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1 INTRODUCTION

Logistic regression is a useful tool for analyzing data that includes categori-
cal response variables, such as tree survival, presence or absence of a species
in quadrats, and presence of disease or damage to seedlings. The models
work by fitting the probability of response to the proportions of responses
observed. For instance, the number of outplanted seedlings in 50-tree rows
that die from frost damage is an observed response. These observed
numbers are converted to proportions which are then fitted by models that
determine the probability that a seedling will die from frost damage. Nor-
mal distribution approximations to the proportions and the consequent
analytical methods (e.g., regression and analysis of variance) can be used if
large sample sizes exist for each experimental unit. However, logistic regres-
sion does not require large sample sizes for the data analysis to be feasible.
Furthermore, it is possible to analyze individual tree data.

Five forestry examples are used extensively in this handbook to illus-
trate possible study designs and the statistical aspects of logistic regression
analysis. The first example, a simple regression, examines the relationship
of the survival of caribou calves during their first year to the number of
wolves in their vicinity. The second example studies the relationship bet-
ween tree survival and age class in stands with root rot. Stands that are
‘‘similar’’ according to some criteria are selected from available stands
resulting in an unbalanced one-way classification study. The third example
is a controlled experiment, where rows of seedlings are treated with differ-
ent amounts of fertilizer. With height as the response variable, this can be
analyzed with a familiar one-way analysis of variance (ANOVA). We shall
use logistic regression analysis to study the effect of fertilizer amounts on
the probability of seedling survival. The fourth example is a traditional
multiple regression situation, where two qualitative variables, tree size and
amount of herbicide, are used to predict the probability that treated trees
die. This example is based on a trial conducted by the British Columbia
Ministry of Forests and uses real data. The fifth example would be a tradi-
tional analysis of covariance if seedling height were the response variable
of interest. However, here the effectiveness of screefing around outplanted
seedlings to reduce attack by the root collar weevil is examined. The
attack of root collar weevil is quantified by counting the number of seed-
lings attacked in each plot. This example leads us into two interesting dis-
cussions: first, about whether traditional analysis of covariance models are
always appropriate when the explanatory variables are both categorical
and continuous; and second, about the shape of the logistic regression
models. Since this handbook is an introduction to logistic regression
models all of these examples are relatively simple. Nevertheless, these
examples provide the necessary bulding blocks for understanding and
interpreting more complicated study designs.

Chapter 2 discusses statistical models in general and the logistic regres-
sion model for two response categories in particular. Chapter 3 is consid-
erably more technical. Methods of, and problems with, fitting logistic
regression models, parameter estimation, and testing are discussed. Chapter 4
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describes the study design examples more fully. Models are set up for each
of the examples and contrasted with the corresponding normal distribution
models with which most readers will be familiar. Each example is then
explored in more depth by examining the specific data sets and fitting the
models. Chapter 5 provides a detailed discussion of the SAS programs used
to calculate and fit logistic regression models for each example. The last two
chapters cover some advanced topics regarding indicator (or dummy)
variables and other methods to fit the one-way classification models.

Readers should be familiar with common parametric statistical tech-
niques, such as contingency tables, t-tests, simple and multiple linear
regression, analysis of variance and covariance, and should know how to
use statistical tables for the t-, F- and χ 2-distributions. Familiarity with SAS,
particularly with PROC GLM and PROC REG, will also be helpful, but is not
essential for understanding the example studies and their analysis. A good
reference to use along with this handbook is Agresti (1996). Biometrics
Handbook No. 1, ‘‘Pictures of Linear Models’’ (Bergerud 1991) may be use-
ful to help develop a basic understanding of simple linear models.

