all factors of a0 contains only a finite
amount of number. We can test in a finite time each of these candidates whether it is actually
a zero and what is a multiplicity of this zero. If we find a zero c of multiplicity k , we divide
k-times the polynomial with linear factor (x − c) and consider the obtained new polynomial
in the sequel.
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Let us study the polynomials (algebraic equations) with integer coefficients first. In this case
it is easy to find all its integer zeros (if exists any).

Theorem 9 (necessary condition for polynomial with integer coefficients). Suppose that all
coefficients of a given polynomial (1) are integers. Suppose that c ∈ Z is an integer zero of
this polynomial. Then the absolute term must be divisible by the number c, i.e. c|an.

Remark 5 (practical). From Theorem 9 it follows that it is sufficient to look for integer zeros
of a polynomial with integer coefficients in the set of all integers factors of the term a0. An
importance of this idea is in the fact that the set of all factors of a0 contains only a finite
amount of number. We can test in a finite time each of these candidates whether it is actually
a zero and what is a multiplicity of this zero. If we find a zero c of multiplicity k , we divide
k-times the polynomial with linear factor (x − c) and consider the obtained new polynomial
in the sequel.
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Solve the equation x5 + x4 − 5x3 − 9x2 − 24x − 36 = 0.

The number 36 possesses the following factors: ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18 and
±36.

1 1 −5 −9 −24 −36
1 1 2 −3 −12 −36 −72

−1 1 0 −5 −4 −20 −16
2 1 3 1 −7 −38 6= 0

−2 1 −1 −3 −3 −18 || 0
−2 1 −3 3 −9 || 0
−2 1 −5 13 −35
3 1 0 3 || 0

−3 1 −3 12

Factorization of the polynomial is (x + 2)2(x − 3)(x2 + 3) = 0.
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Solve the equation x5 + x4 − 5x3 − 9x2 − 24x − 36 = 0.

The number 36 possesses the following factors: ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18 and
±36.

1 1 −5 −9 −24 −36
1 1 2 −3 −12 −36 −72

−1 1 0 −5 −4 −20 −16
2 1 3 1 −7 −38 6= 0

−2 1 −1 −3 −3 −18 || 0
−2 1 −3 3 −9 || 0
−2 1 −5 13 −35
3 1 0 3 || 0

−3 1 −3 12

Factorization of the polynomial is (x + 2)2(x − 3)(x2 + 3) = 0.

We find al factors of the absolute term 36 (both positive and negative).
⊳⊳ ⊳ ⊲ ⊲⊲ Basic numerical methods for algebraic equations c©Robert Mǎr´k, 2006 ×



Solve the equation x5 + x4 − 5x3 − 9x2 − 24x − 36 = 0.

The number 36 possesses the following factors: ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18 and
±36.

1 1 −5 −9 −24 −36
1 1 2 −3 −12 −36 −72

−1 1 0 −5 −4 −20 −16
2 1 3 1 −7 −38 6= 0

−2 1 −1 −3 −3 −18 || 0
−2 1 −3 3 −9 || 0
−2 1 −5 13 −35
3 1 0 3 || 0

−3 1 −3 12

Factorization of the polynomial is (x + 2)2(x − 3)(x2 + 3) = 0.

We will use the Horner’s scheme for evaluation of the polynomial at the test numbers and
for division by the linear factor.
⊳⊳ ⊳ ⊲ ⊲⊲ Basic numerical methods for algebraic equations c©Robert Mǎr´k, 2006 ×



Solve the equation x5 + x4 − 5x3 − 9x2 − 24x − 36 = 0.

The number 36 possesses the following factors: ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18 and
±36.

1 1 −5 −9 −24 −36
1 1 2 −3 −12 −36 −72

−1 1 0 −5 −4 −20 −16
2 1 3 1 −7 −38 6= 0

−2 1 −1 −3 −3 −18 || 0
−2 1 −3 3 −9 || 0
−2 1 −5 13 −35
3 1 0 3 || 0

−3 1 −3 12

Factorization of the polynomial is (x + 2)2(x − 3)(x2 + 3) = 0.

We substitute x = 1. We see that P(1) = −72 and the number x = 1 is not a zero of the
polynomial.
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Solve the equation x5 + x4 − 5x3 − 9x2 − 24x − 36 = 0.

The number 36 possesses the following factors: ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18 and
±36.

