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Abstract

In the paper we study the damped half-linear partial differential equation

div
(
A(x)||∇u||p−2∇u

)
+
〈
~b(x), ||∇u||p−2∇u

〉
+ c(x)|u|p−2u = 0.

Using radialization method we derive general oscillation results which allow
to deduce new oscillation criteria for this equation from oscillation criteria for
ordinary differential equations. Using careful radialization we improve several
known oscillation criteria.
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1. Introduction

The aim of this paper is to study oscillation properties of the half–linear
partial differential equation

div
(
A(x)||∇u||p−2∇u

)
+
〈
~b(x), ||∇u||p−2∇u

〉
+ c(x)|u|p−2u = 0 (1)

where x = (xi)
n
i=1 ∈ Rn, A(x) is elliptic n × n matrix with differentiable com-

ponents, c(x) is Hölder continuous function and ~b(x) = (b1(x), . . . , bn(x)) is
continuous n-vector function. The operator ∇ = ( ∂

∂xi
)ni=1 is the usual nabla

operator, the number q is a conjugate number to the number p, i.e., q = p
p−1 ,

〈·, ·〉 denotes the usual scalar product in Rn. Under a solution of (1) in Ω ⊆ Rn
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we understand a differentiable function u(x) such that A(x)||∇u(x)||p−2∇u(x)
is also differentiable and u satisfies (1) in Ω.

A special case of (1) is the linear partial differential equation which can
be obtained from (1) for p = 2. Another special case of (1) is the undamped
equation

div
(
A(x)||∇u||p−2∇u

)
+ c(x)|u|p−2u = 0 (2)

which for p = 2 reduces to linear equation

div
(
A(x)∇u

)
+ c(x)u = 0. (3)

If n = 1, then equation (2) reduces to the half–linear ordinary differential
equation (

a(r)|u′|p−2u′
)′

+ b(r)|u|p−2u = 0. (4)

The following notation is used in the paper: The vector norm ||~b|| =
(∑n

i=1 b
2
i

) 1
2

is the usual Euclidean norm, ||A|| = sup||~b||6=0
||A~b||
||~b||

is induced matrix norm and

λmin(x), λmax(x) are the smallest and largest eigenvalues of the matrix A(x),
respectively. From the fact that A(x) is positive definite symmetric matrix it
follows that ||A(x)|| = λmax(x). The number ωn is the surface area of the unit
sphere in Rn and Ω(a), Ω(a, b) and S(a) are the sets in Rn defined as follows:

Ω(a) = {x ∈ Rn : a ≤ ||x||},
Ω(a, b) = {x ∈ Rn : a ≤ ||x|| ≤ b},
S(a) = {x ∈ Rn : ||x|| = a}

The vector ~ν(x) is the normal unit vector to the sphere S(||x||) oriented out-
wards. Integration over the domain Ω(a, b) is performed introducing hyper-
spherical coordinates (r, θ), i.e.∫

Ω(a,b)

f(x) dx =

∫ b

a

∫
S(r)

f(x(r, θ)) dσ dr ,

where dσ is the element of the surface of the sphere S(r).

For simplicity, if M is matrix and ~k vector, then the product ~kM denotes
the matrix product of 1×n row matrix ~k and n×n matrix M and the product
M~k denotes the matrix product of the n×n matrix M and n×1 column matrix
~k.

The results of this paper are based on a suitable radialization of equation
(1) and conversion of this equation into an ordinary differential equation. This
argument has been used very effectively by many authors in various situations,
see [3, 5, 6, 8, 13, 14, 15, 18, 21, 22, 23].

The paper is organized as follows. In the next section we recall the main
ideas from the oscillation theory for half-linear equations and introduce the main
problem studied in this paper. The third section contains formulation of main
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results, proofs, remarks concerning applications and possible generalizations
and one technical lemma which extends the possibilities in applications. The
last section contains some examples which show that using methods from this
paper it is possible to derive easily sharper results than several recent oscillation
criteria which can be found in the literature.

2. Oscillation theory and Riccati equation

According to the oscillation theory of ordinary differential equations, equa-
tion (4) is said to be oscillatory if every its solution has infinitely many zeros
on the interval (r0,∞) and nonoscillatory if there exists r1 ≥ r0 such that (4)
has solution on (r1,∞) without zeros. If u is a solution of (4) which has no zero

on (r1,∞), then the function w(r) = a(r) |u
′(r)|p−2u′(r)
|u(r)|p−2u(r) is solution of the Riccati

equation
R[w] := w′ + b(r) + (p− 1)a1−q(r)|w|q = 0. (5)

This Riccati equation is frequently used to derive oscillation criteria for (4).
More precisely, the following theorem holds.

Theorem A ([4, Theorem 2.2.1]). The following statements are equivalent

(i) Equation (4) is nonoscillatory.

(ii) There exists r1 and a (continuously differentiable) function w : [r1,∞)→
R such that

R[w](r) = 0 for r ∈ [r1,∞).

