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Abstract

MAŘÍK, R.:Summation comparison theorems for half-linear second
order difference equations on finite interval.

In the paper, new comparison theorems for the half-linear difference
equation

∆
(
RkΦ(∆zk)

)
+ CkΦ(zk+1) = 0, Φ(u) = |u|p−2u, p > 1,

are derived. We show that if a solution of this equation has a
generalized zero on the discrete interval [a, b], then the same holds
for a solution of its majorant. The main tool used in the paper is
the variational technique which relates nonexistence of a solution
with a generalized zero with nonegativity of the p-degree functional
defined on the suitable class of admissible functions.

difference equation, second order, focal point, half-linear equation,
p-degree functional, free end point
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1. Introduction

Consider the second order half-linear difference equation

(1) ∆
(
RkΦ(∆xk)

)
+ CkΦ(xk+1) = 0,

where ∆ is the forward difference operator, {Ck}, {Rk} are real sequences, Rk 6= 0
for k = 0, . . . , n+ 1, and Φ(u) = |u|p−2u, p > 1, is a power type nonlinearity. The
study of equation (1) has been initiated in Řehák (2001) and the most important
results are summarized in Chapter 8 of the monograph Došlý, Řehák (2005).

Despite the lack of linearity, a constant multiple of any solution of (1) is also
a solution and equation (1) has one half of linearity properties. It is well known
that there is a close similarity between equation (1) and the linear second order
difference equation. In particular, many results from oscillation theory of second
order linear difference equations can be extended to (1). These oscillation and
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nonoscillation results are frequently based on a comparison of two equations on the
infinite interval. The aim of this paper is to derive comparison theorems which
compare (1) with another half-linear difference equation

(2) ∆
(
rkΦ(∆yk)

)
+ ckΦ(yk+1) = 0

on a finite interval.
First, let us recall the definition of a generalized zero, which is (from the point

of view of the Sturmian comparison theory) a natural replacement for zeros of
solutions to differential equations. Remark that, unless stated explicitly otherwise,
under the interval [m,n] we actually mean the discrete set {m,m + 1, . . . n}. In a
similar way we work also with other intervals.

Definition 1. The interval (m,m + 1] is said to contain a generalized zero of a
solution x = {xk} of Eq. (1) if xm 6= 0 and Rmxmxm+1 ≤ 0.

It is well known, see for example Řehák (2001) or Došlý, Řehák (2005), that
equation (1) tends to have more generalized zeros than (2), if the inequalitiesRi ≤ ri
and Ci ≥ ci are satisfied. In contrast to the pointwise comparison we formulate our
results more generally in terms of sums of the coefficients Ci and ci. Our aim is to
derive a discrete version of the following theorem due to Leighton.

Theorem A (Leighton (1983), Theorem 1.1). Let p(t) and q(t) be piecewise con-
tinuous on [a, f ] with q(x) ≥ 0 there, and suppose that∫ x

a

q(t) dt ≤
∫ x

a

p(t) dt, a ≤ x ≤ f ; p(x) 6≡ q(x)

holds. If equation
u′′ + q(t)u = 0

has a solution u(t) with the property that u′(a) = u(f) = 0, u(x) > 0 on the interval
of real numbers [a, f), a solution v(t) of

v′′ + p(t)v = 0

with v(a) > 0, v′(a) ≤ 0 must have a zero on the interval of real numbers (a, f).

Another aspect which makes our results different from those published in the
literature is that similarly as in Theorem A we compare two solutions which do not
vanish at the left end point of the interval. As far as the author knows, the results
are new even for the linear diference equation.

The main tool used in the paper is the variational technique which relates equa-
tion (1) and the corresponding discrete scalar p-degree functional

(3) J(η) ≡ A|η0|p +

n∑
k=0

(
Rk|∆ηk|p − Ck|ηk+1|p

)
, A ∈ R

defined on the class of nontrivial sequences {ηk}n+1
k=0 such that ηn+1 = 0. Note

that since we aim to compare the solutions which do not vanish at the left end
point of the interval, we drop the usual requirement η0 = 0 from the definition of
the admissible sequences for functional J and also include the term A|η0|p. The
relationship between the half-linear difference equation and the p-degree functional
is established in the following theorem.

Theorem B (Mař́ık (2000), Theorem 1). The following statements are equivalent:
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(i) The solution x = {xk} of Eq. (1) given by R0Φ
(

∆x0

x0

)
= A has no gener-

alized zero on (0, n+ 1].
(ii) Functional (3) is positive definite on the class of nontrivial sequences η =
{ηk}n+1

k=0 satisfying ηn+1 = 0

The following result allows to compare two solutions of two different equations
and it is an immediate consequence of Theorem B. The crucial aspect of the proof
of this theorem lies in the fact that the functional J vanishes for the sequence which
solves equation (1) and satisfies initial condition closely connected with the value
a.

