Name: \qquad

1	2	3	4	5	6	7	8	\sum

Date: \qquad

1. [6p] Solve the system

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{4}= & -2 \\
2 x_{1}+3 x_{2}+x_{3}-5 x_{4} & =1 \\
x_{1}+x_{2}+x_{3}-4 x_{4} & =3 \\
x_{2}-x_{3}+2 x_{4} & =0
\end{aligned}
$$

2. $[8 \mathbf{p}]$ Let

$$
A=\left(\begin{array}{lll}
1 & 1 & 3 \\
2 & 2 & 1 \\
2 & 2 & 0
\end{array}\right)
$$

(a) Calculate $\left(A^{T}-I\right) \cdot A$, where I is the identity matrix.
(b) Calculate $\operatorname{det} A$.
(c) Using the value of $\operatorname{det} A$ answer the questions:
i. Are the rows of A linearly dependent or independent?
ii. Does the inverse matrix A^{-1} exist?
3. [4p] Write the definition of the inverse matrix and explain the method of finding the inverse matrix.
4. $[8 \mathbf{p}]$ Find the integrals
(a) $\int \frac{x^{3}-x+1}{x} \mathrm{~d} x$
(b) $\int x \sin x^{2} \mathrm{~d} x$
(c) $\int \frac{1}{x^{3}} \mathrm{~d} x$
5. $[4 \mathrm{p}]$
(a) Write the Newton-Leibniz formula for evaluating definite integrals.
(b) Evaluate $\int_{0}^{1}\left(x^{2}-1\right) \mathrm{d} x$
6. [6p]
(a) Write the definition of one-to-one function.
(b) Give an example of one-to-one function and give and example of a function which is not one-to-one.
(c) Write the definition of the derivative of a function at x_{0}.
7. $[8 \mathbf{p}]$ Find derivatives of the following functions.
(a) $y=\sqrt{x}(x-5)$
(b) $y=x^{2} \cos x$
(c) $y=\frac{x+\ln x}{x^{2}+1}$
(d) $y=\left(x+\sin x^{2}\right)^{3}$
8. $[\mathbf{6 p}]$ For the function $y=4 x^{3}-x^{4}$
(a) find intervals, where the function is increasing and decreasing and find local extrema,
(b) find intervals, where the function is concave up and concave down a find points of inflection.

- Passing is 25 points (including bonus points).
- Write only important things in theoretical problems, no long stories!

