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Abstract

In the paper new criteria for conjugacy of half-linear ordinary differential equa-
tion are derived by using Riccati transformation. These criteria are used to de-
rive nonexistence and oscillation results for equation with mixed nonlinearities,
which is viewed as a perturbation of half-linear equation.
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1. Introduction

In the paper we study equation

(r(t)|x′|p−2x′)′ + c(t)|x|p−2x+

m∑
i=1

ci(t)|x|pi−2x = e(t), (1.1)

where p > 1 and pi > 1 are real numbers, c(t), ci(t) and e(t) are continuous
functions and r(t) is a positive continuous function. Under solution of (1.1) on
the interval I we understand a smooth function x(t) defined on I such that
r(t)|x′(t)|p−2x′(t) is differentiable and x(t) satisfies (1.1) everywhere on I. We
suppose that pi 6= p for every i and pi 6= pj for every i, j with property i 6= j.

The paper is motivated by recent paper [5] and extends and completes the
results from this paper in several respects (see also Remark 2.2). In contrast to
the paper [5] we allow pi < p for some i and do not assume anything about the
fixed sign of the functions ci in this case.

The oscillation of the half-linear equation has been studied using general-
ized Riccati substitution in [3, Theorem 2] and the following theorem has been
proved.
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Theorem A (Li, Cheng, [3]). Suppose that for any T ≥ t0 there exist T ≤
s1 < t1 ≤ s2 < t2 such that e(t) < 0 for t ∈ [s1, t1] and e(t) ≥ 0 for t ∈ [s2, t2].
Let D(si, ti) = {u ∈ C1[si, ti] : u(t) 6= 0, t ∈ (si, ti) and u(si) = 0 = u(ti)}
for i = 1, 2. If there exist H ∈ D(si, ti) and a positive nondecreasing function
φ ∈ C1([t0,∞),R) such that∫ ti

si

H2(t)φ(t)C(t) dr >
1

pp

∫ ti

si

r(t)φ(t)

|H(t)|p−2

(
2|H ′(t)|+ |H(t)|φ

′(t)

φ(t)

)p
dt ,

(1.2)
for i = 1, 2, then

(r(t)|x′|p−2x′)′ + C(t)|x|p−2x = 0 (1.3)

is oscillatory.

As pointed out in [5], this result cannot be applied if p > 2. From this
reason Han, Wang and Zheng presented in [5] an extension of this theorem which
removed the restriction p ≤ 2 and also extends this theorem for equation with
mixed nonlinearities. However, the results from [5] do not include Theorem A
as a special case.

In this paper we present another extension of Theorem A which also removes
the restriction p ≤ 2 and in contrast to [5] includes both results from [3, 5] as a
special case and deals with more general equation. Instead of to formulate the
results as oscillation criteria which are in fact consequence of conjugacy criteria,
we present our results in terms of nonexistence of positive and negative solutions.
The extension to oscillation criterion is trivial and straightforward. This idea is
also motivated by the fact that as far as the author knows, we miss systematic
oscillation theory for the equation with mixed nonlinearities. The reason of this
lack is in the fact that the set of all solutions is more comprehensive than in the
half-linear case. In particular, the solution may become infinite at some finite t
(see [4] for more detailed discussion).

Recall that t1, t2 ∈ I are said to be conjugate point relative to Eq. (1.3) if
there exists a nontrivial solution x(t) of this equation which satisfies x(t1) =
0 = x(t2). Since oscillation theory attracts more attention than problems related
to conjugacy, the literature related to oscillation is much more comprehensive.
However many oscillation and nonoscillation criteria are in fact conjugacy or dis-
conjugacy criteria in a neighborhood of infinity (see [1] for some recent progress
in this field) or on a sequence of intervals tending to infinity (see Theorem A).

We adopt the main idea of the paper [5] and we will consider Eq. (1.1) as
a perturbation of half-linear differential equation (1.3). In contrast to [5] we do
not use the generalized Riccati transformation

w(t) = φ(t)r(t)
|x′(t)|p−2x′(t)
|x(t)|p−2x(t)

,

but we consider the special case φ(x) = 1, i.e. we use the transformation

w(t) = r(t)
|x′(t)|p−2x′(t)
|x(t)|p−2x(t)

, (1.4)
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which converts Eq. (1.3) into

w′ = −(p− 1)r1−q(t)|w|q − C(t). (1.5)

There is no loss of generality in this approach, since the results from [5] can
be obtained from (1.5) by transformation. As an advantage, some intermediate
calculations like proof of Theorem 2.1 are simpler and more transparent.

