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Abstract. The technique of weighted integral averages, known in the oscil-
lation theory of ordinary differential equations, is extended to the half–linear
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1. Introduction

Consider the partial differential equation with p−Laplacian and the nonlin-
earity of the Emden-Fowler type

∆pu+ c(x)Φ(u) = 0, (E)

where ∆pu ≡ div(||∇u||p−2∇u), p > 1 is the p−Laplacian, Φ(u) = |u|p−2u =
|u|p−1 sgnu, x = (xi)

n
i=1 ∈ Rn, || · || is the usual Euclidean norm in Rn and

∇ = ( ∂
∂xi

)ni=1 is the usual nabla operator.
The equations with p−Laplacian have applications in various physical and

biological problems — in the study of non-Newtonian fluids, in the glaciology
and slow diffusion problems. For more detailed discussion about applications of

equations with p−Laplacian the reader is referred to [2] and the references therein.
Among the equations with p−Laplacian equation (E) plays a special role.

Since both terms ∆pu and Φ(u) are homogeneous functions of the degree p − 1,
(E) has the so-called half–linear property: the constant multiple of every solution
is also a solution of (E). From this reason some of the qualitative properties of
half–linear equation (E) are similar to the properties of linear Schrödinger partial
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differential equation

∆u+ c(x)u = 0 (L)

which can be obtained from (E) for p = 2. Especially the Sturmian type theorems

extends from (L) also to (E), see [6, 8].
Notation: Ω(a), Ω(a, b), S(a), D and D0 are the sets in Rn and R × Rn

defined as follows:

Ω(a) = {x ∈ Rn : a ≤ ||x||},
Ω(a, b) = {x ∈ Rn : a ≤ ||x|| ≤ b},
S(a) = {x ∈ Rn : ||x|| = a},
D = {(t, x) ∈ R× Rn : t ≥ ||x|| ≥ t0},
D0 = {(t, x) ∈ R× Rn : t > ||x|| ≥ t0},

the number q is a conjugate number to the number p, i.e., q = p
p−1 , 〈·, ·〉 denotes the

usual scalar product in Rn, ωn is the surface of the unit sphere in Rn. Integration
over the domain Ω(a, b) is performed introducing hyperspherical coordinates (r, θ),
i.e. ∫

Ω(a,b)

f(x) dx =

∫ b

a

∫
S(r)

f(x(r, θ)) dS dr ,

where dS is the element of the surface of the sphere S(r).

The function c(x) is assumed to be locally Hölder continuous on Ø(t0). The
solution of equation (E) is every function which satisfies (E) everywhere on Ø(t0).

The oscillation properties of equation (L) and its generalizations, which in-
cludes also the half–linear partial differential equation with p−Laplacian (E) has

been extensively studied in the literature, see e.g. [1, 6, 7, 8, 14, 15, 17, 18, 19, 20,

22, 23]. The oscillation theory of (L) recognizes two types of oscillation. Equation
(L) is said to be weakly oscillatory if every its solution has a zero outside of every
ball in Rn and strongly oscillatory if every solution has a nodal domain outside

of every ball in Rn. Moss and Piepenbrick [16] showed that both definitions are
equivalent if the function c(x) is locally Hölder continuous. As far as the author
knows, the possible equivalence between both types of oscillation remains an open
question for (E). In the paper the first type of oscillation is used.

Definition 1.1. Let Ω be unbounded domain in Rn. Equation (E) is said to be
oscillatory in Ω if every its nontrivial solution defined on Ω ∩ Ω(t0) has zero in
Ω ∩ Ω(t) for every t ≥ t0. Equation (E) is said to be oscillatory, if it is oscillatory
in Rn.

The oscillation criteria are usually expressed in terms of integrals of the po-
tential function c(x) over the balls centered in the origin. Let us mention the fol-
lowing theorem, well–known in the area of second-order linear ordinary differential
equations.
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Theorem A (Hartman–Wintner type oscillation criterion, [14]). Denote

C(t) =
p− 1

tp−1

∫ t

1

sp−2

∫
Ø(1,s)

||x||1−nc(x) dx ds .

If

−∞ < lim inf
t→∞

C(t) < lim sup
t→∞

C(t) ≤ ∞ or if lim
t→∞

C(t) =∞,

then equation (E) is oscillatory.

Very general oscillation criterion which deduces oscillation of (E) from os-
cillation of ordinary half–linear differential equation is due to Jaroš, Kusano and

Yoshida [8]. A variant of this theorem has been proved independently also by Došlý

and Mař́ık [6].

Theorem B ( [6]). Let

c̃(r) =
1

ωnrn−1

∫
S(r)

c(x) dS .

