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1. Introduction

It is well known the fact that the Riccati differential equation

w′ + w2 + c(x) = 0 (1.1)

plays an important role in the study of the second order linear differential equa-
tion

u′′ + c(x)u = 0. (1.2)

Really, if (1.2) has a positive solution u on the interval I, then the function
w = u′/u is a solution of (1.1), defined on I. Conversely, if the Riccati inequality

w′ + w2 + c(x) ≤ 0 (1.3)

has a solution w, defined on I, then (1.2) has a positive solution on I. It is also
well known that this property can be extended also to several other types of
second order differential equations and inequalities, which include the selfadjoint
second order differential equation(

r(x)u′
)′

+ c(x)u = 0
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half-linear equation(
r(x)|u′|p−2u′

)
+ c(x)|u|p−2u = 0, p > 1 (1.4)

and Schrödinger equation

n∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ c(x)u = 0 (1.5)

see e.g. [7, 15, 16, 12, 14]
Another importance of the Riccati equation and Riccati-type substitution

w = u′/u lies in the fact, that it is embedded into the Picone identity, which
forms the link between the so-called Riccati technique and variational technique
in the oscillation theory of equation (1.2) (see also Section 3 for a short discussion
concerning the Picone identity).

In the paper we will study the partial Riccati-type differential inequality

div ~w + ||~w||q + c(x) ≤ 0 (1.6)

and some generalizations of this inequality in the form

div(α(x)~w) +Kα(x)||~w||q + α(x)c(x) ≤ 0 (1.7)

and
div ~w +K||~w||q + c(x) + 〈~w,~b〉 ≤ 0, (1.8)

where K ∈ R, q > 1 and the assumptions on the functions α, b and c are
stated bellow. The operator div(·) is the usual divergence operator, i.e. for
~w = (w1, . . . , wn) it holds div ~w =

∑n
i=1

∂wi

∂xi
, the norm ||·|| is the usual Euclidean

norm in Rn and 〈·, ·〉 is the usual scalar product in Rn.
As an application of these results new oscillation criteria for the half-linear

partial differential equation with damping are derived. The main difference
between the obtained criteria and similar results in the literature lies in the fact,
that our criteria are not “radially symmetric”, see the discussion in Section 3,
bellow.

The paper is organized as follows. In the next section the Riccati–type
inequality is studied. The results of this section are applied in the third section,
which contains the results concerning the oscillation of damped half-liner PDE.
The last section is devoted to the some examples and comments.

2. Riccati inequality

Notation: Let Ω(a), Ω(a, b) and S(a) be the sets in Rn defined as follows:

Ω(a) = {x ∈ Rn : a ≤ ||x||},
Ω(a, b) = {x ∈ Rn : a ≤ ||x|| ≤ b},
S(a) = {x ∈ Rn : ||x|| = a}.
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The numbers p > 1 and q > 1 be mutually conjugate numbers, i.e. 1/p +
1/q = 1, ωn be the surface of the unit sphere in Rn. For M ⊆ Rn the symbols
M and M0 denotes the closure and the interior of M , respectively.

Integration over the domain Ω(a, b) is performed introducing hyperspherical
coordinates (r, θ), i.e.∫

Ω(a,b)

f(x) dx =

∫ b

a

∫
S(r)

f(x(r, θ)) dS dr ,

where dS is the element of the surface of the sphere S(r).
We will study the Riccati inequality on the unbounded domains. Two types

of unbounded domains in Rn will be considered: the exterior of a ball, centered
in the origin and also a general unbounded domain Ω. In the latter case we will
use the following assumption:

(A1) the set Ω is an unbounded domain in Rn, simply connected with a piece-
wise smooth boundary ∂Ω and mess(Ω ∩ S(t)) > 0 for t > 1.

Theorem 2.1. Let Ω satisfy assumption (A1) and c ∈ C(Ω,R). Suppose α is
a function satisfying the conditions

α ∈ C1(Ω ∩ Ω(a0),R+) ∩ C0(Ω,R) (2.1)

and ∫ ∞
a0

(∫
Ω∩S(t)

α(x) dS
)1−q

dt =∞ (2.2)

Finally, suppose that there exists a ≥ a0, real constant K > 0 and a real–valued
differentiable vector function ~w(x) which is bounded (in the sense of traces, if
necessary) on every compact subset of Ω ∩ Ω(a) and satisfies the differential
inequality (1.7) on Ω ∩ Ω(a). Then

lim inf
t→∞

∫
Ω∩Ω(a0,t)

α(x)c(x) dx <∞. (2.3)

Proof. For simplicity let us denote Ω̃(a) = Ω(a)∩Ω, S̃(a) = S(a)∩Ω, Ω̃(a, b) =
Ω(a, b) ∩ Ω. Suppose, by contradiction, that (2.2) and (1.7) are fulfilled and

lim
t→∞

∫
Ω̃(a0,t)

α(x)c(x) dx =∞. (2.4)

Integration of (1.7) over the domain Ω̃(a, t) and application of the Gauss–
Ostrogradski divergence theorem gives∫

S̃(t)

α(x)〈~w(x), ~ν(x)〉dS −
∫
S̃(a)

α(x)〈~w(x), ~ν(x)〉dS

+

∫
Ω̃(a,t)

α(x)c(x) dx +K

∫
Ω̃(a,t)

α(x)||~w(x)||q dx ≤ 0, (2.5)
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where ~ν(x) is the outside normal unit vector to the sphere S(||x||) in the point
x (note that the product α(x)~w(x) vanishes on the boundary ∂Ω since α ∈
C0(Ω,R) and ~w is bounded near the boundary). In view of (2.4) there exists
t0 ≥ a such that∫

