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Abstract

In the paper we study the half-linear differential equation with one dimensional
p-Laplacian

(r(t)Φp(x
′))′ + c(t)Φp(x) = 0,

where Φp(x) = |x|p−2x and p > 1. Using a suitable modification of the so-called
linearization technique we derive new results which allow to compare solution
of two equations with different p and provide new integral characterization of
the principal solution.
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1. Introduction

In this paper we deal with the half-linear second order differential equation

(r(t)Φp(x
′))′ + c(t)Φp(x) = 0, (1)

where Φp(x) = |x|p−2x, p > 1, and r, c are continuous functions, r(t) > 0 on the
interval I, which will be specified below.

The domain of the operator on the left hand side of (1) is defined to be
the set of all continuous real-valued functions x defined on I such that x and
rΦp(x

′) are continuously differentiable on I.
Equation (1) attracted big attention as an equation with one dimensional

p-Laplacian. It turns out that there is a close relationship between (1) and
radially symmetric solutions of PDE with p-Laplacian and (p− 1)-degree power
nonlinearity.
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Equation (1) is called half-linear, because a constant multiple of each solution
is also a solution. If p = 2, then (1) reduces to linear equation, but the linearity
is lost in the general case p 6= 2. For a comprehensive treatment focused on
equation (1) and results up to year 2005 see [5].

The aim of this paper is to prove new comparison results for equation (1).
In contrast to most other known comparison theorems, we do not compare
equations with equal p. Another aim of this paper is to provide an alternative
integral characterization of the principal solution of a nonoscillatory equation.
To achieve these goals we use a modification of the so called linearization tech-
nique, see [3] and the reference therein.

The paper is organized as follows. In the next section we recall necessary
elements of the oscillation theory for (1), in particular, the Riccati technique,
and we derive inequalities which, in turn, are used as a main tool in the proofs
of our main results in the next two sections. In Section 3 the inequalities are
used to compare oscillatory properties of two half-linear equations, in Section 4
we study the concept of the so-called principal solution of (1) and its integral
characterization.

2. Preliminaries

It is known that (1) can be studied using methods similar to those for the
linear Sturm-Liouville differential equation

(r(t)x′)′ + c(t)x = 0, (2)

which is the special case of (1) for p = 2. In particular, the Sturmian theory
for (2) extends almost verbatim to (1), see [5]. In the qualitative theory of
half-linear differential equations, we study the problem of (non)existence of a
positive solution of (1) on an unbounded or a bounded interval. This problem is
connected with (non)oscillation or (dis)conjugacy of (1). Similarly to the linear
case, equation (1) can be classified as oscillatory or nonoscillatory according
to whether all nontrivial solutions of (1) have or do not have a sequence of
zeros tending to infinity. Recall that equation (1) is said to be disconjugate on
an interval I if every nontrivial solution of (1) has at most one zero on I and
equation (1) is nonoscillatory if and only if there exists T ∈ R such that (1) is
disconjugate on [T,∞).

If x is a solution of (1) having no zero on I, then one can verify that w =
rΦp(x

′/x) is a solution of the Riccati equation

R[w] := w′ + c(t) + (p− 1)r1−q(t)|w|q = 0, (3)

where q = p
p−1 is the conjugate number to p. The existence of a solution of

(1) having no zero on a compact or an open interval I (on an interval [T,∞))
is guaranteed by disconjugacy of (1) on I (by nonoscillation of (1)). More
precisely, the following statement holds.

Lemma A. ([5, Chapters 1.2 and 2.2]) Suppose that I is either a compact or
an open finite interval. The following statements are equivalent:
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(i) Equation (1) is disconjugate on I (nonoscillatory).
(ii) Equation (3) has a solution on I (on an interval [T,∞)).

(iii) There exists a continuously differentiable function w such that R[w] ≤ 0
on I (on an interval [T,∞)).

Our results are based on the following inequalities. These inequalities extend
those in [2, Lemma 2.4].

Lemma 2.1. Define the function

P (a, b) :=
|a|p

p
− ab+

|b|q

q
. (4)

The following estimates hold.

(i) Let p ∈ (1, 2]. For every α ∈ [2, q] there exists a positive number βα,p such
that

P (a, b) ≥ βα,p|a|(p−1)(q−α)|b− Φp(a)|α (5)

for every a, b ∈ R.
(ii) Let p ≥ 2. For every α ∈ [q, 2] there exists a positive number βα,p such

that
P (a, b) ≤ βα,p|a|(p−1)(q−α)|b− Φp(a)|α (6)

for every a, b ∈ R, a 6= 0.