Equation (E) is oscillatory, if the ordinary differential equation

(rn−1Φ(y′))′ + rn−1c̃(r)Φ(y) = 0 (1.1)

is oscillatory.

Oscillation criteria for equation (1.1) can be found in [3, 4, 5, 9, 11, 12, 13].

The disadvantage of the criteria in Theorems A and B lies in the fact that
preferring integration over the balls in Rn we loose the information about the
distribution of the potential c(x) over the sphere S(r). However, the distribution
of potential over the sphere may be substantial in the cases when Theorem B is not
applicable. If the function c̃(x) is sufficiently small, equation (1.1) is nonoscillatory,
but equation (E) still may be oscillatory.

Philos [21] used a class of functions H(t, s) to obtain oscillation criteria for
linear second order Sturm–Liouville differential equation. This technique, usually

referred as averaging technique, has been elaborated and extended e.g. in [10, 13,

24] also for other types of ordinary differential equations. Let us point out the

paper [24], where the usual condition ∂H(t,s)
∂s ≤ 0 is relaxed.

The aim of this paper is to extend the averaging technique also for the partial
differential equation (E) and obtain new oscillation criteria, which can remove the
disadvantage of Theorems A and B. It is also showed, that this technique allows
obtain oscillation criteria not only for the exterior of a ball, but also for different
types of unbounded domains.

The paper is divided into three sections. Main results and comments are
presented in the next section. The last section contains proofs of theorems.
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2. Main results

First let us present a direct extension of [24, Theorem 1] to the case of
equation (E).

Theorem 2.1. Let H(t, x) ∈ C(D, [0,∞)), and ρ(x) ∈ C1(Ω(t0), (0,∞)) be such
that the function H(t, x) has a continuous partial derivative with respect to xi
(i = 1..n) on D0 and the following conditions hold

(i) H(t, x) = 0 iff t = ||x||
(ii) There exists function k(s) ∈ C([t0,∞), (0,∞)) such that the function

f(t, s) = k(s)
∫
S(s)

H(t, x) dS is nonincreasing with respect to s for every

t ≥ s ≥ t0.
(iii) The vector–valued function h(t, x) defined on D0 by

h(t, x) = ∇H(t, x) +
H(t, x)

ρ(x)
∇ρ(x) (2.1)

satisfies ∫
Ω(t0,t)

H1−p(t, x)||h(t, x)||pρ(x) dx <∞ (2.2)

for t > t0.

If

lim sup
t→∞

(∫
S(t0)

H(t, x) dS

)−1

×
∫

Ω(t0,t)

[
H(t, x)ρ(x)c(x)− ||h(t, x)||pρ(x)

ppHp−1(t, x)

]
dx =∞, (2.3)

then (E) is oscillatory.

The following theorem is a variant of the preceding one. In contrast to The-
orem 2.1 the function H(t, x) is not necessary to be positive for t0 ≤ ||x|| < t in
theorems bellow, but can attain also zero values. This allows to eliminate “bad
parts” of the potential c(x) from our considerations. We will use the following
additional notation

Ω0,t(a, b) = {x ∈ Rn : a ≤ ||x|| ≤ b,H(t, x) 6= 0},
S0,t(a) = {x ∈ Rn : ||x|| = a,H(t, x) 6= 0}.

This allows us to exclude the parts of the sets Ω(a, b) and S(a), where the function
H(t, x) equals zero, from the area of integration.

Theorem 2.2. Let H(t, x) ∈ C(D, [0,∞)), and ρ(x) ∈ C1(Ω(t0), (0,∞)) be such
that that the function H(t, x) has a continuous partial derivative with respect to xi
(i = 1..n) on D0 and the following conditions hold

(i) If ||x|| = t ≥ t0, then H(t, x) = 0
(ii) If H(t, x) = 0 for some (t, x) ∈ D0, then ||∇H(t, x)|| = 0
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(iii) There exists function k(s) ∈ C([t0,∞), (0,∞)) such that the function
f(t, s) := k(s)

∫
S(s)

H(t, x) dS = k(s)
∫
S0,t(s)

H(t, x) dS is positive and

nonincreasing with respect to s for every t > s ≥ t0.
(iv) The vector–valued function h(t, x) defined on D0 by (2.1) satisfies∫

Ω0,t(t0,t)

H1−p(t, x)||h(t, x)||pρ(x) dx <∞ (2.4)

for t > t0.

If

lim sup
t→∞

(∫
S(t0)

H(t, x) dS

)−1

×
∫

Ω0,t(t0,t)

[
H(t, x)ρ(x)c(x)− ||h(t, x)||pρ(x)

ppHp−1(t, x)

]
dx =∞ (2.5)

then (E) is oscillatory.