1 1 −5 −9 −24 −36
1 1 2 −3 −12 −36 −72

−1 1 0 −5 −4 −20 −16
2 1 3 1 −7 −38 6= 0

−2 1 −1 −3 −3 −18 || 0
−2 1 −3 3 −9 || 0
−2 1 −5 13 −35
3 1 0 3 || 0

−3 1 −3 12

Factorization of the polynomial is (x + 2)2(x − 3)(x2 + 3) = 0.

Similarly, the number x = −1 is not a zero.
⊳⊳ ⊳ ⊲ ⊲⊲ Basic numerical methods for algebraic equations c©Robert Mǎr´k, 2006 ×



Solve the equation x5 + x4 − 5x3 − 9x2 − 24x − 36 = 0.

The number 36 possesses the following factors: ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18 and
±36.

1 1 −5 −9 −24 −36
1 1 2 −3 −12 −36 −72

−1 1 0 −5 −4 −20 −16
2 1 3 1 −7 −38 6= 0

−2 1 −1 −3 −3 −18 || 0
−2 1 −3 3 −9 || 0
−2 1 −5 13 −35
3 1 0 3 || 0

−3 1 −3 12

Factorization of the polynomial is (x + 2)2(x − 3)(x2 + 3) = 0.

x = 2 is not a zero.
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Solve the equation x5 + x4 − 5x3 − 9x2 − 24x − 36 = 0.

The number 36 possesses the following factors: ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18 and
±36.

1 1 −5 −9 −24 −36
1 1 2 −3 −12 −36 −72

−1 1 0 −5 −4 −20 −16
2 1 3 1 −7 −38 6= 0

−2 1 −1 −3 −3 −18 || 0
−2 1 −3 3 −9 || 0
−2 1 −5 13 −35
3 1 0 3 || 0

−3 1 −3 12

Factorization of the polynomial is (x + 2)2(x − 3)(x2 + 3) = 0.

The number x = −2 is a zero of the polynomial under consideration. The left hand side of
the equation possesses factorization

(x + 2)(x4 − x3 − 3x2 − 3x − 18) = 0.

In the following steps we investigate the second polynomial in this product only.
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Solve the equation x5 + x4 − 5x3 − 9x2 − 24x − 36 = 0.

The number 36 possesses the following factors: ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18 and
±36.

1 1 −5 −9 −24 −36
1 1 2 −3 −12 −36 −72

−1 1 0 −5 −4 −20 −16
2 1 3 1 −7 −38 6= 0

−2 1 −1 −3 −3 −18 || 0
−2 1 −3 3 −9 || 0
−2 1 −5 13 −35
3 1 0 3 || 0

−3 1 −3 12

Factorization of the polynomial is (x + 2)2(x − 3)(x2 + 3) = 0.

We substitute again x = −2. This number is again a zero. It is a multiple zero (at least
double) of the original polynomial.
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Solve the equation x5 + x4 − 5x3 − 9x2 − 24x − 36 = 0.

The number 36 possesses the following factors: ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18 and
±36.

1 1 −5 −9 −24 −36
1 1 2 −3 −12 −36 −72

−1 1 0 −5 −4 −20 −16
2 1 3 1 −7 −38 6= 0

−2 1 −1 −3 −3 −18 || 0
−2 1 −3 3 −9 || 0
−2 1 −5 13 −35
3 1 0 3 || 0

−3 1 −3 12

Factorization of the polynomial is (x + 2)2(x − 3)(x2 + 3) = 0.

• We substitute again x = −2. This number is no more zero (it is a double zero of the
original polynomial).

• In fact, we focus our attention to the factors of the absolute term 9.
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Solve the equation x5 + x4 − 5x3 − 9x2 − 24x − 36 = 0.

The number 36 possesses the following factors: ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18 and
±36.

1 1 −5 −9 −24 −36
1 1 2 −3 −12 −36 −72

−1 1 0 −5 −4 −20 −16
2 1 3 1 −7 −38 6= 0

−2 1 −1 −3 −3 −18 || 0
−2 1 −3 3 −9 || 0
−2 1 −5 13 −35
3 1 0 3 || 0

−3 1 −3 12

Factorization of the polynomial is (x + 2)2(x − 3)(x2 + 3) = 0.

• We remove the numbers which are not divisors of the number 9 and continue with
x = 3.