Ω̃(a,t)

α(x)c(x) dx −
∫
S̃(a)

α(x)〈~w(x), ~ν(x)〉dS ≥ 0 (2.6)

for every t ≥ t0. Further Schwarz and Hölder inequality give

−
∫
S̃(t)

α(x)〈~w(x), ~ν(x)〉dS ≤
∫
S̃(t)

α(x)||~w(x)||dS

≤
(∫

S̃(t)

α(x)||~w(x)||q dS
) 1

q
(∫

S̃(t)

α(x) dS
) 1

p

. (2.7)

Combination of the inequality (2.5) with inequalities (2.6) and (2.7) gives

K

∫
Ω̃(a,t)

α(x)||~w(x)||q dx ≤
(∫

S̃(t)

α(x)||~w(x)||q dS
) 1

q
(∫

S̃(t)

α(x) dS
) 1

p

for every t ≥ t0. Denote

g(t) =

∫
Ω̃(a,t)

α(x)||~w(x)||q dx .

Then the last inequality can be written in the form

Kg(t) ≤
(
g′(t)

) 1
q
(∫

S̃(t)

α(x) dS
) 1

p

.

From here we conclude for every t ≥ t0

Kqgq(t) ≤ g′(t)
(∫

S̃(t)

α(x) dS
) q

p

and equivalently

Kq
(∫

S̃(t)

α(x) dS
)1−q

≤ g′(t)

gq(t)
.

This inequality shows that the integral on the left-hand side of (2.2) has an
integrable majorant on [t0,∞) and hence it is convergent as well, a contradiction
to (2.2).

An often considered case is Ω = Rn or Ω = Ω(a0). In this case the preceding
lemma gives

Theorem 2.2. Let α ∈ C1(Ω(a0),R+), c ∈ C(Ω(a0),R). Suppose that∫ ∞
a0

(∫
S(t)

α(x) dS
)1−q

dt =∞. (2.8)
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Further suppose, that there exists a ≥ a0, real constant K > 0 and real–valued
differentiable vector function ~w(x) defined on Ω(a) which satisfies the differential
inequality (1.7) on Ω(a). Then

lim inf
t→∞

∫
Ω(a0,t)

α(x)c(x) dx <∞. (2.9)

Proof. The proof is a modification and simplification of the proof of Theorem
2.1.

The following Theorem employs the two-parametric weighting functionH(t, x)
defined on the closed domain

D = {(t, x) ∈ R× Rn : a0 ≤ ||x|| ≤ t}

instead of α(x). Further denote D0 = {(t, x) ∈ R × Rn : a0 < ||x|| < t} and
suppose that H(t, x) ∈ C(D,R+

0 )∩C1(D0,R+
0 ). Additional assumptions to the

function H are stated bellow.
Remark that this technique (called integral averaging technique) is due to

Philos [13], where the linear ordinary differential equation is considered. This
technique has been later extended in several directions, let us remind at least the
result of Wang [17], where the usual condition on monotonicity of the function
H(t, x) with respect to the second variable is improved. The application of

this method to the partial differential equation is due to [8], where ~b ≡ 0 is
considered.

First let us remind the well-known Young inequality

Lemma 2.1 (Young inequality). For ~a,~b ∈ Rn

||~a||p

p
± 〈~a,~b〉+

||~b||q

q
≥ 0 (2.10)

holds.

Theorem 2.3. Let Ω be an unbounded domain in Rn which satisfy the hy-
pothesis (A1), c ∈ C(Ω,R) and ~b ∈ C(Ω,Rn). Suppose that the nonnegative
continuous function H(t, x) defined on D has partial derivatives with respect to
xi for i = 1..n and satisfies

(i) H(t, x) ≡ 0 for x 6∈ Ω.

(ii) If x ∈ ∂Ω, then H(t, x) = 0 and ||∇H(t, x)|| = 0 for every t ≥ x.

(iii) If x ∈ Ω0, then H(t, x) = 0 if and only if ||x|| = t.

(iv) The vector function ~h(x) defined on D0 with the relation

~h(t, x) = −∇H(t, x) +~b(x)H(t, x) (2.11)

satisfies ∫
Ω(a0,t)∩Ω

H1−p(t, x)||~h(t, x)||p dx <∞. (2.12)
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(v) There exists a continuous function k(r) ∈ C([a0,∞),R+) such that the
function Φ(r) := k(r)

∫
S(r)∩Ω

H(t, x) dx is positive and nonincreasing on

[a0, t) with respect to the variable r for every t, t > r.

Finally, suppose that there exists a real numbers a ≥ a0, K > 0 and differ-
entiable vector function ~w(x) defined on Ω which is bounded on every compact
subset of Ω ∩ Ω(a) and satisfies the Riccati inequality (1.8) on Ω ∩ Ω(a). Then

lim sup
t→∞

(∫
S(a0)

H(t, x) dS
)−1

∫
Ω(a0,t)∩Ω

[
H(t, x)c(x)− ||~h(t, x)||p

(Kq)p−1pHp−1(t, x)

]
dx <∞

(2.13)

Remark 2.1. Let us mention that nabla operator in ∇H(t, x) relates only to
the variables of x, i.e. ∇H(t, x) = ( ∂

∂x1
, . . . , ∂

∂xn
)H(t, x), and does not relate to

the variable t.