2. Main results

The following lemma is used to estimate terms involving powers α with term
with power β. This estimate is necessary to collect all terms into a term with
power p− 1. In contrast to [5] we allow α < β.

Lemma 2.1. The following inequalities hold for a ≥ 0 and x > 0.

1. If α < β and b > 0, then b− axα ≥ −xβ
(
a(β−α)

β

) β
α α
β−αb

1− βα .

2. If α > β and b ≥ 0, then axα + b ≥ xβ
(
a(α−β)

β

) β
α α
α−β b

1− βα .

Proof. Divide both inequalities by xβ . Now the inequalities can be proved di-
rectly by inspecting functions which appears on the left hand sides.

In the following theorem [ci(t)]+ = max{ci(t), 0} denotes the positive part
of the function ci(t).

Theorem 2.1. Let e(t) < 0 on [a, b] and denote

C(t) = c(t) +
∑
i∈I1

pi − 1

pi − p

[
ci(t)(pi − p)

p− 1

](p−1)/(pi−1) (
εi|e(t)|

) pi−p
pi−1

−
∑
i∈I2

pi − 1

p− pi

[
[−ci(t)]+(p− pi)

p− 1

](p−1)/(pi−1) (
εi|e(t)|

) pi−p
pi−1 , (2.1)

where I1 = {i ∈ [1,m] ∩ N : pi > p}, I2 = {i ∈ [1,m] ∩ N : pi < p}, εi > 0,∑m
i=1 εi = 1.
If Eq. (1.3) has conjugate points on [a, b], then Eq. (1.1) has no positive

solution on [a, b].
Moreover, if I2 = ∅, then the inequality e(x) < 0 can be relaxed to e(x) ≤ 0.

Proof. Suppose that x is a positive solution of (1.1) on [a, b] and let the function
w be defined by the Riccati substitution (1.4). Differentiating (1.4) and using
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(1.1) we get

w′(t) = (1− p)|w(t)|qr1−q(t)

− c(t)−
m∑
i=1

ci(t)x
pi−p(t) +

e(t)

xp−1(t)

= (1− p)|w(t)|qr1−q(t)

− c(t)− 1

xp−1(t)

m∑
i=1

(
ci(t)x

pi−1(t)− εie(t)
)
.

(2.2)

If pi > p, then using part (2) of Lemma 2.1 we have

ci(t)x
pi−1(t)− εie(t) = ci(t)x

pi−1(t) + εi|e(t)|

≥ xp−1(t)

[
ci(t)(pi − p)

p− 1

](p−1)/(pi−1) pi − 1

pi − p
(
εi|e(t)|

) pi−p
pi−1 .

If pi < p, then using part (1) of Lemma 2.1 we have

ci(t)x
pi−1(t)− εie(t) = εi|e(t)| − (−ci(t))xpi−1(t)

≥ εi|e(t)| − [−ci(t)]+xpi−1(t)

≥ −xp−1(t)

[
[−ci(t)]+(p− pi)

p− 1

](p−1)/(pi−1) pi − 1

p− pi
(
εi|e(t)|

) pi−p
pi−1 .

Summing up the last two estimates over all i ∈ I1 and i ∈ I2, respectively,
dividing by |x|p−1 and using definition of C(t) we get

C(t)− c(t) ≤ 1

xp−1(t)

m∑
i=1

(
ci(t)x

pi−1(t)− εie(t)
)

and from (2.2) it follows that

w′(t) ≤ (1− p)|w(t)|qr1−q(t)− C(t)

holds on [a, b]. Using simple comparison argument or using [2, Theorem 2.2.1]
it can be shown, that the generalized Riccati equation

v′(t) = (1− p)|v(t)|qr1−q(t)− C(t)

has solution on [a, b]. Hence by half-linear Roundabout theorem (see [2]), Eq.
(1.3) has no conjugate points on [a, b]. Theorem is proved.

Remark 2.1. Note that we have no sign restriction on the functions ci(t) if
pi < p and the negative parts of the functions ci(t) play a role in the function
C(t).

Corollary 2.1. Theorem 2.1 remains valid, if we replace the condition e(t) < 0
(e(t) ≤ 0) by e(t) > 0 (e(t) ≥ 0) and the words “positive solution” by “negative
solution”.
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Proof. Follows from the fact that if x(t) is a solution of (1.1), then (−x(t)) is a
solution of equation in the same form but with the right-hand side (−e(t)).