(iii) There exists r1 and a (continuously differentiable) function w : [r1,∞)→
R such that

R[w](r) ≤ 0 for r ∈ [r1,∞). (6)

Thus, if (4) is oscillatory, then the Riccati inequality (6) has no solution in
any neighborhood of infinity.

For the partial differential equation we use the following concept of oscilla-
tion.

Definition 1. Let Ω be unbounded domain in Rn. Equation (1) is said to be
oscillatory in Ω if every its nontrivial solution defined on Ω ∩ Ω(t0) has zero in
Ω∩Ω(t) for every t ≥ t0. Equation (1) is said to be oscillatory, if it is oscillatory
in Rn.

Many oscillation criteria proved originally for (4) have been extended to
(1). The proof of a typical oscillation criterion for (1) is usually based on the

Riccati type substitution ~w(x) = A(x) ||∇u(x)||p−2∇u(x)
|u(x)|p−2u(x) which converts positive

or negative solutions of (1) into solution of (partial) Riccati equation. This
equation is integrated over ball in n-dimensional space centered in the origin
and the problem is converted into problem in one dimension. The rest of the
proof usually simply repeats steps from the proof of the corresponding oscillation
criterion for (4) (neglecting to some technical problems which arise for n ≥ 2).
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The disadvantage of this approach is obvious: for every new oscillation crite-
rion derived for ordinary differential equations we have to derive a corresponding
version for partial differential equations. Since many new oscillation criteria for
(4) appear in the literature, it turns out to be better to find general theorem
which allows to detect oscillation of partial differential equation from oscillation
of some ordinary differential equation rather than readjust the proof of every
oscillation criterion from (4) to (1). Some results of this type have been proved
in [3, 8, 15]. Let us mention one of the typical results.

Theorem B ([3, Theorem 3.5]). Equation

div(||∇u||p−2∇u) + c(x)|u|p−2u = 0 (7)

is oscillatory, if the ordinary differential equation

(
ωnr

n−1|u′|p−2u′
)′

+

(∫
S(r)

c(x) dx

)
|u|p−2u = 0 (8)

is oscillatory.

The aim of this paper is to extend Theorem B to equation (1). The appli-
cation of this theorem provides a tool to derive oscillation criteria for (1) easily
from existing oscillation criteria for (4). Concerning oscillation criteria for (4)
we refer to the papers [7, 10, 11, 12, 1, 9, 2] and the references therein.

As we will show later in this paper, this method can be used not only to
give a simple proof of oscillation criteria, but it also improves some of already
known results.

3. Main results

In this section we formulate our main results.

Theorem 1. For a real number l > 1 define the functions

a(r) = (l∗)p−1

∫
S(r)

||A(x)||pλ1−p
min (x) dσ ,

b(r) =

∫
S(r)

[
c(x)− lp−1

λp−1
min (x)

||~b(x)||p

pp

]
dσ .

(9)

where l∗ = l
l−1 is the conjugate number to the number l if ||~b(x)|| 6= 0 and l∗ = 1

if ||~b(x)|| = 0. If the equation(
a(r)|u′|p−2u′

)′
+ b(r)|u|p−2u = 0. (10)

is oscillatory, then (1) is also oscillatory.
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Proof. Suppose, by contradiction, that (10) is oscillatory and (1) is not oscilla-
tory. Then there exists a solution u of this equation which is positive on Ω(r1)
for r1 sufficiently large. For x ∈ Ω(r1) define n-vector function

~w(x) = A(x)
||∇u(x)||p−2∇u(x)

|u(x)|p−2u(x)
.

The function ~w satisfies

div ~w =
div
(
A(x)||∇u||p−2∇u

)
|u|p−2u

+ (1− p)
〈
A(x)||∇u||p−2∇u,∇u

〉
|u|−p

= −c(x)−
〈
~b(x),

||∇u||p−2∇u
|u|p−2u

〉
− (p− 1)

〈
A(x)||∇u||p−2∇u,∇u

〉
|u|p

(11)

Further, using the smallest eigenvalue of the matrix A and Young inequality

1

q
|| ~X||q ±

〈
~X, ~Y

〉
+

1

p
||~Y ||p ≥ 0

we have

(p− 1)

〈
A(x)||∇u||p−2∇u,∇u

〉
|u|p

+

〈
~b(x),

||∇u||p−2∇u
|u|p−2u

〉
≥ (p− 1)

(
1

l
+

1

l∗

)
λmin

||∇u||p

|u|p
+

〈
~b,
||∇u||p−2∇u
|u|p−2u

〉
=
pλmin

l

[(
||∇u||p−1

|u|p−1

) p
p−1 p− 1

p

+

〈
l

pλmin

~b,
||∇u||p−2∇u
|u|p−2u

〉
+

1

p

(
l

pλmin

)p
||~b||p

]

−
(

l

λmin

)p−1
1

pp
||~b||p + (p− 1)

λmin

l∗
||∇u||p

|u|p

≥ −
(

l

λmin

)p−1
1

pp
||~b||p + (p− 1)

λmin

l∗
||∇u||p

|u|p

and this inequality is trivial if ||~b(x)|| = 0 and l∗ = 1. Combining this compu-
tation and (11) we get

div ~w + c(x)−
(

l

λmin

)p−1
1

pp
||~b||p + (p− 1)λmin

1

l∗
||∇u||p

|u|p
≤ 0.