2 STATISTICAL MODELS

Every statistical test has an associated statistical model. Whenever a test is
used on data, it is assumed that the associated model fits the data rea-
sonably well. If this is not the case, then the test is inappropriate and the
results could be misleading. On the other hand, several statistical models
may fit the same data reasonably well. Since different statistical models
usually lead to different statistical tests, this can mean that the data could
be tested in several different ways. The choice of test depends on the
choice of statistical model. Although the fit of models can sometimes be
tested, and even compared, the final choice of a model is, in general, a
non-statistical one.

Statistical models have two components:1

1. a deterministic or systematic component, and
2. a stochastic or random component.

The deterministic component is a function that describes the expected
or predicted value of the response variable and usually is of most interest
to the scientist or researcher. It often has a parametric form. This means
that it can be specified by one or more unknown parameters or constants
which are estimated in the fitting procedure.2 This report discusses linear
parametric models in which the parameters appear as coefficients in a

1 A third component, called the link function, is described by McCullagh and Nelder (1983),
Dobson (1983), and Gilchrist (1984).

2 Analyses of variance fit into this class of model. Because means are usually of interest, the
estimated parameters are not automatically output by computer procedures. (See section 6.)
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 1 The deterministic component of common types of linear models

Common name Deterministic component of model

Mean or intercept only E(Yj ) = µ
Simple regression E(Yjxj ) = µ + βxj

Multiple regression E(Yjxj , zj ) = µ + βxj + γzj

One-way classification (one-way ANOVA) E(Yij ) = µ + αi

One-way classification with a covariate
(one-way ANCOVA) E(Yijxij ) = µ + αi + βxij

Where:
i, j  are indices that uniquely identify specific observations or experimental units.
E(Yj ) or E (Yij ) are the expected responses, while E(Yjxj)  is the expected response

for a given x j, and E(Yjxj , zj) is the expected response given a pair of values for
xj and zj (the  stands for ‘‘given’’).

µ, β, γ, and αi are unknown quantities, referred to as parameters.
µ, β, and γ  are constant for all observations being modelled.
β and γ are often called slopes, regression parameters, or coefficients.
αi are constants that may be different for different levels of the classifying variables

(where the different levels are denoted by i ).
xj, xij, and zj are continuous-valued explanatory variables used to predict the

responses.

sum of simple terms. Common types of linear models are summarized in
Table 1.

The deterministic component is quite distinct from the stochastic com-
ponent of a statistical model. The stochastic component describes the ran-
dom variation of the response variable. It provides the basis for statistical
tests by specifying a suitable probability distribution for the data. The
development of these statistical tests is often mathematically complicated.

The t-test is a simple and familiar statistical test used to illustrate the
roles played by the deterministic and stochastic components. The underly-
ing model is:

Yj = µ + ε j ,

where: Yj is the j th response (e.g., height or diameter of the j th tree),
µ is the mean or expected value of Yj, and
ε j is a random error or residual (i.e., it is the difference Yj − µ
between the expected value µ and the observed value Yj ).

Here, the deterministic component indicates that the expected value of
each observed value Yj is theoretically equal to some unknown constant µ.
The stochastic component indicates that the differences, ε j = Yj − µ, are
independent and vary randomly around a mean value of zero according
to the normal or gaussian distribution with an unknown variance of σ2.
Equivalently, Yj has a normal distribution with mean µ and variance σ2.

If the collected data fit the above model, then the ratio of the difference
between the sample mean and µ to the estimated standard error of the
sample mean will have a (central) t-distribution. This distribution
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describes the probability of obtaining a value at least as large as the abso-
lute value of any particular observed t-value, given that the null hypo-
thesis (H0: µ = c ) is correct. This can be used to test whether the data are
consistent with the null hypothesis by making the following calculation:

tobs =
ȳ − c
SE(ȳ)

where: ȳ  is the sample mean, and
SE (ȳ) = √s 2/n  is its standard error calculated from the sample
variance s 2 and sample size n.

