Extremal problems and concavity

Mathematics - RRMATA

Simona Fišnarová

Mendel university in Brno

Extremal problems

Definition (local extrema)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $x_{0} \in \operatorname{Dom}(f)$. The function f is said to take on its local maximum at the point x_{0} if there exists a neighborhood $N\left(x_{0}\right)$ of the point x_{0} such that $f\left(x_{0}\right) \geq f(x)$ for all $x \in N\left(x_{0}\right)$.
The function f is said to take on its sharp local maximum at the point x_{0} if there exists a neighborhood $N\left(x_{0}\right)$ of the point x_{0} such that $f\left(x_{0}\right)>f(x)$ for $x \in N\left(x_{0}\right) \backslash\left\{x_{0}\right\}$.
If the opposite inequalities hold, then the function f is said to take on its local minimum or sharp local minimum at the point x_{0}.
A common word for local minimum and maximum is a local extremum (pl. extrema). A common word for the sharp local maximum and the sharp local minimum is a sharp local extremum.

Theorem (sufficient conditions for (non-)existence of local extrema)

Let f be a function defined and continuous in some neighborhood of x_{0}.

- If the function f is increasing in some left-hand side neighborhood of the point x_{0} and decreasing in some right-hand side neighborhood of the point x_{0}, then the function f takes on its sharp local maximum at the point x_{0}.
- If the function f is decreasing in some left-hand side neighborhood of the point x_{0} and increasing in some right-hand side neighborhood of the point x_{0}, then the function f takes on its sharp local minimum at the point x_{0}.
- If the function f is either increasing or decreasing in some (two-sided) neighborhood of the point x_{0}, then there is no local extremum of the function f at x_{0}.

Definition (stationary point)

The point x_{0} is said to be a stationary point of the function f if $f^{\prime}\left(x_{0}\right)=0$.

Theorem (relationship between stationary point and local extremum)

Let f be a function defined in x_{0}. If the function f takes on a local extremum at $x=x_{0}$, then the derivative of the function f at the point x_{0} either does not exist or equals zero and hence $x=x_{0}$ is a stationary point of the function f.

Theorem (relationship between derivative and monotonicity)

Let f be a function. Suppose that f is differentiable on the open interval I.

- If $f^{\prime}(x)>0$ on I, then the function f is increasing on I.
- If $f^{\prime}(x)<0$ on I, then the function f is decreasing on I.

Concavity

Another property of functions which possesses a clear interpretation on the graph is concavity.

Definition (concavity)

Let f be a function differentiable at x_{0}.
The function f is said to be concave up (concave down) at x_{0} if there exists a ring neighborhood $\bar{N}\left(x_{0}\right)$ of the point x_{0} such that for all $x \in \bar{N}\left(x_{0}\right)$ the points on the graph of the function f are above (below) the tangent to the graph in the point x_{0}, i.e. if

$$
\begin{equation*}
f(x)>f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad\left(f(x)<f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)\right) \tag{1}
\end{equation*}
$$

holds.
The function is said to be concave up (concave down) on the interval I if it has this property in each point of the interval I.

Definition (point of inflection)

The point x_{0} in which the type of concavity changes is said to be a point of inflection of the function f.

Theorem (relationship between the 2nd derivative and concavity)

Let f be a function and $f^{\prime \prime}$ be the second derivative of the function f on the open interval I.

- If $f^{\prime \prime}(x)>0$ on I, then the function f is concave up on I.
- If $f^{\prime \prime}(x)<0$ on I, then the function f is concave down on I.

Theorem (2nd derivative test, concavity and local extrema)

Let f be a function and x_{0} a stationary point of this function.

- If $f^{\prime \prime}\left(x_{0}\right)>0$, then the function f has its local minimum at the point x_{0}.
- If $f^{\prime \prime}\left(x_{0}\right)<0$, then the function f has its local maximum at the point x_{0}.
- If $f^{\prime \prime}\left(x_{0}\right)=0$, then the 2 nd derivative test fails. A local extremum may or may not occur. Both cases are possible.

Behavior of the function near infinity, asymptotes

In the remaining part of this chapter we will investigate functions near the points $+\infty$ and $-\infty$. We will be interested in the fact, whether the graph approaches a line or not.

Definition (inclined asymptote)

Let f be a function defined in some neighborhood of $+\infty$. The line $y=k x+q$ is said to be an inclined asymptote at $+\infty$ to the graph of the function $y=f(x)$ if

$$
\lim _{x \rightarrow \infty}|k x+q-f(x)|=0
$$

holds.
Similarly, if we consider the point $-\infty$ instead of $+\infty$, we obtain the definition of the inclined asymptote at $-\infty$.

Remark

As a special case of the preceding definition we obtain for $k=0$ the horizontal asymptote.

Theorem (inclined asymptote)

Let f be a function defined in some neighborhood of the point $+\infty$. The line $y=k x+q$ is an inclined asymptote at $+\infty$ to the graph of the function $f(x)$ if and only if the following limits exist as finite numbers

$$
\begin{equation*}
k:=\lim _{x \rightarrow \infty} \frac{f(x)}{x} \quad \text { and } \quad q:=\lim _{x \rightarrow \infty}(f(x)-k x) . \tag{2}
\end{equation*}
$$

Similarly, if we consider $-\infty$ instead of $+\infty$, we obtain the asymptote at $-\infty$.

Investigation of a function, curve sketching

Usually we investigate a function f in the following steps.
(1) We find the domain of f, decide whether f is odd, even or periodical.
(2) We find intercepts of the graph with axes and intervals where the value of the function is positive and/or negative.
(0) We find the one-sided limits at the points of discontinuity and at $\pm \infty$.
(0) We find and simplify the derivative f^{\prime}. Then we find intervals where f is increasing and/or decreasing and local extrema of the function f.
(0) We find and simplify the second derivative $f^{\prime \prime}$. Then we find the intervals where f is concave up and/or down and inflection points of the function f.
(0) If the limits in $+\infty$ and/or $-\infty$ are not finite, we find inclined asymptotes in these points.
() We sketch the graph of the function f.