Proof of Theorem 2.3. For simplicity let us introduce the notation Ω̃(a), S̃(a)
and Ω̃(a, b) as in the proof of Lemma 2.1. Suppose that the assumptions of
theorem are fulfilled. Multiplication of (1.8) by the function H(t, x) gives

H(t, x) div ~w(x) +H(t, x)c(x)

+KH(t, x)||~w(x)||q +H(t, x)〈~w(x),~b(x)〉 ≤ 0

and equivalently

div(H(t, x)~w(x)) +H(t, x)c(x)

+KH(t, x)||~w(x)||q + 〈~w(x), H(t, x)~b(x)−∇H(t, x)〉 ≤ 0

for x ∈ Ω̃(a) and t ≥ ||x||. This and Young inequality (2.10) implies

div(H(t, x)~w(x)) +H(t, x)c(x)− ||H(t, x)~b(x)−∇H(t, x)||p

(Kq)p−1pHp−1(t, x)
≤ 0.

Integration of this inequality over the domain Ω̃(a, t) and the Gauss-Ostrogradski
divergence theorem give

−
∫
S̃(a)

H(t, x)〈~w(x), ~ν(x)〉dS

+

∫
Ω̃(a,t)

[
H(t, x)c(x)− ||~h(t, x)||p

(Kq)p−1pHp−1(t, x)

]
dx ≤ 0

and hence∫
Ω̃(a,t)

[
H(t, x)c(x)− ||~h(t, x)||p

(Kq)p−1pHp−1(t, x)

]
dx ≤

∫
S̃(a)

H(t, x)||~w(x)||dS
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holds for t > a. This bound we will use to estimate the integral from the
condition (2.13)∫

Ω̃(a0,t)

[
H(t, x)c(x)− ||~h(t, x)||p

(Kq)p−1pHp−1(t, x)

]
dx

=

∫
Ω̃(a0,a)

[
H(t, x)c(x)− ||~h(t, x)||p

(Kq)p−1pHp−1(t, x)

]
dx

+

∫
Ω̃(a,t)

[
H(t, x)c(x)− ||~h(t, x)||p

(Kq)p−1pHp−1(t, x)

]
dx

≤
∫

Ω̃(a0,a)

H(t, x)c(x) dx +

∫
S̃(a)

H(t, x)||~w(x)|| dS .

Denote the maximal functions c∗(r) = max{|c(x)| : x ∈ S(r)} and w∗(r) =
max{||~w(x)|| : x ∈ S(r)}. Then it holds∫

Ω̃(a0,t)

[
H(t, x)c(x)− ||~h(t, x)||p

(Kq)p−1pHp−1(t, x)

]
dx

≤
∫ a

a0

[
k(r)

∫
S̃(r)

H(t, x) dS
]c∗(r)
k(r)

dr

+ k(a)
w∗(a)

k(a)

∫
S̃(a)

H(t, x) dS

≤ k(a0)

∫
S̃(a0)

H(t, x) dS

[∫ a

a0

c∗(r)

k(r)
dr +

w∗(a)

k(a)

]
for every t ≥ a0. From here we conclude that the expression(∫

S̃(a0)

H(t, x) dS
)−1

∫
Ω̃(a0,t)

[
H(t, x)c(x)− ||~h(t, x)||p

(Kq)p−1pHp−1(t, x)

]
dx

is bounded for all t ≥ a0. Hence (2.13) follows. The proof is complete.

As in Theorem 2.2, we specify the result of Theorem 2.3 also for the case
Ω = Rn.

Theorem 2.4. Let c ∈ C(Ω(a0)), ~b ∈ C(Ω,Rn). Suppose that there exists
nonnegative differentiable function H(t, x) defined on D which satisfies

(i) H(t, x) = 0 if and only if ||x|| = t

(ii) The vector function ~h(x) defined on D0 with the relation (2.11) satisfies∫
Ω(a0,t)

H1−p(t, x)||~h(t, x)||p dx <∞ (2.14)

(iii) There exists a continuous function k(r) ∈ C([a0,∞),R+) such that the
function Φ(r) := k(r)

∫
S(r)

H(t, x) dx is positive and nonincreasing on

[a0, t) with respect to the variable r for every t, t > r.
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Further suppose that there exist a real numbers a ≥ a0, K > 0 and differentiable
vector function ~w(x) defined on Ω(a) which satisfies the Riccati inequality (1.8)
on Ω(a). Then

lim sup
t→∞

(∫
S(a0)

H(t, x) dS
)−1

∫
Ω(a0,t)

[
H(t, x)c(x)− ||~h(t, x)||p

(Kq)p−1pHp−1(t, x)

]
dx <∞

(2.15)

Proof. The proof is a simplification of the proof of Theorem 2.3.

3. Oscillation of half–linear equation

In this section we will employ the results concerning the Riccati inequality
to derive oscillation criteria for the second order partial differential equation

div(||∇u||p−2∇u) + 〈~b(x), ||∇u||p−2∇u〉+ c(x)|u|p−2u = 0, (E)

where p > 1. The second order differential operator div(||∇u||p−2∇u) is called
the p-Laplacian and this operator is important in various technical applications
and physical problems – see [3]. The functions c and ~b are assumed to be Hölder
continuous functions on the domain Ω(1). The solution of (E) is every function
defined on Ω(1) which satisfies (E) everywhere on Ω(1).