Note that SE(ȳ) is a measure of precision for the estimate (ȳ) of the
mean µ. The observed t-value, tobs, is compared to the t-distribution with
degrees of freedom, df = n − 1, since the shape of the distribution
depends on the degrees of freedom. If the observed t-value is improbable
(based on its associated probability value from the t-distribution) given
the null hypothesis that the unknown constant µ is equal to c, then that
hypothesis is rejected.

Thus, the simple t-test is based on a model with a fairly complicated
stochastic component and a relatively simple deterministic component.
Every time the simple t-test is used, this model is assumed true for the
data analyzed.

2.1 General Linear
Models (GLM)

The most commonly used statistical tests are developed from models that
assume independent responses and follow a normal distribution with a
constant variance. The mean is the deterministic component of these
models and may be expected to vary according to the independent vari-
ables in the model. Some common examples are presented in Table 1. The
variance and parameters of the deterministic component are usually
unknown. The term, general linear model (GLM), refers to linear models
having the normal distribution as the stochastic component.

Statistical tests of the model parameters are derived by comparing the
ratio of two variances, called an F-ratio. For models with simple stochas-
tic components, the denominator of this F-ratio is the sample variance of
the residuals (i.e., the mean squares of the differences between the
observed and predicted values). The numerator has the same expected
value as the variance in the denominator, if certain parameters of the
deterministic component are zero. For instance, in a one-way classification
with equal sample sizes, the variance of the group means multiplied by
the sample size is the numerator of the F-ratio and is expected to be sim-
ilar in magnitude to the variance of the residuals if all means have the
same value or, equivalently, if all the αi’s shown in Table 1 are zero. The
variance of the residuals is often called the mean square error. This ratio
of variances can be tested for unlikely values by examining the corre-
sponding significance obtained by comparison with the F-distribution.3

3 Since the square of a t-value has an F-distribution, the two distributions are equivalent for
testing purposes in the case of two groups. See Biometrics Information Pamphlet No. 27.



5

2.2 Stochastic
Components

This section briefly describes two distributions often used to describe or
model the stochastic component of linear models. The normal or gaussian
distribution is most familiar because it is used with general linear models.
The binomial distribution4 provides the stochastic component for logistic
regression models.

2.2.1 The normal distribution The two parameters of the normal dis-
tribution are:

1. the mean (µ), and
2. the variance (σ2).

These parameters are independent of each other in the sense that the
mean does not determine the value of the variance. The mean can take on
any real value, while the variance must be positive. The influence that µ
and σ2 have on the shape of the normal distribution are illustrated in Fig-
ure 1. Note that the distribution is smooth and is always symmetric about
the mean.

This distribution is often used to approximate the mean of data gener-
ated from other distributions. It does this especially well if the sample size
for the mean is large and the other distribution is symmetric.

2.2.2 The binomial distribution The two parameters of the binomial
distribution are:

1. the sample size,5 (m ) which is the number of sampling units per
experimental unit,6 and

2. the probability of some specified event (π), which is often called a
‘‘success.’’7

The sample size must be a positive integer and the probability can only
have a value between zero and one. Both parameters can have any value
in their allowed range regardless of the value of the other. The response
variable is either the proportion or the number (out of the m  sampling
units) of successes for a given experimental unit. The response variable,
number of successes, has mean (mπ) and variance [mπ (1 − π )].

4 Referred to as the multinomial distribution if there are more than two categories of
response. Note that the discussion of three or more response categories is beyond the scope
of this handbook.

5 Notation for the sample size can be confusing. In this text, m  is used for the number of
sampling units per experimental unit, while n  is used for the total number of sampling
units.

6 An experimental unit is a basic unit of experimental material to which one level of a treat-
ment is applied. An experimental unit may be composed of many sampling units upon
which actual measurements or responses are taken. See Biometrics Information Pamphlet
Nos. 5, 17, and 55 for some discussion of this.