Remark 2.1. Condition (iii) claims that the set S0,t(s) is nonempty for every t
satisfying t0 < s < t. Hence The function H(t, x) has parts with positive values
on every sphere centered in the origin.

Remark 2.2. Under (2.2) we understand that the function g(t, s) defined for
t0 < s < t by

g(t, s) :=

∫
S0,t(s)

H1−p(t, x)ρ(x)||h(t, x)||p dS (2.6)

is integrable with respect to s over the interval (t0, t). (The point t may be a
singular point of the integral, since H(t, x) = 0 for ||x|| = t.) A similar commentary
explains also, how to understand (2.4).

Remark 2.3. Let Ω ⊂ Ω(t0) be unbounded domain with smooth boundary ∂Ω. If
in addition to the conditions of Theorem 2.2 the function H(t, x) vanishes outside
Ω and both H(t, x) and ||∇H(t, x)|| vanishes on ∂Ω for every t ≥ t0, then it
follows that equation (E) is oscillatory in Ω. Hence Theorem 2.2 can be used to
formulate explicit oscillation criteria on different types of domains, than exterior
of the ball. This situation cannot be covered by Theorem B. Remark also that
Kneser–type criteria for oscillation and nonoscillation of linear PDE in various

types of unbounded domain can be found in [1]. Examples of the oscillation criteria
on the half–plane are given bellow.

The following Corollary is an immediate consequence of Theorem 2.2.

Corollary 2.1. Let the assumptions (i) – (iv) of Theorem 2.2 holds. If

lim sup
t→∞

(∫
S(t0)

H(t, x) dS

)−1 ∫
Ω0,t(t0,t)

||h(t, x)||pρ(x)

Hp−1(t, x)
dx <∞ (2.7)
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and

lim sup
t→∞

(∫
S(t0)

H(t, x) dS

)−1 ∫
Ω(t0,t)

H(t, x)ρ(x)c(x) dx =∞, (2.8)

then (E) is oscillatory.

The following theorem extends [24, Theorem 2].

Theorem 2.3. Let the functions H, h, k and ρ satisfy the hypotheses (i)–(iv) of
Theorem 2.2. Suppose also that

0 < inf
s≥t0

{
lim inf
t→∞

k(s)
∫
S(s)

H(t, x) dS

k(t0)
∫
S(t0)

H(t, x) dS

}
(2.9)

and (2.7) holds. If there exists a function A ∈ C(Ω(t0),R) such that

inf
t∈(T,∞)

{(∫
S(T )

H(t, x) dS
)−1

∫
Ω0,t(T,t)

[
H(t, x)ρ(x)c(x)

− ||h(t, x)||pρ(x)

ppHp−1(t, x)

]
dx

}
≥ A(T ) (2.10)

for T ≥ t0 and ∫ ∞
t0

(A+(T ))qρ̂1−q(T )k−1(T ) dT =∞, (2.11)

where A+(T ) = max{A(T ), 0} and

ρ̂(T ) = sup
t>T

{(∫
S(T )

H(t, x) dS
)−1

∫
S(T )

ρ(x)H(t, x) dS

}
, (2.12)

then (E) is oscillatory.

Remark 2.4. The supremum in (2.12) always exists, since(∫
S(T )

H(t, x) dS
)−1

∫
S(T )

ρ(x)H(t, x) dS ≤ max
x∈S(T )

{ρ(x)}.

Remark 2.5. Comparing Theorem 2.3 with Theorem 2 of [24] we see that in the
case of ordinary differential equations is the condition (2.10) replaced by a weaker
condition where lim supt→∞ stays instead of inft∈(T,∞). The reason, why we need
the stronger condition (2.10) instead is the following. In the proof of Theorem 2.3
we estimate the function A(T ) from above with help of solution of Riccati equation
— see (3.19) below. This bound does not depend on the value of t in the case of
ODE, however depends on t in the case of equation (E).

The following theorem extends [24, Theorem 3]
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Theorem 2.4. Let the functions H, h, k and ρ satisfy the hypotheses (i)–(iv) of
Theorem 2.2. Suppose also that (2.9) and

lim inf
t→∞

(∫
S(t0)

H(t, x) dS
)−1

∫
Ω(t0,t)

H(t, x)ρ(x)c(x) dx <∞. (2.13)

If there exists a function A ∈ C(Ω(t0),R) such that (2.10) and (2.11)hold, then
(E) is oscillatory.