Proof. If b = Φp(a) then both (5) and (6) hold by direct computation. The
function P (a, b) is nonnegative by the Young inequality and hence the estimate
(5) holds for a = 0.

Suppose that a 6= 0, b 6= Φp(a) and consider the function

Q(a, b) :=
P (a, b)

|a|(p−1)(q−α)|b− Φp(a)|α
.

It is sufficient to prove that the function Q is bounded below by a positive
constant if 1 < p ≤ 2 ≤ α ≤ q and bounded above if 1 < q ≤ α ≤ 2 ≤ p. Direct
computation shows that Q(a, b) = f(b/Φp(a)), where

f(x) =

1
p − x+ |x|q

q

|x− 1|α
. (7)

The function f is positive and continuous on R \ {1} and has the following
properties

lim
x→±∞

f(x) =


∞ for α < q,
1
q for α = q,

0 for α > q,

lim
x→1

f(x) =


∞ for α > 2,
q−1
2 for α = 2,

0 for α < 2.

Now the statement of the lemma follows easily. �
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In the whole paper we suppose that the assumption

h is a positive differentiable function such that h′ 6= 0 (8)

holds on the intervals under consideration. Following [3], denote

wh(t) = r(t)Φp(h
′(t)/h(t)),

G(t) = hp(t)wh(t) = r(t)h(t)Φp(h
′(t)),

H(t, v) = |v +G(t)|q − qΦq(G(t))v − |G(t)|q,

where Φq(x) = Φ−1p (x) = |x|q−2x is the inverse function to Φp.
Along with (3) consider the so-called modified Riccati equation

v′ + C(t) + (p− 1)r1−q(t)h−q(t)H(t, v) = 0, (9)

where
C(t) = h(t)

[(
r(t)Φp(h

′(t))
)′

+ c(t)Φp(h(t))
]
. (10)

Note that if p = 2, then (9) becomes the Riccati equation associated with the
linear equation which results from (2) upon the transformation x = hy. In the
nonlinear case, we have the following relation between the differential operators
given in (3) and (9).

Lemma 2.2. Put v := hp(w − wh), where w is a continuously differentiable
function. Then the following identity holds:

hp(t)R[w] = v′ + C(t) + (p− 1)r1−q(t)h−q(t)H(t, v). (11)

In particular, if w is a solution of (3), then v is a solution of (9) and conversely,
if v is a solution of (9), then w = h−pv + wh is a solution of (3).

Proof. The proof is essentially a version of the proof of [3, Lemma 4] which is
adjusted to our notation.

The definitions of the functions G and v imply (the dependence on t is
suppressed in the notation)

v +G = hpw,

G′ =
(
rΦp(h

′)
)′
h+ r|h′|p,

Φq(G) = rq−1hq−1h′.

Differentiating v = hpw −G we get

v′ = php−1h′w + hpw′ −
(
rΦp(h

′)
)′
h− r|h′|p. (12)

Similarly

H(t, v) = |v +G|q − qΦq(G)v − |G|q

= |v +G|q − qΦq(G)hpw + (q − 1)|G|q

= hpq|w|q − qrq−1hq−1h′hpw + (q − 1)rqhq|h′|p
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and hence

(p− 1)r1−qh−qH(t, v) = (p− 1)r1−qhp|w|q − php−1h′w + r|h′|p. (13)

Summing up (12) and (13) and adding the term hpc to both sides of the equation
we get (11). �

The function H(t, v) is closely connected with the function P defined in (4)
by the relation

H(t, v) = qP (Φq(G(t)), v +G(t)). (14)

This means that H(t, v) can be put under control using estimates from Lemma
2.1 as the following lemma shows.

Lemma 2.3. The following inequalities hold for the function H:

(i) H(t, v) ≥ 0.
(ii) Let p ∈ (1, 2]. For every α ∈ [2, q] there exists a positive number βα,p such

that
H(t, v) ≥ qβα,p|G(t)|q−α|v|α (15)

for every t, v ∈ R.
(iii) Let p ≥ 2. For every α ∈ [q, 2] there exists a positive number βα,p such

that
H(t, v) ≤ qβα,p|G(t)|q−α|v|α (16)

for every t, v ∈ R.

Proof. The nonegativity of the function H(t, v) follows from (14) and from
the nonegativity of the function P .