7 Note that π is the Greek symbol for the letter ‘‘p.’’ It is used here to represent the
unknown, but true value, of the probability of the binomial distribution, just as µ is used
to stand for the mean of the normal distribution. It should not be confused with the math-
ematical symbol π, which is used to represent the ratio of the circumference of a circle to
its diameter.
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 2 The binomial distribution for various values of π and m.

Note that the variance is a function of the mean. The sample size directly
influences the form of the distribution by limiting the maximum number
of successes possible. Some possible forms of the binomial distribution are
shown in Figure 2.

2.2.3 Comparison of the normal and binomial distributions The nor-
mal distribution is continuous and symmetric with no restrictions on the
possible values of the response variable. The binomial distribution is
discontinuous, asymmetric unless π = 0.5, and the response variable is
limited to the range of integer values between zero and the sample size
inclusive. While sample size is an explicit parameter of the binomial
distribution, it is also important for normal distributions because the vari-
ance of a mean depends on the sample size. For instance, the mean of
normally distributed data is also normally distributed with the same
mean, but with a variance reduced by the sample size (i.e., σ2/m ).
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Binomial data are often approximated by a normal distribution.
According to one rule, this is appropriate when both success and failure
mean counts, mπ and m (1 − π), are greater than five. The binomial dis-
tribution is reasonably symmetric and multi-valued when this is the case
(see Figure 2 for m = 20, π = 0.3; m = 10, π = 0.5; and m = 20, π = 0.5).
For various values of π, the corresponding minimum sample size required
to use the normal approximation is shown in Table 2.

 2 Minimum sample size required to maintain mπ = 5 and corresponding
variance of the binomial distribution

Minimum sample
π (l − π) size, m Variance

0.5 0.5 10 2.5
0.4 0.6 13 3.1
0.3 0.7 17 3.6
0.2 0.8 25 4.0
0.1 0.9 50 4.5
0.05 0.95 100 4.75
0.01 0.99 500 4.95

If π is approximately 0.05 or 0.95, then experimental units with approx-
imately 100 sampling units will be required. Therefore, 100 measurements
are needed to determine a mean response for each  experimental unit in a
regression or ANOVA. However, the use of familiar statistical methods for
data analysis is a substantial advantage, if such large experiments are feas-
ible. These methods assume homogeneity of variance for all experimental
unit means, which is clearly incorrect for data that are binomially distrib-
uted (since the variance depends on π). The angular transformation (i.e.,
arcsine square root) of percentage data is usually recommended to rectify
this situation. For a constant sample size, this transformation will not
make much difference, unless probabilities fall below 0.05 or exceed 0.95,
and data with probabilities of around 0.5 are also present. Occasionally,
the required sample size is so large that the study becomes impractical or
the phenomenon of real interest can not be investigated. Logistic regres-
sion methods use the binomial distribution with its non-constant variance
to model the data. This allows trials to be designed on a smaller scale.
Effects that are only practical or meaningful with smaller sample sizes may
then be studied.

2.3 Logistic Regression
Models

Logistic regression models use the logistic function to fit models to data.
This is an S-shaped function and an example curve is shown in Figure 3.
This function can be used to fit data in three ways. Although each is dis-
tinct, these approaches can be called logistic regression and are briefly
described in Table 3. They all fit a response variable, either y or y/m, to
the S-shaped logistic function of the independent variable, x. The first
model could fit growth data (y on any scale) versus time (x ) with a logis-
tic curve, while the next two fit proportional responses (with values
restricted to the range between zero and one) with the logistic curve. The
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 3 The logistic curve with a maximum value of one (i.e., γ = 1): π = exp(logit)/
[1 + exp(logit)].