From the inequality

||~w|| ≤ ||A|| ||∇u||
p−1

|u|p−1
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we get

div ~w + c(x)−
(

l

λmin

)p−1
1

pp
||~b||p + (p− 1)λmin

1

l∗||A||q
||~w||q ≤ 0.

Define new function

W (r) =

∫
S(r)

〈~w, ~ν〉 dσ . (12)

The inequality

|W (r)| =

∣∣∣∣∣∣
∫
S(r)

〈
λ

1
q

min(x)

||A(x)||
~w,
||A(x)||

λ
1
q

min(x)
~ν

〉
dσ

∣∣∣∣∣∣
≤

(∫
S(r)

λmin(x)

||A(x)||q
||~w||q dσ

) 1
q
(∫

S(r)

||A(x)||pλ−
p
q

min(x) dσ

) 1
p

yields (∫
S(r)

||A(x)||pλ−
p
q

min(x) dσ

)− q
p

|W (r)|q ≤
∫
S(r)

λmin(x)

||A(x)||q
||~w||q dσ .

By Gauss–Ostrogradskii divergence theorem we have

W ′(r) =
d

dr

∫
S(r)

〈~w, ~ν〉 dσ =
d

dr

[∫
S(r)

〈~w, ~ν〉 dσ −
∫
S(a)

〈~w, ~ν〉 dσ

]

=
d

dr

∫
Ω(a,r)

div ~w dx

=

∫
S(r)

div ~w dσ

(13)

and the function W satisfies

W ′(r) +

∫
S(r)

[
c(x)−

(
l

λmin(x)

)p−1 ||~b(x)||p

pp

]
dσ

+ (p− 1)
1

l∗

(∫
S(r)

||A(x)||pλ−
p
q

min(x) dσ

)1−q

|W (r)|q ≤ 0 (14)

on [r1,∞) and hence the inequality

W ′ + b(r) + (p− 1)a1−q(r)|W |q ≤ 0 (15)

has solution on Ω(a). By Theorem A, equation (10) is nonoscillatory, a contra-
diction. Theorem is proved.
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Remark 1. If ||~b(x)|| ≡ 0 and A(x) = a(||x||)In where a(r) is smooth function
and In is n× n identity matrix, then Theorem 1 reduces to [8, Theorem 3.4].

Remark 2. An important step in the proof of Theorem 1 is to derive equation
(11). A closer look at the proof shows that it is sufficient to derive (11) with
equality sign replaced by inequality sign ≤. Hence it is possible to use this
method to study equations which are in certain sense majorants to (1). These
equations cover for example

div
(
A(x)||∇u||p−2∇u

)
+
〈
~b(x), ||∇u||p−2∇u

〉
+ c(x)f(u) = 0 (16)

where f(u) is a differentiable function which satisfies f(0) = 0, uf(u) > 0 for
u 6= 0 and

f ′(u)

f2−q(u)
≥ p− 1. (17)

Equation (16) is sometimes called super-half-linear equation.
If the function f(u) satisfies (17) with p−1 replaced by ε > 0, it is sufficient

to consider functions f∗(u) = ε∗f(u) and c∗(u) = 1
ε∗ c(u) where ε∗ =

(
p−1
ε

)p−1
.

The function f∗(u) satisfies (17) and f(u)c(x) = f∗(u)c∗(x) holds.
Finally, it is possible to use this method also to prove nonexistence of positive

solution of the equation

div
(
A(x)||∇u||p−2∇u

)
+
〈
~b(x), ||∇u||p−2∇u

〉
+B(x, u) = 0, (18)

where
B(x, u) ≥ c(x)f(u) for u ≥ 0

and the function f(u) satisfies hypotheses stated above.

Remark 3. Many oscillation criteria for the ordinary half-linear differential
equation are derived for the equation (10) with a(r) ≡ 1. However, if the integral
of a1−q(r) is divergent, i.e. if

∫∞
a1−q(r) dr = ∞, then the transformation of

independent variable s = φ(r) :=
∫ r
r0
a1−q(t) dt , y(s) = u(r) transforms (10)

into
d

ds

(∣∣∣ dy

ds

∣∣∣p−2 dy

ds

)
+ b(r)a1−q(r)|y|p−2y = 0, r = φ−1(s)

and interval [r0,∞) is transformed into [0,∞). Using this transformation, an
extension of the oscillation criteria derived for a(r) ≡ 1 to general case (10) used
in Theorem 1 is straightforward.

Remark 4. Several oscillation criteria for (10) require
∫∞

a1−q(r) dr =∞. If
the matrix A(x) is a constant matrix, then the divergence of this integral is
equivalent to the condition p ≥ n. This is a natural phenomenon. The fact
that the oscillation properties of (1) are different for p < n and p ≥ n has been
discussed in details in [3].
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Several oscillation criteria in the literature contain an additional (and in some
sense arbitrary) function (say θ(r)) and thus are more general. A convenient
choice of the function θ allows to ensure that the condition from some oscillation
criterion (usually divergence or positivity of some integral) holds. A common
way to find criteria of this type is to include the function θ into definition of the
function W (r). The following Lemma is an application of this idea to (10). Note
that to apply this idea it is sufficient to consider ordinary differential equation
only.