For p ∈ (1, 2], α ∈ [2, q] the estimate (15) follows from (14), Lemma 2.1 and
from the computation

P (Φq(G(t)), v +G(t)) ≥ βα,p|Φq(G(t))|(p−1)(q−α)|v|α = βα,p|(G(t)|q−α|v|α.

In the case p ≥ 2, α ∈ [q, 2] we have the opposite inequality which proves (16).
�

Remark 2.1. Note that the constant βα,p can be computed analyticaly if α =
2. In this case β2,p = 1

2 , see [2, Lemma 2.4]. For general α we can obtain βα,p
as the supremum or infimum of the function Q defined in the proof of Lemma
2.1. It can be also proved that both (5) and (6) are valid with βα,p = 4α−12−α.
This gives constant βα,p which is not optimal like the supremum or infimum of
the function Q, but this constant is computed explicitly and does not depend on
p. Really, dividing (5) by |a|p and substituting x = b/Φp(a), βα,p = 4α−12−α

inequality (5) transforms into

1

p
− x+

|x|q

q
≥ 4

α2α
|x− 1|α.

Inequality (6) transforms similarly into an opposite inequality. The fact that
these inequalities are valid for p ∈ (1, 2] and p ≥ 2 respectively has been proved
in [4, Lemma 2.1].
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3. Comparison with respect to p

There are only few results related to comparison of two half-linear differential
equations with different power in the nonlinearity, see [5, Theorem 2.3.5], [9] and
[10, Theorem 4.1]. The results show that bigger power in nonlinearity speeds
up the oscillation, similarly like bigger coefficient c(t) or smaller coefficient r(t)
in (1).

Here we use the approach based on comparison of the Riccati equations
related with two half-linear equations with different power in the nonlinearity.
The connection between these two Riccati equations is arranged by the modified
Riccati equation (9), using identity (11) and inequalities (15), (16). Similar idea
has been used in the series of papers dealing with the case when α = 2 in (15),
(16), i.e., equation (1) is compared with a certain associated linear equation of
the form (2), see [3] and the references given therein.

In this section we suppose that (8) holds on the interval under consideration
and let α, βα,p be real constants from Lemma 2.1 (Lemma 2.3), that is,

• if p ∈ (1, 2], then α ∈ [2, q] and βα,p > 0 is such that (5), (15) hold,

• if p ≥ 2, then α ∈ [q, 2] and βα,p > 0 is such that (6), (16) hold.

Denote α∗ = α
α−1 the conjugate number to α and consider the half-linear

differential equation

(Rα∗(t)Φα∗(x′))
′
+ C(t)Φα∗(x) = 0, Φα∗(x) := |x|α

∗−2x, (17)

where C(t) is defined in (10) and

Rα∗(t) =

[
pβα,p
α∗ − 1

]1−α∗

r(t)hα
∗
(t)|h′(t)|p−α

∗
. (18)

Note that the corresponding Riccati equation is

v′ + C(t) + (α∗ − 1)R1−α
α∗ |v|α = 0

and using the definition of the function Rα∗ we see that this equation can be
written in the form

v′ + C(t) + pβα,pr
1−α(t)h−α(t)|h′(t)|(p−1)(q−α)|v|α = 0. (19)

Theorem 3.1. Let p ≥ 2 and α ∈ [q, 2].

(i) Suppose that I is either a compact or an open finite interval and that (8)
holds on I. If (17) is disconjugate on the interval I, then (1) is also
disconjugate on I.

(ii) Suppose that (8) holds for large t. If (17) is nonoscillatory, then (1) is
also nonoscillatory.
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Proof. (i) The assumptions imply that (19) has a solution v defined on I.
From (16) we have

(p− 1)r1−q(t)h−q(t)H(t, v)

≤ (p− 1)r1−q(t)h−q(t)qβα,pr
q−α(t)hq−α(t)|h′(t)|(p−1)(q−α)|v|α

= pβα,pr
1−α(t)h−α(t)|h′(t)|(p−1)(q−α)|v|α.

(20)

Now Lemma 2.2 implies that w = h−pv + wh is a solution of R[w] ≤ 0 on the
interval I. Hence, by Lemma A, equation (1) is disconjugate on I.

(ii) If (17) is nonoscillatory, then, by Lemma A, there exists a number T
such that (19) has a solution v on [T,∞). Now, using the same arguments as
in the part (i) we prove that there exists a solution w such that R[w] ≤ 0 on
[T,∞), and hence (1) is nonoscillatory by Lemma A. �

Theorem 3.2. Let p ∈ (1, 2] and α ∈ [2, q].