• The number x = 3 is a zero.
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Solve the equation x5 + x4 − 5x3 − 9x2 − 24x − 36 = 0.

The number 36 possesses the following factors: ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18 and
±36.

1 1 −5 −9 −24 −36
1 1 2 −3 −12 −36 −72

−1 1 0 −5 −4 −20 −16
2 1 3 1 −7 −38 6= 0

−2 1 −1 −3 −3 −18 || 0
−2 1 −3 3 −9 || 0
−2 1 −5 13 −35
3 1 0 3 || 0

−3 1 −3 12

Factorization of the polynomial is (x + 2)2(x − 3)(x2 + 3) = 0.

We explore the divisors of the absolute term — the number 3. The sequence of coefficients
does not contain any change of sign and by the Descart’s rule of signs there is no positive
zero. It is sufficient to test the number x = −3. This number is not a zero.
⊳⊳ ⊳ ⊲ ⊲⊲ Basic numerical methods for algebraic equations c©Robert Mǎr´k, 2006 ×



Solve the equation x5 + x4 − 5x3 − 9x2 − 24x − 36 = 0.

The number 36 possesses the following factors: ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18 and
±36.

1 1 −5 −9 −24 −36
1 1 2 −3 −12 −36 −72

−1 1 0 −5 −4 −20 −16
2 1 3 1 −7 −38 6= 0

−2 1 −1 −3 −3 −18 || 0
−2 1 −3 3 −9 || 0
−2 1 −5 13 −35
3 1 0 3 || 0

−3 1 −3 12

Factorization of the polynomial is (x + 2)2(x − 3)(x2 + 3) = 0.

• The polynomial possesses double zero x = −2, simple zero x = 3 and the remaining
two zeros are not integers.

• The polynomial with coefficients 1, 0, 3 (i.e. the polynomial x2 +0x +3) remains when
we divide by all linear factors corresponding to these zeros.
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Arrangement. The number c is said to be a zero of polynomial (1) with an error less than

ε if it differs from the actual zero at most by ε, i.e. if the actual zero is in the interval
(c − ε, c + ε).
It is clear that if the interval [a, b] contains1 a zero of the polynomial P(x), then the centre

c = a + b

2 of this interval is a zero of the polynomial with error less than the half of the

length of this interval, i.e. ε = b − a

2 .

The method of bisection. Given a polynomial P(x) and real numbers a, b ∈ R, suppose E

that P(a)P(b) < 0 holds. Consider the point c = b + a

2 and the value P(c) of the

polynomial in this point. One of the relations

P(a)P(c) < 0 or P(c)P(b) < 0 or P(c) = 0

holds. Omitting the last possibility (in this case x = c is an exact zero of the polynomial
P(x)), we see that one of the intervals (a, c) and (b, c) contains a zero of the polynomial
P(x) When seeking a zero, we can focus our attention to the appropriate left half or right
half of the interval (a, b). Following this idea we can, after a finite number of steps, obtain
the value of the zero with an arbitrary precision.

1This is guaranteed especially if P(a) and P(b) have different signs.
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Arrangement. The number c is said to be a zero of polynomial (1) with an error less than

ε if it differs from the actual zero at most by ε, i.e. if the actual zero is in the interval
(c − ε, c + ε).
It is clear that if the interval [a, b] contains1 a zero of the polynomial P(x), then the centre

c = a + b

2 of this interval is a zero of the polynomial with error less than the half of the

length of this interval, i.e. ε = b − a

2 .

The method of bisection. Given a polynomial P(x) and real numbers a, b ∈ R, suppose E

that P(a)P(b) < 0 holds. Consider the point c = b + a

2 and the value P(c) of the

polynomial in this point. One of the relations

P(a)P(c) < 0 or P(c)P(b) < 0 or P(c) = 0

holds. Omitting the last possibility (in this case x = c is an exact zero of the polynomial
P(x)), we see that one of the intervals (a, c) and (b, c) contains a zero of the polynomial
P(x) When seeking a zero, we can focus our attention to the appropriate left half or right
half of the interval (a, b). Following this idea we can, after a finite number of steps, obtain
the value of the zero with an arbitrary precision.

