Exercises – linear algebra

MATHEMATICS

FRDIS

1 Vectors, matrices, determinants

1.1 Operations with matrices

1. Let

$$A = \begin{pmatrix} 3 & 1 & 3 \\ 2 & -1 & 0 \\ 3 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 0 & 3 \\ 2 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 3 & 5 & 3 \\ 4 & -1 & 2 \end{pmatrix}, \quad D = \begin{pmatrix} 2 & 7 \\ 1 & 3 \end{pmatrix}$$

Decide which of the following products can be calculated and find the size of the resulting matrices:

 $AB, BA, AC, CA, AD, DA, BC, CB, BD, DB, CD, DC, C^TD, B^TD, B^TA.$

2. Let

$$A = \begin{pmatrix} 3 & 0 & 3 \\ 0 & -1 & 2 \\ 3 & 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 0 & 3 \\ 2 & 3 \end{pmatrix}$$

Calculate $(A - 2I)^T \cdot B$, where I is the identity matrix .

3. Let

$$A = \begin{pmatrix} 1 & 0 & 3 \\ 0 & -1 & 2 \\ 2 & 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 2 \\ 0 & 2 \\ 2 & 1 \end{pmatrix}.$$

Calculate $(A^T + I) \cdot B$, where I is the identity matrix.

 $4. \ Let$

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 0 \\ 3 & 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix},$$

Calculate $(A - B)^2$, where I is the identity matrix.

 $5. \ Let$

$$A = \begin{pmatrix} 1 & 5 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 0 \end{pmatrix}.$$

Calculate A^2 .

6. Let

$$A = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 2 & 1 \\ 2 & 2 & 0 \end{pmatrix}.$$

Calculate $(A^T - I)A$, where I is the identity matrix.

1.2 Determinant, inverse matrix, linear dependence/independence of vectors

1. Let

$$A = \begin{pmatrix} 1 & 3 & 2 \\ 1 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

- (a) Evaluate the determinant of A.
- (b) Using the value of $\det A$ answer the following questions:
 - (i) Are the rows of A linearly dependent or independent?
 - (ii) Is rank (A) > 3, rank (A) < 3 or rank (A) = 3?
 - (iii) Does the inverse matrix A^{-1} exist? If A^{-1} exists, find it.

2. Let

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 2 & 4 \end{pmatrix}$$

- (a) Evaluate the determinant of A.
- (b) Using the value of $\det A$ answer the following questions:
 - (i) Are the rows of A linearly dependent or independent?
 - (ii) Is rank (A) > 3, rank (A) < 3 or rank (A) = 3?
 - (iii) Does the inverse matrix A^{-1} exist? If A^{-1} exists, find it.

3. Let

$$\begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 4 \\ 0 & 1 & 1 \end{pmatrix}$$

- (a) Evaluate the determinant of A.
- (b) Using the value of $\det A$ answer the following questions:
 - (i) Are the rows of A linearly dependent or independent?
 - (ii) Is rank (A) > 3, rank (A) < 3 or rank (A) = 3?
 - (iii) Does the inverse matrix A^{-1} exist? If A^{-1} exists, find it.

4. Let

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & -1 & 0 \\ -1 & -2 & -1 \end{pmatrix}.$$

- (a) Evaluate the determinant of A.
- (b) Using the value of $\det A$ answer the following questions:
 - (i) Are the rows of A linearly dependent or independent?
 - (ii) Is rank (A) > 3, rank (A) < 3 or rank (A) = 3?
 - (iii) Does the inverse matrix A^{-1} exist? If A^{-1} exists, find it.

5. Let

$$A = \begin{pmatrix} 1 & 0 & 3 \\ 1 & 1 & 2 \\ 2 & 1 & 5 \end{pmatrix}$$

- (a) Evaluate the determinant of A.
- (b) Using the value of $\det A$ answer the following questions:
 - (i) Are the rows of A linearly dependent or independent?
 - (ii) Is rank (A) > 3, rank (A) < 3 or rank (A) = 3?
 - (iii) Does the inverse matrix A^{-1} exist? If A^{-1} exists, find it.