Example 2.1. Consider the Schrödinger partial differential equation (L) in R2,
i.e., n = p = 2. For λ > 1 define the functions H, k and ρ as follows:

ρ(x) ≡ 1 for x ∈ R2

k(s) =
1

s
for s > 1

H(t, x) =

{
(t− r)λ sin2 φ φ ∈ [0, π)

0 φ ∈ [π, 2π),

where r and φ are the radial and the polar coordinates of the point x ∈ R2. It is easy
to see that St,0(s) is the top half-circle with radius s < t and

∫
S(s)

H(t, x) dS =
π
2 (t− s)λs = O(tλ). Since ρ(x) ≡ 1, h(t, x) = ∇H(t, x) holds and consequently

||h(t, x)||2 =

{
λ2(t− r)2λ−2 sin4 φ+ 4 (t−r)2λ

r2 sin2 φ cos2 φ φ ∈ [0, π)

0 φ ∈ [π, 2π)

Direct computation shows

H−1(t, x)||h(t, x)||2 = λ2(t− r)λ−2 sin2 φ+ 4
(t− r)λ

r2
cos2 φ

for x ∈ Ω0,t(t0) and (2.4) clearly holds. Further (2.5) has the form

lim sup
t→∞

t−λ
∫
M(t)

[
c(x(r, φ))(t− r)λ sin2 φ

− λ2

4
(t− r)λ−2 sin2 φ− (t− r)λ

r2
cos2 φ

]
dx =∞, (2.14)

where M(t) = {(x1, x2) ∈ R2 : 1 ≤ x2
1 + x2

2 ≤ t2, x2 > 0}. Since

lim
t→∞

t−λ
∫
M(t)

(t− r)λ−2 sin2 φ dx = lim
t→∞

t−λ
π

2

∫ t

1

r(t− r)λ−2 dr

≤ lim
t→∞

t−λ
π

2

∫ t

1

t(t− r)λ−2 dr

=
π

2

1

λ− 1
lim
t→∞

t1−λ(t− 1)λ−1 <∞,

is (2.14) equivalent to

lim sup
t→∞

t−λ
∫
M(t)

[
c(x(r, φ))(t− r)λ sin2 φ− (t− r)λ

r2
cos2 φ

]
dx (r, φ) =∞. (2.15)
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Hence (2.14) is sufficient for (L) to be oscillatory on the half-plane x2 ≥ 0.

Example 2.2. Lut us consider the same equation as in the Example 2.1. Let
us change the function ρ(x) into ρ(x) = 1

||x|| = 1
r . The computation in polar

coordinates yields

||h(t, x)||2 =λ2(t− r)2λ−2 sin4 φ+ 2λ(t− r)2λ−1r−1 sin4 φ

+ (t− r)2λr−2 sin4 φ+ 4(t− r)2λr−2 sin2 φ cos2 φ

for φ ∈ [0, π) and ||h(t, x)||2 = 0 otherwise. As in the preceeding example, (2.4)
holds. Further integrating in polar coordinates we ensure that (2.7) holds. Then
the condition

lim sup
t→∞

t−λ
∫
M(t)

c(x(r, φ))(t− r)λr−1 sin2 φdx (r, φ) =∞

is a sufficient condition for oscillation of equation (E) on the half-plane x2 ≥ 0.

Remark 2.6. In contrast to the results in Theorems A and B, the conditions in
Examples 2.1 and 2.2 are not affected by the behavior of the function c(x) on the
half-plane x2 ≤ 0, which may be “relatively bad”.

3. Proofs

Proof of Theorem 2.1. Suppose that (E) is not oscillatory. There exits T ≥ t0 ,
such that (E) has a solution u positive on Ω(T ). The Riccati–type vector variable

w(x) := ρ(x)
||∇u(x)||p−2∇u(x)

Φ(u(x))
(3.1)

is well–defined on Ω(T ) and satisfies

divw(x) = ρ(x)
∆pu

Φ(u)
+
||∇u||p−2

Φ(u)
〈∇u,∇ρ(x)〉 − (p− 1)ρ(x)

||∇u||p

|u|p
.

The application of (E) and (3.1) gives

divw(x) = −ρ(x)c(x) +
1

ρ(x)
〈w(x),∇ρ(x)〉 − (p− 1)ρ1−q(x)||w(x)||q

and equivalently

ρ(x)c(x) = −divw(x) +
1

ρ(x)
〈w(x),∇ρ(x)〉 − (p− 1)ρ1−q(x)||w(x)||q
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for x ∈ Ω(T ). Multiplication of this equality by the factor H(t, x) and integration
over Ω(T, t) for t > T yields∫

Ω(T,t)

H(t, x)ρ(x)c(x) dx = −
∫

Ω(T,t)

H(t, x) divw(x) dx

+

∫
Ω(T,t)

H(t, x)
1

ρ(x)
〈w(x),∇ρ(x)〉dx

−
∫

Ω(T,t)

H(t, x)(p− 1)ρ1−q(x)||w(x)||q dx .

