1. Write the definition of the inverse matrix.
2. Let

$$
A=\left(\begin{array}{lll}
1 & 3 & 2 \\
2 & 5 & 3 \\
1 & 2 & 1
\end{array}\right) .
$$

(a) Evaluate the determinant of $A$.
(b) Using the value of $\operatorname{det} A$ answer the following questions:
(i) Are the rows of $A$ linearly dependent or independent?
(ii) Determine rank A.
(iii) Does the inverse matrix $A^{-1}$ exist?
3. Let

$$
B=\left(\begin{array}{lll}
1 & 3 & 2 \\
1 & 2 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

(a) Evaluate the determinant of $B$.
(b) Using the value of $\operatorname{det} B$ answer the following questions:
(i) Are the rows of $B$ linearly dependent or independent?
(ii) Determine rank B.
(iii) Does the inverse matrix $B^{-1}$ exist?
4. Consider the system of equations

$$
\begin{aligned}
& x_{1}+x_{2}+2 x_{3}=4 \\
& x_{1}+3 x_{2}+x_{3}=5 \\
& x_{1}+5 x_{2}-x_{3}=3
\end{aligned}
$$

(a) Write the above system in the form $A \vec{x}=\vec{b}$, where $A$ is the coefficient matrix, $\vec{x}$ is the vector of unknowns and $\vec{b}$ is the vector of the right-hand sides.
(b) Solve the system.

Instructions for writing homework:

- Write your homework with solution (not only the results).
- Take a photo of the homework and convert the picture to PDF (use https://tools.pdf24.org/en/jpg-to-pdf).
- Compress the file if it is large (use https://tools.pdf24.org/en/compress-pdf).
- Send the final PDF file to the teacher (either chat in MS Teams or e-mail: fisnarov@mendelu.cz ).