 3 Three types of logistic regression models

Model Deterministic component Stochastic component

1 E(y) = γ / [γ + exp(α + βx)] y is normal
2 π = E(y/m) = exp(α + βx) / [1 + exp(α + βx)] p = y/m  is approximately normal
3 π = E(y/m) = exp(α + βx) / [1 + exp(α + βx)] y  is binomial

Where:
y  is a continuous response variable in model 1 and y is a count (out of m) in models 2 and 3;
E(y) is the expected value of y ; exp(x) = exponential function of x ;
p  is the proportion of success when the response variable is recorded as a count;
x  is a fixed independent variable; and
γ, α, and β are unknown parameters.

first two models assume that the data follow, at least approximately, a
normal distribution, while the third assumes that the data are binomially
distributed. This report is restricted to a discussion of the third type of
model.

For this third type of logistic model, the parameter π of the binomial
distribution represents the ‘‘true’’ but unknown probability of success. It is
transformed by the logit function to create linear models in the indepen-
dent variables. The logit transform, also called the log-odds of π, is:

logit(π ) = log[π/ (1 − π )].

The inverse of this transform is π = exp(logit)/[1 + exp(logit)] or
1 − π = 1/[1 + exp(logit)]. These functions are variations of the logistic
function and both can be used to fit data. They have the same S-shape as
the example shown in Figure 3. The correspondence between some values
of logits and probabilities is shown in Table 4. The deterministic compo-
nents of logistic regression models are formed by equating this logit
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 4 Correspondence between logits and probabilities, π

π Logit (π) 1 − π Logit (π) π 1 − π

−5.00 0.0067 0.9933
0.01 −4.60 0.99

−4.00 0.018 0.982
−3.00 0.047 0.953

0.05 −2.94 0.95
0.10 −2.20 0.90

−2.00 0.12 0.88
0.20 −1.39 0.80

−1.00 0.27 0.73
0.50 0.00 0.50 0.00 0.50 0.50

1.00 0.73 0.27
0.80 1.39 0.20

2.00 0.88 0.12
0.90 2.20 0.10
0.95 2.94 0.05

3.00 0.95 0.047
4.00 0.98 0.018

0.99 4.60 0.01
5.00 0.9933 0.0067

to a general linear model, examples of which were shown in Table 1. For
example, a simple linear logistic regression model is written as:

logit (π) = log[π/(1 − π )] = α + βx . (1)

Models that are linear after an appropriate transformation of the
expected response, and whose stochastic component is not limited to the
normal distribution, are often called generalized linear models (as opposed
to general linear models).8 The logistic regression models discussed here
are a type of generalized linear model. They also belong to a group of
models referred to as log-linear models, since a log transform of the
response variable is used to give a linear form to the model.

The final fitted model will predict values on the logit scale. These can
be back-transformed to probabilities by using the inverse functions:

π = exp(logit)/[1 + exp(logit)] or 1 − π = 1 / [1 + exp(logit)] (2)

Discussions of the model-fitting process will include both the logit scale
on which models are built and the probability scale on which interpreta-
tions are made (see Figure 4).

2.3.1 Suitable types of data Logistic regression models with a binomial
stochastic component can provide adequate models for data with certain

8 A more precise definition is found in many texts (see, for example, McCullagh and Nelder
[1983, 1989]).
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 4 Forms of the simple regression model on the logit and probability scales.

characteristics and for which certain assumptions are valid. The first and
most obvious characteristic of the data is that the response variable has
only two responses of interest. This could include, for instance, whether
trees attain a certain minimum height or whether brush reaches an unde-
sirable level. It is possible to generalize logistic regression analysis for vari-
ables with three or more levels, but the required methods are not
presented here (see McCullagh and Nelder [1989: Chapter 5], for
instance).

Another important requirement, which can be ensured by appropriate
study design, is that the response of each experimental unit must be inde-
pendent of any other’s response. For example, if the experimental unit is an
individual tree and the fact that one dies implies that others must also die,
then they are not responding independently. This might occur if a herbicide
could travel through root grafts to kill neighbouring trees. This requirement
does not preclude the possibility that many trees die because the probability
of death is high. It also applies to sampling units. If experimental units are
rows of 30 trees, then each tree within a row (the sampling unit) is also
expected to respond independently and with constant probability.