The special cases of equation (E) are the linear equation

∆u+ 〈~b,∇u〉+ c(x)u = 0 (3.1)

which can be obtained for p = 2, the Schrödinger equation

∆u+ c(x)u = 0 (3.2)

obtained for p = 2 and ~b ≡ 0 and the undamped half-linear equation

div(||∇u||p−2∇u) + c(x)|u|p−2u = 0 (3.3)

for ~b ≡ 0.
Equation (E) is called the half–linear equation, since the operator on the

left-hand side is homogeneous and hence a constant multiple of every solution
of (E) is a solution of (E) as well. If p = 2 then equation (E) is linear elliptic
equation (3.1), however in the general case p 6= 2 is the linearity of the space of
solutions lost and only homogenity remains.

Concerning the linear equation two types of oscillation are studied — nodal
oscillation and strong oscillation. The equivalence between these two types
of oscillation has been proved in [11] for locally Hölder continuous function c,
which is an usual assumption concerning the smoothness of c, see also [4] for
short discussion concerning the general situation p 6= 2. In the connection to
equation (E) we will use the following concept of oscillation.
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Definition 3.1. The function u defined on Ω(1) is said to be oscillatory, if
the set of the zeros of the function u is unbounded with respect to the norm.
Equation (E) is said to be oscillatory if every its solution defined on Ω(1) is
oscillatory.

Definition 3.2. Let Ω be an unbounded domain in Rn. The function u defined
on Ω(1) is said to be oscillatory in the domain Ω, if the set of the zeros of the
function u, which lies in the closure Ω is unbounded with respect to the norm.
Equation (E) is said to be oscillatory in the domain Ω if every its solution
defined on Ω(1) is oscillatory in Ω. The equation is said to be nonoscillatory
(nonoscillatory in Ω) if it is not oscillatory (oscillatory in Ω).

Due to the homogenity of the set of solutions, it follows from the definition
that the equation which possesses a solution on Ω(1) is nonoscillatory, if it has
a solution u which is positive on Ω(T ) for some T > 1 and oscillatory otherwise.
Further the equation is nonoscillatory in Ω if it has a solution u such that u is
positive on Ω ∩ Ω(T ) for some T > 1 and oscillatory otherwise.

Jaroš et. al. studied in [5] the partial differential equation

div
(
a(x)||∇u||p−2∇u

)
+ c(x)|u|p−2u = 0, (3.4)

where a(x) is a positive smooth function and obtained the Sturmian–types com-
parison theorems and oscillation criteria for (3.4). The same results have been
proved independently by Došlý and Mař́ık in [4] for the case a(x) ≡ 1.

Theorem 3.1 ([4], [5]). Equation (3.4) is oscillatory, if the ordinary differential
equation

(rn−1a(r)|y′|p−2y′)′ + rn−1c(r)|y|p−2y = 0, ′ =
d

dr

is oscillatory, where a(r) and c(r) denote the mean value of the function a and
c over the sphere S(r), respectively, i.e.

a(r) =
1

ωnrn−1

∫
S(r)

a(x) dS , c(r) =
1

ωnrn−1

∫
S(r)

c(x) dS .

The main tool in the proof of this theorem is a Picone identity for equation
(3.4). Another application (not only to the oscillation or comparison theory) of
the Picone identity to the equation with p−Laplacian can be found in [1].

Concerning the Riccati-equation methods in the oscillation theory of PDE,
Noussair and Swanson used in [12] the transformation

~w(x) = −α(||x||)
ϕ(u)

(A∇u)(x)

to detect nonexistence of eventually positive solution of the semilinear inequality

n∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ p(x)ϕ(u) ≤ 0,
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which seems to be one of the first papers concerning the transformation of PDE
into the Riccati type equation.

In the paper of Schminke [14] is the Riccati technique used in the proof of
nonexistence of positive and eventually positive solution of Schrödinger equation
(3.2). The results are expressed in the spectral terms, concerning the lower
spectrum of Schrödinger operator.

Recently Kandelaki et. al. [7] via the Riccati technique improved the Ne-
hari and Hille criteria for oscillation and nonoscillation of linear second order
equation (1.2) and extended these criteria to the half-linear equation (1.4). The
further extension of the oscillatory results from [7] to the case of equation (3.3)
can be found in [9]. One of the typical result concerning the oscillation of
equation (3.3) is the following.

Theorem 3.2 (Hartman–Wintner type criterion, [10]). Denote

C(t) =
p− 1

tp−1

∫ t

1

sp−2

∫
Ø(1,s)

||x||1−nc(x) dx ds .

If
−∞ < lim inf

t→∞
C(t) < lim sup

t→∞
C(t) ≤ ∞ or if lim

t→∞
C(t) =∞,

then equation (3.3) is oscillatory.

A quick look at this condition and also at Theorem 3.1 reveals that the
potential function c(x) is in these criteria contained only within the integral
over the balls, centered in the origin. As a consequence of this fact it follows
that though the criteria are sharp in the cases when the function c(x) is radially
symmetric, these criteria cannot detect the contingent oscillation of the equation
in the cases when the mean value of the function c(x) over the balls centered
in the origin is small. In order to remove this disadvantage we will apply the
theorems from the preceding section to the Riccati equation obtained by the
transformation of equation (E). As a result we obtain the oscillation criteria
which are applicable also in such extreme cases when

∫
S(r)

c(x) dS = 0. The

criteria can detect also the oscillation over the more general exterior domains,
than the exterior of some ball. An application to the oscillation over the conic
domain is given in Section 4.

Remark that there are only few results in the literature concerning the os-
cillation on another types of unbounded domain, than an exterior of a ball. Let
us mention the paper of Atakarryev and Toraev [2], where Kneser–type oscilla-
tion criteria for various types of unbounded domains were derived for the linear
equation

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
+ p(x)u = 0.