From here we conclude that∫
Ω(T,t)

H(t, x)ρ(x)c(x) dx = −
∫

Ω(T,t)

div(H(t, x)w(x)) dx

+

∫
Ω(T,t)

〈∇H(t, x),w(x)〉dx +

∫
Ω(T,t)

H(t, x)
1

ρ(x)
〈w(w),∇ρ(x)〉dx

−
∫

Ω(T,t)

H(t, x)(p− 1)ρ1−q(x)||w(x)||q dx .

Application of Gauss-Ostrogradski theorem, the property (i) of the functionH(t, x)
and (2.1) gives∫

Ω(T,t)

H(t, x)ρ(x)c(x) dx =

∫
S(T )

H(t, x)〈w(x), ν〉dx

+

∫
Ω(T,t)

〈h(t, x),w(x)〉dx −
∫

Ω(T,t)

H(t, x)(p− 1)ρ1−q(x)||w(x)||q dx ,

(3.2)

where ν is the normal unit vector. From here and from the Young inequality

(p− 1)||X||q − p〈X,Y 〉+ ||Y ||p ≥ 0 (3.3)

for X = w(x)H
1
q (t, x)ρ−

1
p (x) and Y = h(t, x)ρ

1
p (x)p−1H

1−p
p (t, x) it follows∫

Ω(T,t)

H(t, x)ρ(x)c(x) dx

≤
∫
S(T )

H(t, x)〈w(x), ν〉dx +

∫
Ω(T,t)

||h(t, x)||pρ(x)

ppHp−1(t, x)
dx .

which is equivalent to∫
Ω(T,t)

[
H(t, x)ρ(x)c(x)− ||h(t, x)||pρ(x)

ppHp−1(t, x)

]
dx ≤

∫
S(T )

H(t, x)〈w(x), ν〉dx

Hence∫
Ω(T,t)

[
H(t, x)ρ(x)c(x)− ||h(t, x)||pρ(x)

ppHp−1(t, x)

]
dx ≤ w∗(T )

∫
S(T )

H(t, x) dS , (3.4)
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where w∗(T ) = maxx∈S(T ){||w(x)||}. Using (3.4) we are able to estimate the
integral from the condition (2.3)

∫
Ω(t0,t)

[
H(t, x)ρ(x)c(x)− ||h(t, x)||pρ(x)

ppHp−1(t, x)

]
dx

≤
∫

Ω(t0,T )

H(t, x)ρ(x)c(x) dx + w∗(T )

∫
S(T )

H(t, x) dS

≤
∫ T

t0

[∫
S(s)

H(t, x) dS

]
k(s)

ρ∗(s)c∗(s)

k(s)
ds +

w∗(T )

k(T )
k(T )

∫
S(T )

H(t, x) dS

for t > T where ρ∗(s) = maxx∈S(s){ρ(x)} and c∗(s) = maxx∈S(s){|c(x)|}. Since

f(t, s) := k(s)
∫
S(s)

H(t, x) dS is a nonincreasing function with respect to s, the

above inequality implies∫
Ω(t0,t)

[
H(t, x)ρ(x)c(x)− ||h(t, x)||pρ(x)

ppHp−1(t, x)

]
dx

≤k(t0)

[∫
S(t0)

H(t, x) dS

][∫ T

t0

ρ∗(s)c∗(s)

k(s)
ds +

w∗(T )

k(T )

]

and hence(∫
S(t0)

H(t, x) dS

)−1 ∫
Ω(t0,t)

[
H(t, x)ρ(x)c(x)− ||h(t, x)||pρ(x)

ppHp−1(t, x)

]
dx

≤k(t0)

∫ T

t0

ρ∗(s)c∗(s)

k(s)
ds +

k(t0)w∗(T )

k(T )

for large t, which contradicts (2.3). �

Proof of Theorem 2.2. Assume the contradiction. As in the proof of Theorem 2.1
we conclude (3.2) for t > T , where w is the solution of Riccati–type equation,
defined on Ω(T ). Since H(t, x) = ||h(t, x)|| = 0 for x ∈ Ω(T, t)\Ω0,t(T, t), we have∫

Ω(T,t)

〈h(t, x),w(x)〉dx −
∫

Ω(T,t)