Lemma 1. Let m > 1 be positive number, m∗ = m
m−1 be its conjugate number

and θ(r) be smooth positive function. If the equation(
(m∗)p−1θ(r)a(r)|u′|p−2u′

)′
+

(
θ(r)b(r)− a(r)

mp−1

pp
|θ′(r)|p

θp−1(r)

)
|u|p−2u = 0

(19)
is oscillatory, then (10) is also oscillatory.

Proof. Suppose that (10) is not oscillatory. We prove that (19) is also nonoscil-
latory. If (10) is nonoscillatory, then there is a function w(r) which satisfies

w′(r) + b(r) + (p− 1)a1−q(r)|w(r)|q = 0

on (r1,∞) for r1 sufficiently large. Define the function

Z(r) = θ(r)w(r). (20)

The function Z satisfies equation

Z ′(r) + θ(r)b(r) + (p− 1)
(
θ(r)a(r)

)1−q
|Z(r)|q − θ′(r)

θ(r)
Z(r) = 0. (21)

Using mutually conjugate numbers m, m∗ and Young inequality we get

(p− 1)(θa)1−q|Z|q − θ′

θ
Z

= p(θa)1−q 1

m

[
p− 1

p
|Z|q − mθ′

pθ
(θa)q−1Z

+
1

p

∣∣∣∣mθ′pθ

∣∣∣∣p (θa)(q−1)p

]
+

1

m∗
(p− 1)

(
θa
)1−q

|Z|q −
∣∣∣∣ θ′pθ
∣∣∣∣p θamp−1

≥ 1

m∗
(p− 1)

(
θa
)1−q

|Z|q − 1

pp
|θ′|p

θp−1
amp−1

This inequality combined with (21) shows that the inequality

Z ′ + θ(r)b(r)− a(r)
mp−1

pp
|θ′(r)|p

θp−1(r)
+
p− 1

m∗

(
θ(r)a(r)

)1−q
|Z|q ≤ 0

has solution on (r1,∞) and (19) is nonoscillatory by Theorem A. The proof of
the Lemma is complete.
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The following corollary is based on a similar idea as Lemma 1. The difference
is that it makes use of a function ρ(x) of n variables rather than the function
θ(r) of one variable and the proof is more complicated since it is not sufficient to
work with ordinary differential equations but we have to return in the proof to
partial Riccati equation. However, it is sufficient to simply repeat the steps from
the proof of Theorem 1 with another functions. From this reason we proved the
simpler version of this Theorem first and now we sketch the extension into more
general case.

Corollary 1. Let ρ ∈ C1(Ω(1),R+). Theorem 1 remains valid, if equations (9)
are replaced by

a(r) = (l∗)p−1

∫
S(r)

ρ(x)||A(x)||pλ1−p
min (x) dσ ,

b(r) =

∫
S(r)

ρ(x)

[
c(x)− lp−1

ppλp−1
min (x)

∣∣∣∣∣∣∣∣~b(x)− ∇ρ(x)

ρ(x)
A(x)

∣∣∣∣∣∣∣∣p
]

dσ ,

(22)

and l∗ = 1 if ||ρ(x)~b(x)−∇ρ(x)A(x)|| = 0 and l∗ = l
l−1 otherwise.

Proof. Suppose by contradiction that (10) with a(r) and b(r) defined by (22)
is oscillatory and (1) is nonoscillatory. Define vector, matrix and scalar func-

tions ~bρ(x) = ρ(x)~b(x) − ∇ρ(x)A(x), ~wρ(x) = ρ(x)~w(x), Aρ(x) = ρ(x)A(x)
and cρ(x) = ρ(x)c(x). Further, let λmin,ρ(x) = ρ(x)λmin(x) and ||Aρ(x)|| =
ρ(x)||A(x)|| be minimal eigenvalue and norm of the matrix Aρ(x) respectively.
It is sufficient to prove that the conclusion of Theorem 1 remains valid if the
functions ~b(x), A(x), ~w(x), c(x), λmin(x) and ||A(x)|| are replaced by ~bρ(x),
Aρ(x), ~wρ(x), cρ(x), λmin,ρ(x) and ||Aρ(x)|| respectively, since these replace-
ments convert (9) into (22).

We start as in the proof of Theorem 1 and derive (11). Multiplying (11) by
the function ρ(x) we find that (11) is equivalent to the equation

div
(
ρ(x)~w(x)

)
+ ρ(x)c(x) +

〈
ρ(x)~b(x)−∇ρ(x)A(x),

||∇u||p−2∇u
|u|p−2u

〉
+ (p− 1)

〈
ρ(x)A(x)||∇u||p−2∇u,∇u

〉
|u|p

= 0.