Theorem C (Leighton type comparison theorem, Mař́ık (2000), Corollary 1). Let

y = {yk} be a solution of Eq. (2), such that yn+1 = 0 6= y0 and a := r0Φ
(

∆y0
y0

)
. Let

A be such that

V (y) := (A− a)|y0|p +

n∑
k=0

[
(Rk − rk)|∆yk|p − (Ck − ck)|yk+1|p

]
≤ 0.

Then the solution x = {xk} of Eq. (1) given by R0Φ
(

∆x0

x0

)
= A has a generalized

zero on (0, n + 1], i.e., there exists i ∈ (0, n] such that xi 6= 0 and Rixixi+1 ≤ 0
holds.

2. Main results

This section contains the main results of the paper. In the following theorem
we prove that if the solution of half-linear differential equation (2) vanishes at the
point n+1, then the solution of the equation (1) with a sufficiently large coefficient
Ci has a generalized zero on (0, n + 1], if the initial difference is negative and not
too large. However, the words “sufficiently large” are here in the integral sense as
(4) shows. Hence the inequality Ci ≥ ci is not necessary for all i.

Note the technical assumption on nonegativity of ci which assures that the so-
lution which starts with positive initial value and nonpositive initial difference is
nonincreasing.

Theorem 1. Let rk > 0 on [0, n], ck ≥ 0 on [0, n− 1], c0 > 0. Let y be a solution
of (2) on [0, n − 1] such that y0 ≥ y1 > 0, yk > 0 on [0, n] and yn+1 = 0. Denote

a = r0Φ
(

∆y0
y0

)
. Let Rk ≤ rk on [0, n], C0 ≥ c0, A ≤ a and

(4)

∣∣∣∣y0

y1

∣∣∣∣p (a−A)+

k∑
i=0

(
Ci − ci

)
≥ 0

for k ∈ [0, n−1]. Then the solution z = {zk} of (1) given by the conditions z0 > 0,

A = R0Φ
(

∆z0
z0

)
has a generalized zero on (0, n+ 1], i.e., there exists i ∈ [0, n] such

that zi 6= 0 and Rizizi+1 ≤ 0.

Proof. From Rk ≤ rk we get

V (y) ≤ (A− a)|y0|p +

n∑
k=0

(ck − Ck)|yk+1|p.

Further, from (2) it follows

Φ(∆yk+1) =
rk
rk+1

Φ(∆yk)− ck
rk+1

Φ(yk+1)
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for k ∈ [0, n− 1] and

Φ(∆yk+1) < 0

for k ∈ [0, n− 1]. Hence |yk+1|p is decreasing on [0, n]. Clearly there exists ε ∈ R,
ε > 0, such that the intervals of real numbers Ik := (|yk|p − ε, |yk|p + ε) ⊆ R+,
k ∈ [1, n], satisfy Ij ∩ Ik = ∅ for j 6= k. In each Ik let us choose αk, αk ∈ Ik ∩Q+,
such that

(5) (ck − Ck)|yk+1|p ≤ (ck − Ck)αk+1 for k ∈ [0, n− 1].

Denote by β the least common multiple of denominators of αk. Then the numbers
βk defined by βk = βαk form a decreasing sequence for k ∈ [1, n] and βk ∈ N.
Combining these computations with yn+1 = 0 we obtain

V (y) ≤ (A− a)|y0|p +

n−1∑
k=0

(ck − Ck)|yk+1|p

≤ (A− a)|y0|p +

n−1∑
k=0

(ck − Ck)αk+1

≤ (A− a)|y0|p +
1

β

n−1∑
k=0

(ck − Ck)βk+1

= (A− a)|y0|p +
1

β

n−1∑
k=0

βk+1∑
i=1

(ck − Ck)

Changing the order of summation we get

V (y) ≤ (A− a)|y0|p +
1

β

β1∑
i=1

γi∑
k=0

(ck − Ck),

where γi is a well defined number from the discrete interval [0, n−1]. More precisely,

γk denotes how many times the number k appears in the double sum
∑n−1
k=0

∑βk+1

i=1 k.
By (4), we obtain

V (y) ≤ (A− a)|y0|p +
1

β

β1∑
i=1

∣∣∣∣y0

y1

∣∣∣∣p (a−A)

= (A− a)|y0|p + α1

∣∣∣∣y0

y1

∣∣∣∣p (a−A)

= |y0|p(a−A)
α1 − |y1|p

|y1|p
.

Since (5) and C0 ≥ c0 imply α1 ≤ |y1|p, we have V (y) ≤ 0. Now the statement
follows from Theorem C. �

There is a variant of Theorem 1 which is based on the nonegativity of slightly

different sum than (4). Namely, the coefficient ck has the weight Rk+1

rk+1
in this

sum. To derive this modification of Theorem 1 we need the following Lemma 1.
This lemma is proved in Mař́ık (2000), Corollary 3, as a corollary of Theorem B.
However, the original version contains some misprints and for this reason we restate
this lemma with a shorter proof than the proof presented in Mař́ık (2000).
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Lemma 1. Let y = {yk} be a solution of Eq. (2) on [0, n − 1], such that yn+1 =

0 6= y0 and a = r0Φ
(

∆y0
y0

)
. Let A be such that

Ṽ (y) :=
(
A−R0

r0
a
)
|y0|p−

n−1∑
k=0

{
∆
(Rk
rk

)
rkΦ(∆yk)yk+1+

(
Ck−

Rk+1

rk+1
ck

)
|yk+1|p

}
≤ 0.