6. Are the following vectors liearly dependent or independent?

- (a) $\vec{a} = (1, 2, 1, 0), \ \vec{b} = (1, 2, -1, 1), \ \vec{c} = (0, 1, 2, 1), \ \vec{d} = (1, 1, 0, 1)$
- (b) $\vec{a} = (1, 2, 1, 0), \ \vec{b} = (1, 0, -1, 1), \ \vec{c} = (1, 1, 2, 1), \ \vec{d} = (2, 1, 1, 2)$
- (c) $\vec{a} = (1, 3, 1, 0), \ \vec{b} = (1, -1, 0, 1), \ \vec{c} = (1, 1, 2, 1), \ \vec{d} = (1, 1, 1, 2)$

2 Systems of linear equations

Solve the following systems using the Gauss method.

- (a) Find the rank of the coefficient and of the augmented matrix and determine how many solutions the system has.
- (b) Find the solution of the system (if exists any).

1.

 $8x_1 + 6x_2 - x_3 + 3x_4 = -9$ $2x_1 + 2x_2 - x_3 + 5x_4 = -13$ $x_1 + 2x_2 - 2x_3 + 11x_4 = -28$ $2x_2 - 3x_3 + 17x_4 = -43.$

2.

$x_1 + $	$x_2 - x_3$	$+ x_4 = -2$
$2x_1 + $	$x_2 - x_3$	$+2x_4 = 2$
$3x_1 + 2$	$2x_2 - 2x_3$	$+3x_4 = 1$
	$x_2 - 3x_3$	$+2x_4 = -3.$

3.

$$x_{1} + 2x_{2} - x_{4} = -2$$

$$2x_{1} + 3x_{2} + x_{3} - 5x_{4} = 1$$

$$x_{1} + x_{2} + x_{3} - 4x_{4} = 3$$

$$x_{2} - x_{3} + 2x_{4} = 0.$$

4.

$x_1 + x_2 - 2x_3 + 3x_4 =$	0
$3x_1 + 2x_2 + 3x_3 - 4x_4 = -$	-4
$-3x_1 - 2x_2 - 3x_3 + 3x_4 =$	4
$-7x_1 - 6x_2 + 5x_3 - 8x_4 =$	4.

5.

 $x_1 + x_2 + 3x_3 - x_4 = 2$ $2x_1 + x_2 + 5x_3 - 2x_4 = 0$ $2x_1 - x_2 + 3x_3 - 2x_4 = -8$ $3x_1 + 2x_2 + 8x_3 - 3x_4 = 2.$

6.

 $x_1 + 3x_2 - 2x_3 + x_4 = 0$ $2x_1 + 5x_2 - 3x_3 + 3x_4 = 0$ $x_1 + 2x_3 - 2x_4 = 9$ $2x_1 - x_2 + 4x_3 + 9x_4 = 3.$ 7.

$$x_1 + 3x_2 + 2x_3 - 4x_4 = -4$$
$$x_2 + x_3 - 3x_4 = -3$$
$$-x_1 + 2x_2 + x_3 - x_4 = -1$$
$$5x_1 + 2x_2 + 4x_4 = 4$$

8.

$$x_1 + 2x_2 - 5x_3 + x_4 = -2$$

$$x_2 + 3x_3 - 4x_4 = 1$$

$$-x_1 + 2x_2 - x_3 + x_4 = 6$$

$$3x_1 + x_2 - 4x_3 + 6x_4 = -2$$

9.

$$x_1 + x_2 - x_3 + x_4 = 0$$

$$2x_1 + 3x_2 + x_3 + x_4 = 6$$

$$4x_1 + 5x_2 - x_3 + 3x_4 = 6$$

$$3x_1 + 4x_2 - 6x_3 + 2x_4 = -6.$$

10.

$$x_{1} - x_{2} + x_{3} + 2x_{4} = 1$$

$$x_{1} - 2x_{2} - x_{3} + 2x_{4} = 1$$

$$2x_{1} + 3x_{3} + x_{4} = 2$$

$$x_{1} + x_{2} + 3x_{3} = 1$$

11.

$$x_{1} + x_{2} + 2x_{4} = 0$$

$$x_{1} + x_{3} + x_{4} = 2$$

$$2x_{1} + x_{2} + x_{3} + 3x_{4} = 3$$

$$x_{2} - 2x_{3} + 3x_{4} = 1$$

12.

$$x_{1} + x_{2} + 5x_{4} = 1$$

$$x_{1} + x_{3} + 2x_{4} = 1$$

$$x_{1} - 3x_{2} + 4x_{3} - 7x_{4} = 1$$

$$x_{2} - x_{3} + 3x_{4} = 0$$