Another requirement is that sample sizes must be known and fixed
before the trial or experiment is conducted so that they will not be subject
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to random variation.9 As well, both sampling and experimental unit
responses are assumed to follow a binomial distribution. While this
assumption is often made for binary response variables, it is not the only
distribution available, nor does the data necessarily fit this distribution.
When the number of sampling units for each experimental unit is large
enough, a goodness-of-fit test is available to test if the data follow a bino-
mial distribution. Table 5 outlines the different assumptions and require-
ments for fitting a simple linear regression model (α + βx ) to data with
the normal and binomial stochastic components.

 5 The assumptions and requirements for fitting a simple linear regression model
(α + βx) to data with either the normal distribution or the binomial
distribution

Stochastic component

Normal distribution Binomial distribution

Assumptions that apply to both models:

Experimental and sampling units are randomly selected from an appropriate
(and clearly defined) population to which results are to be generalized.

Treatments are randomly assigned to experimental units.

Responses are independent.

Values of any independent variable (x) are chosen and known without error.

The form of the model is correct.

Differences between normal and binomial models:

No restrictions on the values of
the response variable.

Response counts (proportions) must
be between zero and m  (one).

Responses are normally
distributed.

Response counts are binomially
distributed.

Responses at a specific x-value
have the same mean.

The probability of success at a spe-
cific x-value is constant.

Responses at any x-value have the
same variance.

Response counts at any x-value have
the binomial variance of
mπ (1 − π), which depends on x, if
π  depends on x.

Basic principles of good study design remain the same regardless of the
models used. One of the current challenges with standard logistic regres-
sion is that all treatments or factors in the model are assumed to have
fixed levels—that is, the factor levels are specifically chosen by the experi-
menter and any inferences made to levels outside of the experimental
situation are not intended. This is currently an area of active statistical
research (see for example, Follmann and Lambert [1989], Breslow and
Clayton [1993], and Zackin, et al. [1996]), but standard methods are not

9 An advanced approach to the problem of random sample sizes is to condition on the
observed sample sizes. The methodology for this approach is not presented here.
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yet available. Therefore, it is currently unclear how to handle random fac-
tors such as seedlots, clones, or blocks in randomized block designs.

3 TESTING AND FITTING PROCEDURES

This chapter outlines methods of fitting logistic regression models to data,
testing their fit and the usefulness of various terms in the deterministic
component. Potential problems associated with testing and fitting are dis-
cussed. Two procedures in SAS (PROC’s CATMOD and LOGISTIC) that
test and fit models are briefly introduced. Their use is more fully explored
in Chapters 5, 6, and 7, where data for the examples of Chapter 4 are
analyzed. The discussion in this section is necessarily terse and applied.
More in-depth sources will be referred to in the following discussion.

3.1 Maximum
Likelihood (ML)

Likelihood is a simple concept that motivates the maximum likelihood
method of fitting and testing models. For discrete data, it is derived from a
probability function, such as the binomial distribution, that predicts the
probability of obtaining specific data values given known values of the
parameters. In general, we do not know the values of the parameters, but
we do have data. Thus, from a data analysis point of view, it makes sense to
use this function to determine the likely values of the parameters. When we
use the function in this way it is called the likelihood. The likelihood func-
tion for binomially distributed data is derived in the next paragraph and
can be skipped by those less interested in the mathematical aspects.