Then the solution z = {zk} of Eq. (1) given by R0Φ
(

∆z0
z0

)
= A has a generalized

zero on (0, n+ 1], i.e., there exists i ∈ [0, n] such that Rizizi+1 ≤ 0 holds.

Proof. Let y = {yk} be a solution of (2) on [0, n− 1] which satisfies yn+1 = 0 6= y0

and a = r0Φ
(

∆y0
y0

)
. Then

L[yk] ≡ ∆
(
RkΦ(∆yk)

)
+ CkΦ

(
yk+1

)
= ∆

(Rk
rk
rkΦ(∆yk)

)
+ CkΦ(yk+1)

= ∆
(Rk
rk

)
rkΦ(∆yk) +

Rk+1

rk+1
∆
(
rkΦ(∆yk)

)
+ CkΦ(yk+1)

= ∆
(Rk
rk

)
rkΦ(∆yk) + Φ(yk+1)

[
Ck −

Rk+1

rk+1
ck

]
(6)

holds for k ∈ [0, n− 1]. Using summation by parts we get

n∑
k=0

yk+1L[yk] =

n∑
k=0

yk+1

{
∆(RkΦ(∆yk)) + Ck|yk+1|p

}
= Rn+1Φ(∆yn+1)yn+1 −R0Φ(∆y0)y0 −

n∑
k=0

[
Rk|∆yk|p − Ck|yk+1|p

]
Therefore in view of (6) and yn+1 = 0, clearly

J(y) = |y0|p
[
A−R0Φ

(∆y0

y0

)]
−

n∑
n=0

yk+1L[yk]

=
(
A− R0

r0
a
)
|y0|p −

n−1∑
n=0

yk+1L[yk]

=
(
A− R0

r0
a
)
|y0|p −

n−1∑
k=0

{
∆
(Rk
rk

)
rkΦ(∆yk)yk+1 +

(
Ck −

Rk+1

rk+1
ck

)
|yk+1|p

}
≤ 0.

and the statement follows from Theorem B. �

Theorem 2. Let rk > 0 on [0, n], ck ≥ 0 on [0, n− 1], C0 >
R1

r1
c0, ∆Rk

rk
≤ 0. Let

y = {yk} be a solution of (2) on [0, n− 1], such that y0 ≥ y1 > 0, yk > 0 on [0, n],
yn+1 = 0. Suppose that A > R0

r0
a,∣∣∣∣y0

y1

∣∣∣∣p(R0

r0
a−A

)
+

k∑
i=0

(
Ci −

Ri+1

ri+1
ci

)
≥ 0

for k ∈ [0, n− 1]. Then the solution x = {xk} of (1) given by the condition x0 > 0,

A = R0Φ
(

∆x0

x0

)
has a generalized zero on [0, n+ 1], i.e., there exists i ∈ [0, n] such

that xi 6= 0 and Rixixi+1 ≤ 0.
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Proof. From the assumption ∆Rk

rk
≤ 0 we get

Ṽ (y) ≤
(
A− R0

r0
a
)
|y0|p −

n−1∑
k=0

(
Ck −

Rk+1

rk+1
ck

)
|yk+1|p

The remaining part of the proof is essentially similar to the proof of Theorem 1

where we replace V (y), a and ck by Ṽ (y), R0

r0
a and Rk+1

rk+1
ck, respectively. �

3. Summary

The classical results in the comparison theory of half-linear differential and differ-
ence equations deal with the generalized zeros of solutions which vanish at the left
end point of the interval. Focal points, i.e. generalized zeros of solutions which start
with zero difference, can be considered as a natural continuation of this research.
The results presented in this paper include focal points if we choose A = a = 0 in
Theorems 1 and 2.

Another companion of the conjugate point and the focal point is also the so
called coupled point, the point associated with functional defined on another class
of admissible functions, such as functional with free end points. Theory of discrete
coupled points has been introduced in a series of papers by Hilscher and Zeidan,
see Hilscher, Zeidan (2002, 2004, 2005) and the references therein. The possible
extension of coupled point to half-linear equation and possibility to formulate com-
parison theorems in terms of coupled points is still an open question and a subject
of the current research.

Further, there are results from the theory of differential equations, which allow to
study nonoscillatory half-linear differential equations as a perturbation of another
half-linear equation. This technique has been started in the paper Elbert, Schneider
(2000) and extended in a series of papers by Došlý and coauthors. Among others,
it has been shown that this method extends to difference, see e.g. Došlý and
Fǐsnarová (2008, 2009), and can be formulated in variational setting, see Došlý
and Fǐsnarová (2011). We hope that developing similar method for functional (3)
instead of functional with zero end points opens the door to future extensions.
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