H(t, x)(p− 1)ρ1−q(x)||w(x)||q dx

=

∫
Ω0,t(T,t)

[
〈h(t, x),w(x)〉

−H(t, x)(p− 1)ρ1−q(x)||w(x)||q
]

dx . (3.5)
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The following relation we obtain from (3.5) and from Hölder inequality∫
Ω(T,t)

〈h(t, x),w(x)〉dx −
∫

Ω(T,t)

H(t, x)(p− 1)ρ1−q(x)||w(x)||q dx

=

∫ t

T

[∫
S0,t(s)

〈h(t, x),w(x)〉dS

−
∫
S0,t(s)

H(t, x)(p− 1)ρ1−q(x)||w(x)||q dS
]

ds

≤
∫ t

T

[(∫
S0,t(s)

H1−p(t, x)ρ(x)||h(t, x)||p dS
) 1
p

×
(∫

S0,t(s)

H(t, x)ρ1−q(x)||w(x)||q dS
) 1
q

−
∫
S0,t(s)

H(t, x)(p− 1)ρ1−q(x)||w(x)||q dS
]

ds

Application of Young inequality (3.3) gives∫
Ω(T,t)

〈h(t, x),w(x)〉dx −
∫

Ω(T,t)

H(t, x)(p− 1)ρ1−q(x)||w(x)||q dx

≤
∫ t

T

p−p
∫
S0,t(s)

H1−p(t, x)ρ(x)||h(t, x)||p dS ds

=

∫
Ω0,t(T,t)

p−pH1−p(t, x)ρ(x)||h(t, x)||p dx

Combining this inequality with (3.2) we conclude∫
Ω0,t(T,t)

[
H(t, x)ρ(x)c(x)− p−pρ(x)H1−p(t, x)||h(t, x)||p

]
dx

≤
∫
S(T )

H(t, x)〈w(x), ν〉dx (3.6)

and similarly as in the proof of Theorem 2.1 we obtain∫
Ω0,t(t0,t)

[
H(t, x)ρ(x)c(x)− p−pρ(x)H1−p(t, x)||h(t, x)||p

]
dx

≤
∫

Ω(t0,T )

H(t, x)ρ(x)c(x) dx +

∫
S(T )

H(t, x)〈w(x),ν〉dS

≤
∫ T

t0

[∫
S(s)

H(t, x) dS

]
k(s)

ρ∗(s)c∗(s)

k(s)
ds + w∗(T )

∫
S(T )

H(t, x) dS

≤ k(t0)

[∫
S(t0)

H(t, x) dS

][∫ T

t0

ρ∗(s)c∗(s)

k(s)
ds +

w∗(T )

k(T )

]
,

11



where w∗(s), ρ∗(s) and c∗(s) are the same as in the proof of Theorem 2.1. The
last inequality contradicts (2.5). The proof is complete. �

Lemma 3.1. Let the functions H, h, k and ρ satisfy the hypothesis (i)–(iv) of
Theorem 2.2. Suppose that (2.7), (2.9) and (2.10) holds. Let u be solution of (E)
which is positive on Ω(T0) for some T0 ≥ t0 and w(x) be the corresponding Riccati
variable defined on Ω(T0) by (3.1). Then

lim inf
t→∞

∫ t

T0

∫
S(s)

H(t, x)ρ1−q(x)||w(x)||q dS

k(s)
∫
S(s)

H(t, x) dS
ds <∞. (3.7)

Proof. Let us denote

F (t) =

(∫
S(T0)

H(t, x) dS

)−1 ∫
Ω(T0,t)

||h(t, x)|| · ||w(x)||dx

G(t) =

(∫
S(T0)

H(t, x) dS

)−1

(p− 1)

∫
Ω(T0,t)

H(t, x)ρ1−q(x)||w(x)||q dx

for t > T0. As in the proof of Theorem 2.2 we conclude (3.2) and hence

G(t)− F (t) ≤
(∫

S(T0)

H(t, x) dS
)−1

×

[∫
S(T0)

H(t, x)||w(x)||dS −
∫

Ω(T0,t)

H(t, x)ρ(x)c(x) dx

]

≤ w∗(T0)−
(∫

S(T0)

H(t, x) dS
)−1

∫
Ω(T0,t)

H(t, x)ρ(x)c(x) dx (3.8)

holds for every t > T0, where w∗(t) has been defined in the proof of Theorem 2.1.
Hence by (2.10)

lim inf
t→∞

[G(t)− F (t)] ≤ w∗(T0)−A(T0) <∞. (3.9)

Suppose that (3.7) does not hold. Then

lim
t→∞

∫ t

T0

∫
S(s)