Note that this equation also arises from (11) by using the above mentioned
replacements. Naturally, using the steps from Theorem 1 we conclude inequality
which arises from (14) by using the same replacements. Hence inequality (15)
with a(r), b(r) defined by (22) has a solution on [r1,∞). By Theorem A,
equation (10) with a(r), b(r) defined by (22) is nonoscillatory, a contradiction.

Remark 5. In general, it is not easy to find the norm ||A(x)||. From this reason
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we provide some upper estimates for this norm [19, Proposition 2.7.4]:

||A|| ≤ ||A||F :=

√√√√ n∑
i,j=1

|aij |2 (23)

||A|| ≤ n max
1≤i,j≤n

|aij |

1√
n
||A|| ≤ ||A||∞ := max

1≤i≤n

n∑
j=1

|aij |

1√
n
||A|| ≤ ||A||1 := max

1≤j≤n

n∑
i=1

|aij |

These estimates can be used together with the following simple corollary.

Corollary 2. Let l be a real number, l > 1, b̃(r) be continuous function and
ã(r) be smooth function such that

ã(r) ≥ (l∗)p−1

∫
S(r)

||A(x)||pλ1−p
min (x) dσ ,

b̃(r) ≤
∫
S(r)

[
c(x)−

(
l

λmin(x)

)p−1 ||~b(x)||p

pp

]
dx ,

where l∗ = l
l−1 is the conjugate number to the number l if ||~b(x)|| 6≡ 0 and l∗ = 1

if ||~b(x)|| ≡ 0. If the ordinary differential equation(
ã(r)|u′|p−2u′

)′
+ b̃(r)|u|p−2u = 0 (24)

is oscillatory, then (1) is also oscillatory.

Proof. Suppose that (24) is oscillatory. From the assumptions it follows that
(10) is a Sturmian majorant to (24) and hence (10) is also oscillatory. Now the
statement follows from Theorem 1.

Obviously, the equations from (22) can be replaced by inequalities in the
same way as in Corollary 2. The following Theorem 2 is variant of Theorem 1
and presents sharper result, but covers the case 1 ≤ p ≤ 2 only.

Theorem 2. Let 1 < p ≤ 2. For a real number l > 1 define the functions

â(r) = (l∗)p−1

∫
S(r)

λmax(x) dσ ,

b̂(r) =

∫
S(r)

[
c(x)− lp−1

pp
λmax(x)||~b(x)A−1(x)||p

]
dσ ,

(25)
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where l∗ = l
l−1 is the conjugate number to the number l if ||~b(x)|| 6= 0 and

l∗ = 1 if ||~b(x)|| = 0. Here ~b(x)A−1(x) denotes the matrix product of row
matrix (b1(x), . . .) and the inverse A−1(x). If the equation(

â(r)|u′|p−2u′
)′

+ b̂(r)|u|p−2u = 0 (26)

is oscillatory, then (1) is also oscillatory.

Proof. Suppose, by contradiction, that (26) is oscillatory and (1) is nonoscil-
latory. We start as in the proof of Theorem 1 and derive (11) which can be
written in the form

div ~w + c+
〈
~b,A−1 ~w

〉
+ (p− 1)

〈
~w,A−1 ~w

〉 ||∇u||2−p
|u|2−p

= 0. (27)

If λmax is the maximal eigenvalue of the matrix A, then the number 1
λmax

is the

minimal eigenvalue of its inverse A−1 and hence〈
~w,A−1 ~w

〉
≥ ||~w||2 1

λmax
.

From the property of matrix norm we have

||~w|| ≤ ||A|| ||∇u||
p−1

|u|p−1

which is for p ≤ 2 equivalent to the inequality

||∇u||2−p

|u|2−p
≥ ||~w||

(2−p)/(p−1)

||A||(2−p)/(p−1)
=
||~w||(2−p)/(p−1)

λ
(2−p)/(p−1)
max

.

Combining these computation we have the following estimate for the last term
on the left hand side of (27)

〈
~w,A−1 ~w

〉 ||∇u||2−p
|u|2−p

≥ ||~w||2+(2−p)/(p−1)λ−1+(p−2)/(p−1)
max = ||w||qλ1−q

max.

From these estimates and from equation (27) we get inequality

div ~w + c+
〈
~bA−1, ~w

〉
+ (p− 1)λ1−q

max||~w||q ≤ 0. (28)

Using essentially the same method as in the proof of Theorem 1 we use mutually
conjugate numbers l and l∗ to split the last term into two terms and use the
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Young inequality to remove the term
〈
~bA−1, ~w

〉
:〈

~bA−1, ~w
〉

+ (p− 1)λ1−q
max||~w||q =

〈
~bA−1, ~w

〉
+ (p− 1)

(
1

l
+

1

l∗

)
λ1−q

max||~w||q

=
p

l
λ1−q

max

[
p− 1

p
||~w||q +

〈
λq−1

maxl

p
~bA−1, ~w

〉
+

1

p
λp(q−1)

max

lp

pp
||~bA−1||p

]
+ (p− 1)

1

l∗
λ1−q

max||~w||q −
lp−1λmax

pp
||~bA−1||p

≥ (p− 1)
1

l∗
λ1−q

max||~w||q −
lp−1λmax

pp
||~bA−1||p.