1This is guaranteed especially if P(a) and P(b) have different signs.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

All zeros are in the interval (−2, 2).
+ + −, one positive zero
P(−x) = (−x)3 + (−x) + 1 = −x3 − x − 1
− − −, no negative zero
P(0) = −1;
P(1) = 1 + 1 − 1 = 1;
P(2) = 8 + 2 − 1 = 9; The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

All zeros are in the interval (−2, 2).
+ + −, one positive zero
P(−x) = (−x)3 + (−x) + 1 = −x3 − x − 1
− − −, no negative zero
P(0) = −1;
P(1) = 1 + 1 − 1 = 1;
P(2) = 8 + 2 − 1 = 9; The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

• All coefficients are ±1.

• The largest coefficient (in absolute value) is 1.

• All zeros satisfy the estimate

|xi| < 1 + 1
1 = 2.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

All zeros are in the interval (−2, 2).
+ + −, one positive zero
P(−x) = (−x)3 + (−x) + 1 = −x3 − x − 1
− − −, no negative zero
P(0) = −1;
P(1) = 1 + 1 − 1 = 1;
P(2) = 8 + 2 − 1 = 9; The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

• We write the sequence of signs.

• The sequence contains one change of sign.

• The equation possesses one positive solution.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

All zeros are in the interval (−2, 2).
+ + −, one positive zero
P(−x) = (−x)3 + (−x) + 1 = −x3 − x − 1
− − −, no negative zero
P(0) = −1;
P(1) = 1 + 1 − 1 = 1;
P(2) = 8 + 2 − 1 = 9; The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

• We look for the number of negative zeros.

• We write the auxiliary polynomial P(−x) and determine the number of changes of sign.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

All zeros are in the interval (−2, 2).
+ + −, one positive zero
P(−x) = (−x)3 + (−x) + 1 = −x3 − x − 1
− − −, no negative zero
P(0) = −1;
P(1) = 1 + 1 − 1 = 1;
P(2) = 8 + 2 − 1 = 9; The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).
There is no change of sign. The equation possesses no negative solution (no solution is on
(−∞, 0)).
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

All zeros are in the interval (−2, 2).
+ + −, one positive zero
P(−x) = (−x)3 + (−x) + 1 = −x3 − x − 1
− − −, no negative zero
P(0) = −1;
P(1) = 1 + 1 − 1 = 1;
P(2) = 8 + 2 − 1 = 9; The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

• The zero is in the interval (0, 2).

• Evaluating the polynomial at the integer values, we restrict this interval to the interval
of unit length.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

All zeros are in the interval (−2, 2).
+ + −, one positive zero
P(−x) = (−x)3 + (−x) + 1 = −x3 − x − 1
− − −, no negative zero
P(0) = −1;
P(1) = 1 + 1 − 1 = 1;
P(2) = 8 + 2 − 1 = 9; The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

• The solution is in (0, 1).

• We use the bisection to meet the required precision. (The current precision is 0.5.)
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

• We write our computations in the simple table.

• When writing the values of the polynomial we are interested in signs only.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

We find the half of the interval [a, b].
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

We evaluate polynomial at this number.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

• We determine the half of the interval [a, b] where the polynomial changes its sign (in
red).

• The boundaries of this interval are our new approximation of the zero.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

We bisect interval again. The middle of the interval is a solution with error less than

ε = 1 − 0.5
2 = 0.25.

This is still too much.
⊳⊳ ⊳ ⊲ ⊲⊲ Basic numerical methods for algebraic equations c©Robert Mǎr´k, 2006 ×



Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

We evaluate the polynomial at the middle of the interval.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

• We determine the half of the interval [a, b] where the polynomial changes its sign (in
red).

• The boundaries of this interval are our new approximation of the zero.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

We bisect the interval.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

We evaluate the polynomial at the middle of the interval.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

• We determine the half of the interval [a, b] where the polynomial changes its sign (in
red).

• The boundaries of this interval are our new approximation of the zero.

⊳⊳ ⊳ ⊲ ⊲⊲ Basic numerical methods for algebraic equations c©Robert Mǎr´k, 2006 ×



Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

We compute the error.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

We bisect the interval.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

We evaluate the polynomial at the middle of the interval.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

• We determine the half of the interval [a, b] where the polynomial changes its sign (in
red).

• The boundaries of this interval are our new approximation of the zero.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

We bisect the interval. We compute the error.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

We evaluate the polynomial at the middle of the interval.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

• We determine the half of the interval [a, b] where the polynomial changes its sign (in
red).