(i) Suppose that I is either a compact or an open finite interval and that (8)
holds on I. If (1) is disconjugate on I, then (17) is also disconjugate on
I.

(ii) Suppose that (8) holds for large t. If (1) is nonoscillatory, then (17) is
also nonoscillatory.

Proof. The proof is similar to that of Theorem 3.1. The discongugacy of (1)
on I (nonoscillation of (1)) implies the existence of a solution w of (3) on I (on
[T,∞)), i.e., in view of Lemma 2.2, v = hp(w−wh) is a solution of (9) on I (on
[T,∞)). From Lemma 2.3 we get the opposite inequality to (20), which implies
that v solves the inequality

v′ + C(t) + pβα,pr
1−α(t)h−α(t)|h′(t)|(p−1)(q−α)|v|α ≤ 0

on I (on [T,∞)). The disconjugacy (nonoscillation) of (17) follows from Lemma A.
�

4. Integral characterization of the principal solution

The concept of the principal solution of (1) has been introduced in [8] via the
minimal solution of the associated Riccati equation (3). If (1) is nonoscillatory,
then there exists a solution of (3) which is extensible up to infinity. It was
shown in [8], that among all solutions of (3) with this property there exists
the so-called minimal solution w̃, which is minimal in the following sense. If w̃
and w are two distinct solutions of (3) defined on [T,∞), then w(t) > w̃(t) for
t ∈ [T,∞).

The principal solution x̃ of (1) is defined as the solution which determines
the minimal solution w̃ of (3) via the substitution w̃ = rΦp(x̃

′/x̃), i.e.,

x̃(t) = C exp

{∫ t

Φq
(
w̃(s)/r(s)

)
ds

}
.
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Note that the principal solution was introduced independently of [8] in [7] using
the half-linear Prüfer transformation.

A well-know result from the theory of linear differential equations states,
that a solution x̃ of the second order linear differential equation (2) is princi-
pal if and only if the integral

∫∞ dt
r(t)x̃2(t) is divergent. However, this integral

characterization of the principal solution is no more valid for half-linear differ-
ential equations. A proper extension of this property is established in [2]. In
particular, the following theorem holds.

Theorem B ([2, Theorems 3.1 and 3.2]). Suppose that (1) is nonoscilla-
tory and x̃ is its solution which satisfies x̃′(t) 6= 0 for large t.

(i) Let p ≥ 2. If x̃ is a principal solution, then∫ ∞ dt

r(t)x̃2(t)|x̃′(t)|p−2
=∞ (21)

holds.

(ii) Let p ∈ (1, 2]. If (21) holds, then x̃ is a principal solution.

Note that equivalent integral characterization of the principal solution is lost
in Theorem B, see Example 4.1 below. Several attempts have been made to find
an alternative and more general integral characterization, see [1, 6]. See [1] for
the survey of the known results.

Using the inequalities established in Lemma 2.3 we can offer an alternative
integral property which extends Theorem B in another direction than those in
the papers mentioned above. This approach leads to the following theorem.

Theorem 4.1. Suppose that (1) is nonoscillatory and h(t) is its positive solu-
tion which satisfies h′(t) 6= 0 for large t.

(i) Let p ≥ 2. If h is a principal solution, then for every α ∈ [q, 2]∫ ∞ dt

rα−1(t)hα(t)|h′(t)|(p−1)(α−q)
=∞ (22)

holds.

(ii) Let p ∈ (1, 2]. If (22) holds for some α ∈ [2, q], then h is a principal
solution.

Proof. (i) Suppose, by contradiction, that there exists α ∈ [q, 2] such that (22)
does not hold. By Lemma 2.3 there is βα,p > 0 such that (16) holds. Suppose
that T is so large that∫ ∞

T

dt

rα−1(t)hα(t)|h′(t)|(p−1)(α−q)
<

1

2βα,p(α− 1)p
. (23)

Denote wh(t) = r(t)Φp

(
h′(t)/h(t)

)
and consider the solution w of (3) satisfying

the initial condition w(T ) = wh(T )−h−p(T ). By this definition we have w(T ) <
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wh(T ) and the unique solvability of (3) implies that w(t) < wh(t) for all t ∈
[T, T ∗), where [T, T ∗) is the maximal interval of existence of the solution w.

From (10) we have C ≡ 0 and the function v = hp(w − wh) is a solution of

v′ + (p− 1)r1−qh−qH(t, v) = 0 (24)

by Lemma 2.2. This solution satisfies v(T ) = −1 and v(t) < 0 for all t for which
w (and hence also v) is defined, i.e., for t ∈ [T, T ∗).