This computation remains valid if ||~b|| = 0 and l∗ = 1. In this case l disappears.
Inequality (28) now yields

divw + c(x)− lp−1

pp
λmax||~bA−1||p + (p− 1)

1

l∗
λ1−q

max||~w||q ≤ 0. (29)

Define the function W (r) by (12). Hölder inequality yields

|W (r)| =

∣∣∣∣∣
∫
S(r)

〈
λ(1−q)/q

max ~w, λ(q−1)/q
max ~ν

〉
dσ

∣∣∣∣∣
≤

(∫
S(r)

λ1−q
max||~w||q dσ

) 1
q
(∫

S(r)

λmax dσ

) 1
p

and (∫
S(r)

λmax dσ

)1−q

|W (r)|q ≤
∫
S(r)

λ1−q
max||~w||q dσ .

This inequality, inequality (29) and equality (13) show that the function W (r)
satisfies

W ′ +

∫
S(r)

[
c(x)− lp−1

pp
λmax||~bA−1||p

]
dσ

+ (p− 1)

(
l∗p−1

∫
S(r)

λmax dσ

)1−q

||W ||q ≤ 0.

Thus, the inequality

W ′ + b̂(r) + (p− 1)â1−q(r)|W |q ≤ 0 (30)

has solution on (r1,∞) and (26) is not oscillatory by Theorem A. This contra-
diction proves the Theorem.

Remark 6. Similarly to Theorem 1 and Corollary 2, the functions â(r) and

b̂(r) can be replaced by any smooth bigger and continuous smaller functions,
respectively.
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The following corollary is a version of Corollary 1.

Corollary 3. Let ρ ∈ C1(Ω(1),R+). Theorem 2 remains valid, if equations
(25) are replaced by

â(r) = (l∗)p−1

∫
S(r)

ρ(x)λmax(x) dσ ,

b̂(r) =

∫
S(r)

ρ(x)

[
c(x)− lp−1

pp
λmax(x)

∣∣∣∣∣∣∣∣~b(x)A−1(x)− ∇ρ(x)

ρ(x)

∣∣∣∣∣∣∣∣p] dσ ,

(31)

and l∗ = 1 if ||ρ(x)~b(x)A−1(x)−∇ρ(x)|| = 0 and l∗ = l
l−1 otherwise.

Proof. The proof is analogical to the proof of Corollary 1. We suppose that
(1) is not oscillatory and prove that (26) is also nonoscillatory. Using the same
method as in the proof of Theorem 2 we derive inequality (27) which can be
written in the form

div
(
ρ~w
)

+ ρc+
〈
ρ~b−∇ρA,A−1 ~w

〉
+ (p− 1)ρ

〈
~w,A−1 ~w

〉 ||∇u||2−p
|u|1−p

= 0 (32)

With the notation Aρ(x) = ρ(x)A(x), ~bρ(x) = ρ(x)~b(x) −∇ρ(x)A(x), ~wρ(x) =
ρ(x)~w(x) equation (32) can be written in the form

div
(
~wρ

)
+ cρ +

〈
~bρ, A

−1
ρ ~wρ

〉
+ (p− 1)

〈
~wρ, A

−1
ρ ~wρ

〉 ||∇u||2−p
|u|1−p

= 0 (33)

where A−1
ρ (x) = ρ−1(x)A−1(x) is the inverse matrix to Aρ(x). This equation

has the same form as (32). Thus, using the same steps as in the proof of Theorem
2 we prove that there exists a function W (r) which satisfies

W ′ +

∫
S(r)

[
cρ −

lp−1

pp
λmax,ρ||~bρA−1

ρ ||p
]

dσ

+ (p− 1)

(
(l∗)

p−1
∫
S(r)

λmax,ρ dσ

)1−q

||W ||q ≤ 0,

where λmax,ρ(x) = ρ(x)λmax(x) is the largest eigenvalue of the matrix Aρ(x).

This shows that the Riccati inequality (30) with â(r) and b̂(r) defined by (31)
has a solution. Thus, (26) is nonoscillatory by Theorem A and Corollary is
proved.

4. Examples

This section contains some examples. These examples are of a different
kind than examples accompanying usual oscillation criteria in other papers. We
don’t prove oscillation of equations for which other oscillation criteria fail, but
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we show that several recent oscillation criteria can be improved and derived in
a very easy way using results from the preceding section.

The following theorem has been proved originally for damped linear equa-
tion. However, we reformulate this theorem for undamped equation only in
order to obtain results which can be compared to the results from the preceding
section and which are extensible to half-linear case.

Theorem C ([21, Theorem 3.1]). Let θ ∈ C([r0,∞],R+) and m > 1. Further,
let λ ∈ C([r0,∞),R+), λ(r) ≥ max||x||=r λmax(x) for r ≥ r0. If

lim
r→∞

∫
Ω(r0,r)

[
θ(||x||)c(x)− λ(||x||)m

4

θ′
2
(||x||)

θ(||x||)

]
dx =∞

and

lim
r→∞

∫
Ω(r0,r)

1

θ(||x||)λ(||x||)
dx =∞,

then equation (3) is oscillatory.