• The boundaries of this interval are our new approximation of the zero.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

• The error is sufficiently small.

• Now it is sufficient to bisect the interval.
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Solve P(x) = x3 + x − 1 = 0 with error less than 0.03.

The zero is between 0 and 1.

a c = a + b

2 b P(a) P(c) P(b) ε = b − a

2
0 0.5 1 − −0.37 +
0.5 0.75 1 − +0.17 +
0.5 0.625 0.75 − −0.13 +
0.625 0.6875 0.75 − +0.01 + 0.62
0.625 0.6563 0.6875 − −0.06 + 0.0312
0.6563 0.6719 0.6875 0.0156

(0.5)3 + 0.5 − 1 = −0.375
(0.75)3 + 0.75 − 1 = 0.171875
(0.625)3 + 0.625 − 1 = −0.130859
(0.6875)3 + 0.6875 − 1 = 0.0124511
The solution is x = 0.67 ± 0.02. It is in the interval (0.65, 0.69).

• We round the error to one nonzero digit. We round the solution to the same number
of decimal digits.

• We check that after this rounding both last estimates a and b are inside the interval,
where we claim the existence of solution.
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3 Lagrange interpolation formula

Motivation. An n-degree polynomial is given uniquely by (n + 1) independent conditions.2

The values of the polynomial at the given (n + 1) mutually different points can play the role
of such conditions.
It can be proved: For a given set of (n + 1) pairs [xi, yi] of the real numbers there exists a
unique n-degree polynomial P(x) which satisfies P(xi) = yi for all xi.
The main problem of this section is to find an analytic formula for this polynomial. There
are several possibilities. One of these possibilities is introduced in the following Theorem.

Theorem 10 (Lagrange). Let us consider the set of (n + 1) ordered pairs [xi, yi], i ∈ N0,
0 ≤ i ≤ n. Polynomial

L(x) = y0l0(x) + y1l1(x) + · · · + ynln(x) (8)

where

li(x) = (x − x0)(x − x1) · · · (x − xi−1)(x − xi+1) · · · (x − xn)
(xi − x0)(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

satisfies L(xi) = yi for all i ∈ N0, 0 ≤ i ≤ n.

2This follows from the fact that this polynomial contains (n + 1) coefficients. As a particular case, two

different points define a line.
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Definition (Lagrange polynomial). The polynomial L(x) from Theorem 10 is called a
Lagrange polynomial .

Polynomials li(x) from Theorem 10 are called small Lagrange polynomials.

Formula (8) is called a Lagrange interpolation formula.

Example 8. Find a 3-degree polynomial P(x) which satisfies P(1) = 3, P(2) = −2, P(−1) =
0 and P(0) = 1.
Solution: We write the values into the following table.

i 0 1 2 3
xi 1 2 −1 0
yi 3 −2 0 1

By the Lagrange interpolation formula (8) we have

P(x) = 3l0(x) + (−2)l1(x) + 0l2(x) + 1l3(x) = 3l0(x) − 2l1(x) + l3(x).
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The small Lagrange polynomials are

l0(x) = (x − 2)(x + 1)x
(1 − 2)(1 + 1)1 = x3 − x2 − 2x

−2

= −
1
2(x3 − x2 − 2x),

l1(x) = (x − 1)(x + 1)x
(2 − 1)(2 + 1)2 = x3 − 1

6

= 1
6(x3 − x),

l3(x) = (x − 1)(x − 2)(x + 1)
(0 − 1)(0 − 2)(0 + 1) = (x2 − 1)(x − 2)

2

= 1
2(x3 − 2x2 − x + 2).

Note that it is not necessary to write the polynomial l2(x), since y2 = 0 and l2(x) is multiplied
by a zero. The Lagrange interpolation formula gives

P(x) = −
3
2(x3 − x2 − 2x) − 21

6(x3 − x) + 1
2(x3 − 2x2 − x − 2)

= x3
(

−
3
2 −

1
3 + 1

2

)
+ x2

(3
2 − 1

)
+ x

(
3 + 1

3 −
1
2

)
+ 1

= −
4
3x3 + 1

2x2 + 17
6 x + 1.
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Further reading:

• http://mathworld.wolfram.com/PolynomialRoots.html

• http://mathworld.wolfram.com/PolynomialFactorTheorem.html

• http://www.sosmath.com/algebra/factor/fac02/fac02.html
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