H(t, x)ρ1−q(x)||w(x)||q dS

k(s)
∫
S(s)

H(t, x) dS
ds =∞. (3.10)

According to (2.9) there exists η ∈ R such that

0 < η < inf
s≥t0

{
lim inf
t→∞

k(s)
∫
S(s)

H(t, x) dS

k(t0)
∫
S(t0)

H(t, x) dS

}
(3.11)

and for every µ ∈ R+ there exists T1 > T0 such that∫ t

T0

(p− 1)
∫
S(s)

H(t, x)ρ1−q(x)||w(x)||q dS

k(s)
∫
S(s)

H(t, x) dS
ds ≥ µ

ηk(T0)
(3.12)

12



for every t ≥ T1. Further there exists T2 > T1 such that

k(T1)
∫
S(T1)

H(t, x) dS

k(t0)
∫
S(t0)

H(t, x) dS
> η (3.13)

for all t ≥ T2. From the definition of the function G(t) it follows that for t ≥ T2

G(t) =
(∫

S(T0)

H(t, x) dS
)−1

∫ t

T0

[(
k(s)

∫
S(s)

H(t, x) dS

)

×
(p− 1)

∫
S(s)

H(t, x)ρ1−q(x)||w(x)||q dS

k(s)
∫
S(s)

H(t, x) dS

]
ds

holds. Integration by parts and the property (i) of the function H(t, x) imply

G(t) ≥
(∫

S(T0)

H(t, x) dS
)−1

∫ t

T0

[
− ∂

∂s

(
k(s)

∫
S(s)

H(t, x) dS
)

×
(∫ s

T0

(p− 1)
∫
S(ξ)

H(t, x)ρ1−q(x)||w(x)||q dS

k(ξ)
∫
S(ξ)

H(t, x) dS
dξ
)]

ds

and in view of (iii)

G(t) ≥
(∫

S(T0)

H(t, x) dS
)−1

∫ t

T1

[
− ∂

∂s

(
k(s)

∫
S(s)

H(t, x) dS
)

×
(∫ s

T0

(p− 1)
∫
S(ξ)

H(t, x)ρ1−q(x)||w(x)||q dS

k(ξ)
∫
S(ξ)

H(t, x) dS
dξ
)]

ds .

Application of (3.12) gives

G(t) ≥
(∫

S(T0)

H(t, x) dS
)−1 µ

ηk(T0)

∫ t

T1

− ∂

∂s

(
k(s)

∫
S(s)

H(t, x) dS
)

ds

≥
µk(T1)

∫
S(T1)

H(t, x) dS

ηk(T0)
∫
S(T0)

H(t, x) dS
.

In view of (iii)

G(t) ≥
µk(T1)

∫
S(T1)

H(t, x) dS

ηk(t0)
∫
S(t0)

H(t, x) dS

and (3.13) implies

G(t) ≥ µ (3.14)

for every t ≥ T2. Since µ has been chosen arbitrary, limt→∞G(t) = ∞. Let us
consider the sequence {tn}∞n=1 of the points from (T2,∞) such that limn→∞ tn =∞
and limt→∞[G(tn)−F (tn)] = lim inft→∞[G(t)−F (t)]. In view of (3.9) there exists
real constant M with property

G(tn)− F (tn) ≤M (3.15)
13



for all n. Hence

lim
n→∞

F (tn) = lim
n→∞

G(tn) =∞. (3.16)

From (3.15) and (3.16) we obtain

F (tn)

G(tn)
− 1 ≥ − M

G(tn)
> −1

2

for large n. Hence
F (tn)

G(tn)
>

1

2

for large n and combination of this inequality with (3.16) yields

lim
n→∞

F p(tn)

Gp−1(tn)
=∞. (3.17)

However the definition of the function F (t) and the Hölder inequality give

F (t) ≤
[(∫

S(T0)

H(t, x) dS
)−1

∫
Ω(T0,t)

(p− 1)H(t, x)ρ1−q(x)||w(x)||q dx
] 1
q

×
[(∫

S(T0)

H(t, x) dS
)−1

×
∫

Ω(T0,t)

(p− 1)1−pH1−p(t, x)ρ(x)||h(t, x)||p dx
] 1
p

≤[G(t)]
1
q

[(∫
S(T0)

H(t, x) dS
)−1

×
∫

Ω(T0,t)

(p− 1)1−pH1−p(t, x)ρ(x)||h(t, x)||p dx
] 1
p

and therefore

F p(t)

Gp−1(t)
≤(p− 1)1−p

(∫
S(T0)

H(t, x) dS
)−1

×
∫

Ω(T0,t)

(p− 1)1−pH1−p(t, x)ρ(x)||h(t, x)||p dx .