In the paper [6] of Jaroš et. al. the forced superlinear equation

n∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ c(x)|u|β−1u = f(x), β > 1
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is studied via the Picone identity and the results concerning oscillation on the
domains with piecewise smooth boundary are established.

Our main tool will be the following Lemma 3.1 which presents the rela-
tionship between positive solution of (E) and a solution of the Riccati–type
equation.

Lemma 3.1. Let u be solution of (E) positive on the domain Ω. Let α ∈
C1(Ω,R+). The vector function ~w(x) defined by

~w(x) =
||∇u(x)||p−2∇u(x)

|u(x)|p−2u(x)
(3.5)

is well defined on Ω and satisfies the Riccati equation

div ~w + c(x) + (p− 1)||~w||q + 〈~w,~b(x)〉 = 0 (3.6)

for every x ∈ Ω.

Proof. From (3.5) it follows (the dependence on the variable x is suppressed in
the notation)

div ~w =
div(||∇u||p−2∇u)

|u|p−2u
− (p− 1)

||∇u||p

|u|p

on the domain Ω. Since u is a positive solution of (E) on Ω it follows

div ~w = −c− 〈~b, ||∇u||
p−2∇u

|u|p−2u
〉 − (p− 1)

||∇u||p

|u|p

= −c− (p− 1)
||∇u||p

|u|p
− 〈~b, ||∇u||

p−2∇u
|u|p−2u

〉.

Application of (3.5) gives

div ~w = −c− (p− 1)||~w||q − 〈~b, ~w〉

on Ω. Hence (3.6) follows.

The first theorem concerns the case in which left-hand sides of (3.6) and
(1.7) differ only in a multiple by the function α.

Theorem 3.3. Suppose that there exists function α ∈ C1(Ω(a0),R+) which
satisfies

(i) for x ∈ Ω(a0)

∇α(x) = ~b(x)α(x) (3.7)

(ii) the condition (2.8) holds and

(iii)

lim
t→∞

∫
Ω(a0,t)

α(x)c(x) dx =∞. (3.8)

11



Then equation (E) is oscillatory in Ω(a0).

Proof. Suppose, by contradiction, that (2.8), (3.7) and (3.8) hold and (E) is not
oscillatory in Ω(a0). Then there exists a real number a ≥ a0 such that equation
(E) possesses a solution u positive on Ω(a). The function ~w(x) defined on Ω(a)
by (3.5) is well-defined, satisfies (3.6) on Ω(a) and is bounded on every compact
subset of Ω(a). In view of the condition (3.7) equation (3.6) can be written in
the form

α div ~w + αc+ (p− 1)α||~w||q + 〈~w,∇α〉 = 0

which implies (1.7) with K = p − 1. Theorem 2.2 shows that (2.9) holds, a
contradiction to (3.8).

The following theorem concerns the linear case p = 2.

Theorem 3.4. Let α ∈ C(Ω(a0),R+) Denote

C1(x) = c(x)− 1

4α2(x)
||α(x)~b(x)−∇α(x)||2 − 1

2α(x)
div
(
α(x)~b(x)−∇α(x)

)
.

(3.9)
Suppose that ∫ ∞

a0

(∫
S(t)

α(x) dS
)−1

dt =∞ (3.10)

and

lim
t→∞

∫
Ω(a0,t)

α(x)C1(x) dx =∞. (3.11)

Then equation (3.1) is oscillatory in Ω(a0).

Proof. Suppose, by contradiction, that (3.1) is nonoscillatory. As in the proof
of Theorem 3.3, there exists a ≥ a0 such that (3.6) with p = 2 has a solution

~w(x) defined on Ω(a). Denote ~W (x) = ~w(x) + 1
2

(
~b− ∇αα

)
. Direct computation

shows that the function ~W satisfies the differential equation

div ~W + C1(x) + || ~W ||2 +
〈∇α
α
, ~W
〉

= 0

on Ω(a). From here we conclude that the function ~W satisfies

div(α ~W ) + C1α+ α|| ~W ||2 = 0

on Ω(a). However by Theorem 2.2 inequality (2.9) with C1 instead of c holds,
a contradiction to (3.11).

The next theorem concerns the general case p > 1. In this case we also allow
also another types of unbounded domains, than Ω(a0).

12



Theorem 3.5. Let Ω be an unbounded domain which satisfies hypothesis (A1).
Suppose that k ∈ (1,∞) is a real number and α ∈ C1(Ω(a0),R+

0 ) is a function
defined on Ω(a0) such that

(i) α(x) = 0 if and only if x 6∈ Ω ∩ Ω(a0) and
(ii) (2.2) holds.

For x ∈ Ω ∩ Ω(a0) denote

C2(x) = c(x)− k

(pα(x))p
||α(x)~b(x)−∇α(x)||p. (3.12)

If

lim
t→∞

∫
Ω∩Ω(a0,t)

α(x)C2(x) dx =∞ (3.13)

holds, then (E) is oscillatory in Ω.

Remark 3.1. Under (3.13) we understand that the integral

f(t) =

∫
Ω∩S(t)

α(x)C2(x) dS

which may have singularity near the boundary ∂Ω, is convergent for large t’s
and the function f satisfy

∫∞
f(t) dt =∞.