The classical Leighton–Wintner criterion states that the equation(
α(r)u′

)′
+ β(r)u = 0 (34)

is oscillatory if ∫ ∞
α−1(s) ds =∞ =

∫ ∞
β(s) ds .

For equation (3) the functions â(r), b̂(r) from Theorem 2 become

â(r) =

∫
S(r)

λmax(x) dσ ,

b̂(r) =

∫
S(r)

c(x) dσ .

Using Theorem 2, Lemma 1 and the Leighton–Wintner oscillation criterion to
equation (19) we conclude that the maximum from the definition of the function
λ(r) can be removed and the function λ(||x||) can be replaced by (smaller)
function λmax(x).

Corollary 4. The statement of Theorem C remains valid if the function λ(||x||)
is replaced by λmax(x).

Since Leighton–Wintner criterion extends to half-linear equations, a half-
linear extension of Theorem C is straightforward. (For another half-linear ex-
tension of the Leighton–Wintner criterion see Corollary 6 below and the paper
[13] which deals with A(x) = I.)
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Corollary 5. Let θ ∈ C([r0,∞],R+), m > 1 and q = p
p−1 be conjugate number

to the number p. If

lim
r→∞

∫
Ω(r0,r)

[
θ(||x||)c(x)− λmax(x)

mp−1

pp
θ′
p
(||x||)

θp−1(||x||)

]
dx =∞

and

lim
r→∞

∫ r

θ1−q(s)

(∫
S(s)

λmax(x) dσ

)1−q

ds =∞,

then equation (2) is oscillatory.

Proof. The equation (4) is oscillatory if∫ ∞
b(r) dr =∞ =

∫ ∞
a1−q(r) dr .

Thus the statement is an immediate consequence of Theorem 2 and Lemma
1.

An application of the half-linear Leighton–Wintner criterion to Corollary 1
gives the following oscillation criterion.

Corollary 6. Let ρ ∈ C1(Ω(r0),R+) and k > 1. If

lim
r→∞

∫ r

r0

(∫
S(t)

ρ(x)||A(x)||pλ1−p
min (x) dσ

)1−q

dt =∞

and

lim
r→∞

∫
Ω(r0,r)

ρ(x)

[
c(x)− k

ppλp−1
min (x)

∣∣∣∣∣∣∣∣~b(x)− ∇ρ(x)

ρ(x)
A(x)

∣∣∣∣∣∣∣∣p
]

dx =∞,

then equation (1) is oscillatory.

Proof. The proof is similar to the proof of Corollary 5 and thus omitted.

Corollary 6 is closely related to the results from [14]. The paper [14] considers
A(x) = In and deals with oscillation in more general domains than exterior of a
ball. However, in the case which is covered by both Corollary 6 and paper [14]
the conclusion of Corollary 6 is identical to [14, Theorem 3.3 and Theorem 3.5].

The method of weighted integral averages is frequently used to obtain vari-
ous extensions of Kamenev type oscillation criteria and also interval oscillation
criteria. In the sequel we introduce two results based on this method.

Theorem D ([20, Theorem 1]). Let D0 = {(t, s) : t > s ≥ t0} and D =
{(t, s) : t ≥ s ≥ t0}. Let functions H ∈ C(D;R), h ∈ C(D0;R), k, ρ ∈
C1([t0,∞); (0,∞)) satisfy the following three conditions:
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(i) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 on D0

(ii) H has a continuous and nonpositive partial derivative on D0 with respect
to the second variable

(iii)

− ∂

∂s
(H(t, s)k(s))−H(t, s)k(s)

ρ′(s)

ρ(s)
= h(t, s) ∀(t, s) ∈ D0

and ∫ t

t0

H1−p(t, s)|h(t, s)|p ds <∞

for every t.

If

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
H(t, s)k(s)ρ(s)b(s)− ρ(s)a(s)|h(t, s)|p

pp[H(t, s)k(s)]p−1

]
=∞,

then equation (4) is oscillatory.

An application of Theorems 1 and 2 to this result gives the following corol-
lary.

Corollary 7. Let φ, k ∈ C1([r0,∞),R+) be real functions. Suppose that there
exists continuous function H(r, s) defined for r ≥ s ≥ r0 such that

(i) H(r, r) = 0 and H(r, s) > 0 for r > s ≥ r0,

(ii) the function H has continuous nonpositive partial derivative with respect
to the second variable,

(iii) the function h(r, s) defined by the relation

− ∂

∂s

[
H(r, s)k(s)

]
−H(r, s)k(s)

φ′(s)

φ(s)
= h(r, s)

satisfies ∫ r

r0

H1−p(r, s)|h(r, s)|p ds <∞

for every r

(iv)

lim sup
r→∞

1

H(r, r0)

∫ r

r0

{
H(r, s)k(s)φ(s)

∫
S(s)

c(x) dσ

− 1

pp
[H(r, s)k(s)]1−pΘ(s)φ(s)|h(r, s)|p

}
ds =∞, (35)

where

Θ(s) =


∫
S(s)

||A(x)||pλ1−p
min (x) dσ if p > 2∫

S(s)

λmax(x) dσ if 1 < p ≤ 2
(36)
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Then equation (2) is oscillatory.