Theorem 2.2. Suppose that there exist a real number α, α ≥ p and smooth
functions h, φ, such that h(a) = 0 = h(b), h(t) > 0 on (a, b), φ is positive on
[a, b] and∫ b

a

hα(t)φ(t)C(t) dt >
1

pp

∫ b

a

∣∣∣∣αh′(t) + h(t)
φ′(t)

φ(t)

∣∣∣∣p r(t)φ(t)hα−p(t) dt . (2.3)

Then Eq. (1.3) has conjugate points on [a, b].

Proof. Suppose that Eq. (1.3) has no conjugate points on [a, b]. Then there exists
a positive solution x(t) of this equation on [a, b] and the Riccati type transfor-
mation (1.4) defines a function w(t) which solves the Riccati type equation (1.5)
on [a, b]. The function W (t) = φ(t)w(t) satisfies

W ′(t) =
φ′(t)

φ(t)
W (t) + (1− p)|W (t)|qr1−q(t)φ1−q(t)− φ(t)C(t)

on [a, b]. Rearranging terms, multiplying by hα(t) and integrating over the in-
terval [a, b] we get∫ b

a

hα(t)φ(t)C(t) dt = −
∫ b

a

hα(t)W ′(t) dt +

∫ b

a

hα(t)
φ′(t)

φ(t)
W (t) dt

− (p− 1)

∫ b

a

hα(t)r1−q(t)φ1−q(t)|W (t)|q dt .

Integrating by parts and using the conditions h(a) = 0 = h(b) we get

−
∫ b

a

hα(t)W ′(t) dt = α

∫ b

a

hα−1(t)h′(t)W (t) dt .

Hence∫ b

a

hα(t)φ(t)C(t) dt ≤
∫ b

a

∣∣∣∣αhα−1(t)h′(t) + hα(t)
φ′(t)

φ(t)

∣∣∣∣ |W (t)|dt

− (p− 1)

∫ b

a

hα(t)r1−q(t)φ1−q(t)|W (t)|q dt .

(2.4)

Since the Young inequality implies A|W | − (p− 1)B|W |q ≤ 1
ppA

pB1−p, we get

the following estimate on [a, b]

|W (t)|
∣∣∣∣αhα−1(t)h′(t) + hα(t)

φ′(t)

φ(t)

∣∣∣∣− (p− 1)hα(t)r1−q(t)φ1−q(t)|W (t)|q

≤ 1

pp

∣∣∣∣αh′(t) + h(t)
φ′(t)

φ(t)

∣∣∣∣p r(t)φ(t)hα−p(t).

Integrating over (a, b) and using this estimate in (2.4) we get an inequality which
contradicts (2.3).
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Summarizing Theorem 2.1 and 2.2 we get the following oscillation result.
Recall that, adopting terminology of [5], Eq. (1.1) is said to be oscillatory if
all its nontrivial solutions (i.e. the solutions extensible up to infinity which are
not identically equal to zero in a neighborhood of infinity) have arbitrarily large
zeros.

Corollary 2.2. Assume that for every T ≥ t0 there exist T ≤ s1 < t1 ≤ s2 < t2
such that e(t) < 0 for t ∈ [s1, t1] and e(t) > 0 for t ∈ [s2, t2]. Let D(si, ti) =
{u ∈ C1[si, ti] : u(t) > 0 for t ∈ (si, ti) and u(ti) = 0 = u(si)} for i = 1, 2. Let
C be defined by (2.1). If there exists H ∈ D(si, ti) and a positive function φ such
that (2.3) holds with a = si, b = ti for i = 1, 2, then Eq. (1.1) is oscillatory.
Moreover, if pi > p for every i, then the inequalities e(t) < 0 and e(t) > 0 can
be relaxed to e(t) ≤ 0 and e(t) ≥ 0, respectively.

Proof. Using Theorems 2.1 and 2.2 on the interval [s1, t1] we can see that there is
no positive solution on [s1, t1] and thus there is no positive solution on [s1, t2].
Taking into account Corollary 2.1 we can prove in a similar way that there
exists no negative solution on [s2, t2] and thus there is no negative solution on
[s1, t2].

Remark 2.2. The main result of the paper [5] is a special case of Corollary
2.2. Really, if we require pi > p (and thus also ci(t) ≥ 0 on (si, ti)) for every
i and if we put α = p and put εi = 1

m , then inequality (2.3) in Corollary 2.2
implies (12) of [5, Theorem 2.2]. Since s1 can be arbitrarily large, Eq. (1.1) is
oscillatory. Remark also that we use more accurate estimates when handling
absolute values and thus (2.3) is less restrictive than (12) of [5] and thus yields
more general criterion. Remark also that Theorem A is another special case of
Corollary 2.2 (for α = 2 and ci ≡ 0).
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