Proof of Theorem 3.5. Suppose, by contradiction, that (E) is not oscillatory.
Then there exists a number a ≥ a0 and a function u defined on Ω(a) which is
positive on Ω ∩ Ω(a) and satisfies (E) on Ω ∩ Ω(a). The vector function ~w(x)
defined by (3.5) satisfies (3.6) on Ω ∩ Ω(a) and is bounded on every compact

subset of Ω ∩ Ω(a). Denote l = k
1

p−1 and let l∗ be a conjugate number to the
number l, i.e. 1

l + 1
l∗ = 1 holds. Clearly l > 1 and l∗ > 1. The Riccati equation

(3.6) can be written in the form

div ~w + c(x) +
p− 1

l
||~w||q + 〈~w,~b(x)− ∇α

α
〉+

p− 1

l∗
||~w||q + 〈~w, ∇α

α
〉 = 0

for x ∈ Ω ∩ Ω(a). From inequality (2.10) it follows

p− 1

l
||~w||q + 〈~w,~b− ∇α

α
〉 =

(p− 1)q

l

{
||~w||q

q
+ 〈~w, l

(p− 1)q

(
~b− ∇α

α

)
〉
}

≥ − (p− 1)q

l

lp

[(p− 1)q]p

∣∣∣∣∣∣~b− ∇α
α

∣∣∣∣∣∣p 1

p

= − l
p−1

pp

∣∣∣∣∣∣~b− ∇α
α

∣∣∣∣∣∣p
= − k

pp

∣∣∣∣∣∣~b− ∇α
α

∣∣∣∣∣∣p
Hence the function ~w is a solution of the inequality

div ~w + C2(x) +
p− 1

l∗
||~w||q + 〈~w, ∇α

α
〉 ≤ 0
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on Ω ∩ Ω(a). This last inequality is equivalent to

div(α~w) + αC2 +
p− 1

l∗
α||~w||q ≤ 0.

By Theorem 2.1 inequality (2.3) with C2 instead of c holds, a contradiction to
(3.13). The proof is complete.

The last theorem makes use of the two-parametric weighting function H(t, x)
from Theorem 2.3 to prove the nonexistence of the solution of Riccati equation.

Theorem 3.6. Let Ω be an unbounded domain in Rn which satisfy hypothesis
(A1). Let H(t, x) be the function defined on the domain D with the properties
(i)–(v) of Theorem 2.3. If

lim sup
t→∞

(∫
S(a0)

H(t, x) dS
)−1

∫
Ω(a0,t)∩Ω

[
H(t, x)c(x)− ||~h(t, x)||p

ppHp−1(t, x)

]
dx =∞,

(3.14)
then equation (E) is oscillatory in Ω.

Proof. Suppose that the equation is nonoscillatory. Then the Riccati equation
(3.6) has a solution defined on Ω ∩ Ω(T ) for some T > 1, which is bounded
near the boundary ∂Ω. Hence (2.13) of Theorem 2.3 with K = p − 1 holds, a
contradiction to (3.14). Hence the theorem follows.

4. Examples

In the last part of the paper we will concretize the general ideas from the
preceding section.

The specification of the function α in Theorem 3.5 leads to the following
oscillation criterion for a conic domain on the plane. In this case the function
α is only the function of a polar coordinate ϕ.

Corollary 4.1. Let us consider equation (3.3) on the plane (i.e. n = 2) with
polar coordinates (r, ϕ) and let

Ω = {(x, y) ∈ R2 : ϕ1 < ϕ(x, y) < ϕ2}, (4.1)

where 0 ≤ ϕ1 < ϕ2 ≤ 2π and ϕ(x, y) is a polar coordinate of the point (x, y) ∈
R2. Further suppose that the smooth function α ∈ C1(Ω(1),R+

0 ) does not depend
on r, i.e. α = α(ϕ). Finally, suppose that

(i) α(ϕ) 6= 0 if and only if ϕ ∈ (ϕ1, ϕ2)

(ii)

I1 :=

∫ ϕ2

ϕ1

|α′ϕ(ϕ)|p

4αp−1(ϕ)
<∞, (4.2)

where α′ϕ = ∂α
∂ϕ .
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Every of the following conditions is sufficient for oscillation of (3.3) on the
domain Ω:

(i) p > 2 and

lim
t→∞

∫ t

1

r

∫ ϕ2

ϕ1

c(r, ϕ)α(ϕ) dϕ dr =∞ (4.3)

(ii) p = 2 and

lim inf
t→∞

1

ln t

∫ t

1

r

∫ ϕ2

ϕ1

c(r, ϕ)α(ϕ) dϕ dr > I1, (4.4)

where c(r, ϕ) is the potential c(x) transformed into the polar coordinates.

Proof. First let us remind that in the polar coordinates dx = r dr dϕ and
dS = r dϕ holds. Direct computation shows that∫ ∞(∫

Ω∩S(t)

α(ϕ) dS
)1−q

dt =

∫ ϕ2

ϕ1

α(ϕ) dϕ ·
∫ ∞

t1−q dt .

and the integral diverges, since p ≥ 2 is equivalent to q ≤ 2. Hence (2.2) holds.
Transformation of the nabla operator in the polar coordinates gives ∇α =

(0, r−1α′ϕ(ϕ)). Hence, according to Theorem 3.5, it is sufficient to show that
there exists k > 1 such that

lim
t→∞

∫
Ω∩Ω(1,t)

[
c(r, ϕ)α(ϕ)− k

pp
|α′ϕ(ϕ)|p

rpαp−1(ϕ)

]
dx =∞. (4.5)

Since for p > 2

lim
t→∞

∫
Ω∩Ω(1,t)

|α′ϕ(ϕ)|p

rpαp−1(ϕ)
dx =

∫ ϕ2

ϕ1

|α′ϕ(ϕ)|p

αp−1(ϕ)
dϕ lim

t→∞

∫ t

1

r1−p dr <∞,

the conditions (4.5) and (4.3) are equivalent.
Finally, suppose p = 2. From (4.4) it follows that there exists t0 > 1 and