Corollary 7 improves [23, Theorem 2.1] in several points. First, we use the
norm consistent with Euclidean vector norm rather than the Frobenius norm
used in [23] and thus obtain sharper result (see inequality (23)).

Second, the term

ΘXu(s) := ρ1−p(s)ωns
n−1 where ρ(s) ≤ min

x∈S(s)

λmin(x)

||A(x)||qF
. (37)

appears in [23, Theorem 2.1] in condition (35) instead of Θ(s). In Corollary 7
we have shown that this term ΘXu(s) can be replaced by smaller term Θ(s).
In other words, the maximum of the function ||A(x)||pλ1−p

min (x) over the sphere

S(s) (which corresponds to the minimum of the function λmin(x)
||A(x)||q from (37)) can

be replaced by its integral mean value and if p ≤ 2 we can further decrease this
term as (36) shows. In this sense, the Corollary 7 not only provides a simple
alternative proof of [23, Theorem 2.1], but yields sharper result.

The following Theorem E is an example of interval type oscillation criterion
for damped linear differential equation.

Theorem E ([17, Theorem 2.1]). Consider equation(
r(t)y′

)′
+ p(t)y′ + q(t)f(y) = 0,

where r(t) ∈ C([a,∞), (0,∞), p(t), q(t) ∈ C([a,∞),R), f(u) ∈ C(R,R), uf(u) >
0 and f ′(u) ≥ µ > 0 for u 6= 0. This equation is oscillatory provided that for
each l ≥ a there exists a function H with properties

(i) H ∈ C(E,R), where E = {(t, s, l); a ≤ l ≤ s ≤ t <∞}
(ii) H(t, t, l) = 0 = H(t, l, l), H(t, s, l) 6= 0 for l < s < t and

(iii) the function h(t, s, l) defined by relation

∂H

∂s
(t, s, l) = h(t, s, l)H(t, s, l)

is such that h2(t, s, l)H(t, s, l) is locally integrable with respect to s on the
set t ≥ s ≥ l ≥ a,

(iv)

lim sup
t→∞

∫ t

l

H(t, s, l)

[
q(s)− r(s)

4µ

(
p(s)

r(s)
− h(t, s, l)

)2
]

ds > 0.

As an application of Theorem 2 to this result we get the following oscillation
criterion.

Corollary 8. Suppose that for each l ≥ a there exist a function H(r, s, l) defined
for r ≥ s ≥ l ≥ a such that

(i) H(r, r, l) = 0 = H(r, l, l) for r > l ≥ a and H(r, s, l) > 0 for r > s > l,
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(ii) H(r, s, l) has continuous partial derivative with respect to s for r > s > l,
(iii) the function h(r, s, l) defined by relation

∂H

∂s
(r, s, l) = h(r, s, l)H(r, s, l)

is such that h2(r, s, l)H(r, s, l) is locally integrable with respect to s on the
set r ≥ s ≥ l ≥ a,

(iv)

lim sup
t→∞

∫ t

l

H(r, s, l)

{∫
S(s)

[
c(x)− l

4
λmax(x)||~b(x)A−1(x)||2

]
dσ

− l∗

4
ΨM (s)h2(r, s, l)

}
ds > 0

(38)

where ΨM (r) =
∫
S(r)

λmax(x) dσ and l > 1, l∗ = p
p−1 are mutually conju-

gate numbers. If ||~b(x)|| = 0 we can put l∗ = 1.

Then equation

div
(
A(x)∇u

)
+
〈
~b(x),∇u

〉
+ c(x)u = 0 (39)

is oscillatory.

Corollary 8 improves [22, Theorem 3.1] which has been proved for slightly
more general equation (covered by Remark 2, nevertheless). The condition (38)
is in [22] replaced by

lim sup
t→∞

∫ t

l

H(r, s, l)

{∫
S(s)

[
c(x)− 1

2
λmax(x)||~b(x)A−1(x)||2

]
dσ

− 1

2
ΨXu(s)h2(r, s, l)

}
ds > 0

(40)

where ΨXu(r) = λ(r)ωnr
n−1 and λ(r) ≥ maxx∈S(r) λmax(x). It is easy to see

that oscillation criterion involving condition (38) is sharper than the criterion
involving (40). Really, the maximum of the eigenvalue λmax(x) over the sphere
of diameter r which appears in the function λ(r) in (40) is replaced by the
integral mean value of this eigenvalue in ΨM (r) and thus ΨM (r) is smaller than
ΨXu(r). Another difference between (38) and (40) is in the fact that fixed values
1/2 in (40) are replaced by l/4 and l∗/4 with arbitrary conjugate numbers l, l∗

in (38).
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