Since by (3.11)

k(T0)
∫
S(T0)

H(t, x) dS

k(t0)
∫
S(t0)

H(t, x) dS
≥ η

for large t, we have

F p(t)

Gp−1(t)
≤(p− 1)1−pη−1

(
k(t0)

∫
S(t0)

H(t, x) dS
)−1

× k(T0)

∫
Ω(t0,t)

(p− 1)1−pH1−p(t, x)ρ(x)||h(t, x)||p dx . (3.18)

14



If (3.17) would hold we obtain a contradiction with (2.7) This contradiction com-
pletes the proof. �

Proof of Theorem 2.3. Suppose that equation (E) is not oscillatory and u is a
solution of (E) positive on Ω(T0) for some T0 ≥ t0. Let w(x) be Riccati variable
defined by (3.1). As in the proof of Theorem 2.2 we conclude (3.6) and hence by
(2.10)

A(T ) ≤

∫
S(T )

H(t, x)||w(x)||dS∫
S(T )

H(t, x) dS
(3.19)

for every t > T > T0. Hence

A(T )

∫
S(T )

H(t, x) dS ≤
∫
S(T )

H(t, x)||w(x)||dS

for all t > T . Hölder inequality gives

A(T )

∫
S(T )

H(t, x) dS ≤
(∫

S(T )

H(t, x)ρ1−q(x)||w(x)||q dS
) 1
q

×
(∫

S(T )

H(t, x)ρ(x) dS
) 1
p

.

Hence

(A+(T ))q
(∫

S(T )

H(t, x) dS
)q
≤
∫
S(T )

H(t, x)ρ1−q(x)||w(x)||q dS

×
(∫

S(T )

H(t, x)ρ(x) dS
)q−1

and the definition of the function ρ̂ yields

(A+(T ))q(ρ̂(T ))1−q ≤
(∫

S(T )

H(t, x) dS
)−1

∫
S(T )

H(t, x)ρ1−q(x)||w(x)||q dS

for t > T > T0. This inequality combined with (3.7) contradicts to (2.11). The
proof is complete. �

Lemma 3.2. Let the functions H, h, k and ρ satisfy the hypothesis (i)–(iv) and
of Theorem 2.2. Suppose that (2.9), (2.10) and (2.13) holds. Let u and w be the
same as in Lemma 3.1. Then (3.7) holds.

Proof. As in the proof of Theorem 2.2 we see that (3.2) holds. With the notation
of Lemma 3.1 inequality (3.8) holds. Hence

lim sup
t→∞

[G(t)− F (t)] ≤w∗(T0)− lim inf
t→∞

(∫
S(T0)

H(t, x) dS
)−1

×
∫

Ω(t0,t)

H(t, x)ρ(x)c(x) dx

≤w∗(T0)−A(T0) <∞. (3.20)
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By (2.10)

A(t0) ≤
(∫

S(t0)

H(t, x) dS
)−1

∫
Ω0,t(t0,t)

[
H(t, x)ρ(x)c(x)− ||h(t, x)||pρ(x)

ppHp−1(t, x)

]
dx

for t ≥ t0. Hence by (2.13)

lim inf
t→∞

(∫
S(t0)

H(t, x) dS
)−1

∫
Ω0,t(t0,t)

||h(t, x)||pρ(x)

ppHp−1(t, x)
dx

≤ lim inf
t→∞

(∫
S(t0)

H(t, x) dS
)−1

∫
Ω0,t(t0,t)

H(t, x)ρ(x)c(x) dx −A(t0)

<∞. (3.21)

Let us consider the sequence {tn}∞n=1 in (T0,∞) satisfying limn→∞ tn =∞ and

lim
n→∞

(∫
S(t0)

H(tn, x) dS
)−1

∫
Ω0,tn (t0,tn)

||h(tn, x)||pρ(x)

ppHp−1(tn, x)
dx

= lim inf
t→∞

(∫
S(t0)

H(t, x) dS
)−1

∫
Ω0,t(t0,t)

||h(t, x)||pρ(x)

ppHp−1(t, x)
dx .

Now suppose by contradiction that (3.7) fails. As in the proof of Lemma 3.1 and
using (3.20) we conclude (3.16). Using the same procedure as in Lemma 3.1 we
obtain (3.17) and (3.18), which contradicts to (3.21). Hence (3.7) holds. �

Proof of Theorem 2.4. The proof is almost the same as the proof of Theorem 2.3.
Lemma 3.2 is applied instead of Lemma 3.1. �
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