ε > 0 such that
1

ln t

∫
Ω∩Ω(1,t)

c(r, ϕ)α(ϕ) dx > I1 + 2ε

for all t ≥ t0 and hence∫
Ω∩Ω(1,t)

c(r, ϕ)α(ϕ) dx >
[
kI1 + ε

]
ln t

where k = 1 + εI−1
1 holds for t ≥ t0. Since

kI1 ln t =
k ln t

4

∫ ϕ2

ϕ1

|α′ϕ(ϕ)|2α−1(ϕ) dϕ

=

∫ t

1

k

4r

(∫ ϕ2

ϕ1

|α′ϕ(ϕ)|2α−1(ϕ) dϕ
)

dr

=

∫
Ω∩Ω(1,t)

k

4r2
|α′ϕ(ϕ)|2α−1(ϕ) dx
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holds, the last inequality can be written in the form∫
Ω∩Ω(1,t)

[
c(r, ϕ)α(ϕ)− k

4

|α′ϕ(ϕ)|2

r2α(ϕ)

]
dx > ε ln t

and the limit process t→∞ shows that (4.5) holds also for p = 2. The proof is
complete.

Example 4.1. For n = 2 let us consider the Schrödinger equation (3.2), which
in the polar coordinates (r, ϕ) reads as

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂ϕ2
+ c(r, ϕ)u = 0. (4.6)

In Corollary 4.1 let us choose ϕ1 = 0, ϕ2 = π, α(ϕ) = sin2 ϕ for ϕ ∈ [0, π]
and α(ϕ) = 0 otherwise. In this case the direct computation shows that the
oscillation constant I1 in (4.4) is π

2 , i.e. the equation is oscillatory on the half-
plane Ω = {(x1, x2) ∈ R2 : x2 > 0} if

lim
t→∞

1

ln t

∫ t

1

r

∫ π

0

c(r, ϕ) sin2(ϕ) dϕ dr >
π

2
. (4.7)

Similarly, the choice α(ϕ) = sin3 ϕ gives an oscillation constant 3
2 .

Remark 4.1. It is easy to see that the condition (4.7) can be fulfilled also

for the function c which satisfy
∫ 2π

0
c(r, ϕ) dϕ = 0 and hence the criteria from

Theorems 3.1 and 3.2 fails to detect the oscillation.

Another specification of the function α(x) leads to the following corollary.

Corollary 4.2. Let Ω be an unbounded domain in R2 specified in Corollary 4.1.
Let A ∈ C1([0, 2π],R+

0 ) be a smooth function satisfying

(i) A(ϕ) 6= 0 if and only in ϕ ∈ (ϕ1, ϕ2)

(ii) A(0) = A(2π) and A′(0+) = A′(2π−)

(iii) the following integral converges

I2 :=

∫ ϕ2

ϕ1

[A2(ϕ)(p− 2)2 + (A′(ϕ))2]
p
2

ppAp−1(ϕ)
dϕ <∞. (4.8)

If

lim inf
t→∞

1

ln t

∫ t

1

rp−1

∫ ϕ2

ϕ1

c(r, ϕ)A(ϕ) dϕ dr > I2, (4.9)

then (3.3) is oscillatory in Ω.

Proof. Let α be defined in polar coordinates by the relation

α(x(r, ϕ)) = rp−2A(ϕ).
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Computation in the polar coordinates gives∫ ∞(∫
Ω∩S(t)

α(x) dS
)1−q

dt =

∫ ∞(
rp−1

)1−q
dr

∫ ϕ2

ϕ1

A(ϕ) dϕ

=

∫ ∞ 1

r
dr

∫ ϕ2

ϕ1

A(ϕ) dϕ =∞

and hence (2.2) holds. The application of the nabla operator in polar coordinates
yields

∇α(x(r, ϕ)) =
(∂α(x(r, ϕ))

∂r
,

1

r

∂α(x(r, ϕ))

∂ϕ

)
= rp−3((p− 2)A(ϕ), A′(ϕ))

and hence on Ω

||∇α(x(r, ϕ))||p

αp−1(x(r, ϕ))
=
rp(p−3)

[
(p− 2)2A2(ϕ) +A′2(ϕ)

] p
2

r(p−1)(p−2)Ap−1(ϕ)

= r−2

[
(p− 2)2A2(ϕ) +A′2(ϕ)

] p
2

Ap−1(ϕ)

holds. Integration over the part Ω∩S(r) of the sphere S(r) in polar coordinates
gives (in view of (4.8))∫

Ω∩S(r)

||∇α(x(r, ϕ))||p

ppαp−1(x(r, ϕ))
dS = r−1I2.

From (4.9) it follows that there exist a real numbers ε > 0 and t0 > 1 such that

1

ln t

∫ t

1

rp−1

∫ ϕ2

ϕ1

c(r, ϕ)A(ϕ) dϕ dr > I2 + 2ε = I2(1 + εI−1
2 ) + ε (4.10)

holds for t > t0. Denote k = 1 + εI−1
2 . Clearly k > 1. From (4.10) it follows

that for t > t0 ∫ t

1

rp−1

∫ ϕ2

ϕ1

c(r, ϕ)A(ϕ) dϕ dr > kI2 ln t+ ε ln t

holds. This inequality can be written in the form∫ t

1

[
rp−1

∫ ϕ2

ϕ1

c(r, ϕ)A(ϕ) dϕ − r−1kI2

]
dr > ε ln t

which is equivalent to∫
Ω∩Ω(1,t)