Since p ≥ 2 and α ∈ [q, 2], inequality (16) implies (20), i.e.,

(p− 1)r1−qh−qH(t, v) ≤ pβα,pr1−αh−α|h′|(p−1)(q−α)|v|α.

Hence v solves the inequality

v′ + pβα,pr
1−qh−α|h′|(p−1)(q−α)|v|α ≥ 0

on [T, T ∗) and consequently

− v′

|v|α
≤ pβα,pr1−qh−α|h′|(p−1)(q−α).

Integrating this inequality over [T, t], where t ∈ (T, T ∗), and using (23) we
obtain

1

(α− 1)|v(T )|α−1
− 1

(α− 1)|v(t)|α−1
≤ pβα,p

∫ t

T

r1−αh−α|h′|(p−1)(q−α) dt

≤ pβα,p
∫ ∞
T

r1−αh−α|h′|(p−1)(q−α) dt

<
1

2(α− 1)
.

From here and from v(T ) = −1 we get

1

(α− 1)|v(t)|α−1
>

1

α− 1
− 1

2(α− 1)
=

1

2(α− 1)
,

and hence
|v(t)| < 21/(α−1).

This means that v(t) is continuable up to infinity (T ∗ = ∞). Hence v(t) < 0
for all t ≥ T , i.e. w(t) < wh(t) for all t ≥ T . This shows that wh is not the
minimal solution of (3) and hence h is not the principal solution of (1).

(ii) Suppose, by contradiction, that (22) holds for some α ∈ [2, q] and h is
not principal. Then wh = rΦp(h

′/h) is not minimal solution of (3) and hence
there exists a solution w of (3) and a number T such that w(t) < wh(t) for
t ≥ T .

From identity (11) we see that the function v := hp(w − wh) is a solution
of equation (24). Since p ∈ (1, 2] and α ∈ [2, q], by Lemma 2.3 there exists
βα,p > 0 such that (15) and consequently also

(p− 1)r1−qh−qH(t, v) ≥ pβα,pr1−αh−α|h′|(p−1)(q−α)|v|α
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holds on [T,∞). This means that v is a solution of the inequality

v′ + pβα,pr
1−αh−α|h′|(p−1)(q−α)|v|α ≤ 0,

which can be rewritten as

− v′

|v|α
≥ pβα,pr1−αh−α|h′|(p−1)(q−α). (25)

The inequality w(t) < wh(t) for t ≥ T implies v(t) < 0 for t ≥ T and
integration of (25) over the interval [T, t] gives

1

(α− 1)|v(T )|α−1
− 1

(α− 1)|v(t)|α−1
≥ pβα,p

∫ t

T

r1−α(s)h−α(s)|h′(s)|(p−1)(q−α) ds.

From here, letting t→∞, we have

1

(α− 1)|v(T )|α−1
≥ pβα,p

∫ ∞
T

r1−α(s)h−α(s)|h′(s)|(p−1)(q−α) ds,

which contradicts (22). �

Remark 4.1. • It is easy to see that if α = 2, then Theorem 4.1 reduces
to Theorem B.

• In the linear case we have p = q = 2 and the interval for α shrinks to
the single point α = 2. Hence Theorem 4.1 does not introduce anything
new in the linear case. The following example shows that our extension
to general α is not dummy in the general half-linear case.

Example 4.1. Consider equation

(Φ3/2(x′))′ +
15t−3/2

(t9 − 1)1/2
Φ3/2(x) = 0, t > 1. (26)

In this setting we have p = 3/2, q = 3, r(t) = 1 and c(t) = 15t−3/2/(t − 1)1/2.
This equation has a solution h(t) = 1− 1/t9. Direct computation shows∫ ∞ dt

rα−1(t)hα(t)|h′(t)|(p−1)(α−q)
=

∫ ∞ dt

3α−3(1− t−9)αt15−5α

=

∫ ∞ dt

3α−3t15−5α

and the integral diverges for α ∈ [14/5, 3]. Hence, by Theorem 4.1, h is a
principal solution of (26), whereas Theorem B (α = 2) fails.

Note that equation (26) is taken from [1], where the principality of h has
been already mentioned using another argument. However, the proof of the
principality in [1] heavily depends on the properties of the linearly independent
solutions which is known in some sense (from the fact that the quasiderivative
tends to zero we know, that the linearly independent solutions are unique up
to a constant multiple). With Theorem 4.1 we do not need any additional
information on linearly independent solutions.
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