[
c(r, ϕ)α(r, ϕ)− k ||∇α(r, ϕ)||p

ppαp−1(r, ϕ)

]
dx > ε ln t,

where dx = r dr dϕ . Now the limit process t → ∞ shows that (3.13) holds
and hence (3.3) is oscillatory in Ω by Theorem 3.5.
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Example 4.2. An example of the function A which for p > 1, ϕ1 = 0 and
ϕ2 = π satisfies the conditions from Corollary 4.2 is A(ϕ) = sinp ϕ for ϕ ∈ (0, π)
and A(ϕ) = 0 otherwise. In this case the condition

lim inf
t→∞

1

ln t

∫ t

1

rp−1

(∫ π

0

c(r, ϕ) sinp ϕdϕ

)
dr

>

∫ π

0

[
(p− 2)2 sin2p ϕ+ p2 sin2p−2 ϕ cos2 ϕ

]p/2
pp sinp(p−1) ϕ

dϕ

is sufficient for oscillation of (3.3) (with n = 2) over the domain Ω specified in
(4.1). Here c(r, ϕ) if the potential c(x) transformed into the polar coordinates
(r, ϕ), i.e. c(r, ϕ) = c(x(r, ϕ)).

Corollary 4.3. Let us consider the Schrödinger equation (4.6) in the polar
coordinates. Every of the following conditions is sufficient for the oscillation of
the equation over the half-plane

Ω = {(x1, x2) ∈ R2 : x2 > 0}. (4.11)

(i) There exists λ > 1 such that

lim sup
t→∞

t−λ
∫ t

1

(t− r)λ
(
r

∫ π

0

c(r, ϕ) sin2 ϕdϕ − π

2r

)
dr =∞. (4.12)

(ii) There exists λ > 1 and γ < 0 such that

lim sup
t→∞

t−λ
∫ t

1

rγ+1(t− r)λ
∫ π

0

c(r, ϕ) sin2 ϕdϕ dr =∞. (4.13)

Proof. For γ ≤ 0 let us define

H(t, x) =

{
rγ(t− r)λ sin2 ϕ ϕ ∈ (0π)

0 otherwise,

where (r, ϕ) are the polar coordinates of the point x ∈ R2. In the polar coordi-
nates ∇ = ( ∂∂r ,

1
r

∂
∂ϕ ). Hence

~h(t, x(r, ϕ)) = −∇H(t, x(r, ϕ))

= −
(
rγ−1(t− r)λ−1(γ(t− r)− λr) sin2 ϕ, 2rγ−1(t− r)λ sinϕ cosϕ

)
and consequently

||~h(t, x(r, ϕ))||2

H(t, x(r, ϕ))
=γ2rγ−2(t− r)λ sin2 ϕ− 2λγrγ−1(t− r)λ−1 sin2 ϕ

+ λ2rγ(t− r)λ−2 sin2 ϕ+ 4rγ−2(t− r)λ cos2 ϕ. (4.14)
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Now it is clear that for λ > 1 inequality λ − 2 > −1 holds. Hence the integral
over Ω ∩ Ω(1, t) converges and (2.12) for p = 2 holds. Further∫

S(r)∩Ω

H(t, x) dS = r

∫ π

0

rγ(t− r)λ sin2 ϕdϕ =
π

2
rγ+1(t− r)λ

and the condition (v) of Theorem 2.3 holds with k(r) = r−1−γ . It remains to
prove that the conditions (4.12) and (4.13) imply the condition (3.14). Since∫ π

0
sin2 ϕdϕ =

∫ π
0

cos2 ϕdϕ = π
2 , it follows from (4.14) that∫

S(r)∩Ω

||~h(t, x(r, ϕ))||2

H(t, x(r, ϕ))
dS =

π

2
(γ2 + 4)rγ−1(t− r)λ − πλγrγ(t− r)λ−1

+
π

2
λ2rγ+1(t− r)λ−2. (4.15)

Next we will show that

lim
t→∞

t−λ
∫ t

1

rγ(t− r)λ−1 dr <∞ (4.16)

lim
t→∞

t−λ
∫ t

1

rγ+1(t− r)λ−2 dr <∞ (4.17)

and for γ < 0 also

lim
t→∞

t−λ
∫ t

1

rγ−1(t− r)λ dr <∞ (4.18)

holds. Inequality (4.16) follows from the estimate∫ t

1

rγ(t− r)λ−1 dr ≤
∫ t

1

1γ(t− r)λ−1 dr =
1

λ
(t− 1)λ.

Computation by parts shows∫ t

1

rγ+1(t− r)λ−2 dr =
(t− 1)λ−1

λ− 1
+
γ + 1

λ− 1

∫ t

1

rγ(t− r)λ−1 dr

and in view of (4.16) inequality (4.17) holds as well. Finally, for γ < 0 integra-
tion by parts gives∫ t

1

rγ−1(t− r)λ dr =
(t− 1)λ

γ
+
λ

γ

∫ t

1

rγ(t− r)λ−1 dr

and again the inequality (4.18) follows from (4.16). Hence the terms from (4.15)
have no influence on the divergence of (3.14) (except the term r−1(t−r)λ which
appears for γ = 0) and hence (3.14) follows from (4.12) and (4.13), respectively.
Consequently, the equation is oscillatory by Theorem 3.6.
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[5] J. Jaroš, T. Kusano, N. Yoshida, A Picone–type identity and Sturmian
comparison and oscillation theorems for a class of half–linear partial differ-
ential equations of second order, Nonlin. Anal. TMA 40 (2000), 381–395.
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