For a specific observation y, the binomial probability function is:10

P (ym, π ) = [m]π y (1 − π)(m − y ) (3)y

where the left side represents the probability of observing y  given () the
values of m  and π. This equation can be used to calculate the probability
of observing any y  for one group, given known values of m  and π. Some
example values are plotted in Figure 2. The corresponding likelihood for
one observation of y  is:

L (πm, y ) = [m]π y (1 − π)(m − y ) (4)y

where the left side represents the likelihood of observing π given values of
m and y. The log-likelihood l (πm, y ) = log[L (πm, y )] =
log[π y (1 − πy )m − y ] + log[m] and because the last term is constanty

10 In this equation, [m] = m !  and is called the binomial coefficient. It representsy y !(m − y)!
the number of combinations of y  items taken from a total set of m  items. For example,

[5] = 5! = 5·4 ·3 ·2 ·1 = 5·4 = 10.
2 2!3 ! 2 ·1 ·3 ·2 ·1 2 ·1
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when m  is fixed, fitting procedures work with l(πm, y ) = y log(π ) +
(m − y) log(1 − π). This is used during calculations since it is easier to
work with and has useful statistical properties. The maximum likelihood
estimate is the value of π that maximizes L(πm, y ), or maximizes
l (πm, y ), or equivalently, minimizes −2log[L(πm, y )] (referred to as
−2LogL).

Some example values for various values of y and π are presented in
Tables 6 and 7. The values of Table 7 are plotted in Figure 5. The maxi-
mum likelihood estimate or most likely value of π for a given y can be
obtained from the table or figures. For a sample size of five and an
observed count of y = 0, the maximum likelihood estimate of π, denoted
by p̂, is zero. When the observed count is one, p̂ = 0.20 and for y = 3,
p̂ = 0.60. This concept of maximum likelihood analysis is extended
further in sections 4 and 7.2 for data from several groups (a one-way
classification study).

 6 Probability of observing counts (y ) given a sample size (m = 5) and success
probabilities π = 0.1, 0.3, and 0.5

Known success probabilitiesObserved count
y π = 0.1 π = 0.3 π = 0.5

0 0.59 0.17 0.03
1 0.33 0.36 0.16
2 0.07 0.31 0.31
3 0.01 0.13 0.31
4 0.00 0.03 0.16
5 0.00 0.00 0.03

 7 Likelihood (L[π]) and log-likelihood ( l [π]) values for a fixed sample size
(m = 5) and observed counts (y = 0, 1, and 3)

Probability Observed count

value y = 0 y = 1 y = 3

π L(π) l(π) L(π) l(π) L(π) l(π)

0.0 a a 0.00 a 0.00 a

0.005 0.98 −0.03 0.02 −3.71 0.00 −13.60
0.05 0.77 −0.26 0.20 −1.59 0.00 −6.79
0.1 0.59 −0.53 0.33 −1.11 0.01 −4.82
0.2 0.33 −1.12 0.41 −0.89 0.05 −2.97
0.3 0.17 −1.78 0.36 −1.02 0.13 −2.02
0.4 0.08 −2.55 0.26 −1.35 0.23 −1.47
0.5 0.03 −3.47 0.16 −1.86 0.31 −1.16
0.6 0.01 −4.58 0.08 −2.57 0.35 −1.06
0.7 0.00 −6.02 0.03 −3.56 0.31 −1.18
0.8 0.00 −8.05 0.01 −5.05 0.20 −1.59
0.9 0.00 −11.51 0.00 −7.71 0.07 −2.62
1.0 0.00 a 0.00 a 0.00 a

a Value undefined.
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 5 Likelihood (L[π]), and Loglikelihood (l[π]) for a binomial sample of 5 and
observed counts of 0, 1, and 3.

3.2 The Logic of the
Fitting and Testing

Process

The logic used to test a model’s independent variables or factors depends
on comparing how different models fit a set of data. One measure of the
fit is calculated by the likelihood, or more usefully by −2LogL. For general
linear models, this function is provided by the residual sums of squares
using the extra sums of squares principle.11

It is useful to divide possible models into three types—saturated,
restricted, and the simplest model, the mean (also known as the intercept-
only model). The saturated and mean models provide helpful extremes
against which to compare various restricted or ‘‘ordinary’’ models. A
model is saturated  when it contains as many parameters as there are
experimental units. This is the largest number of parameters any model

11 See ‘‘Pictures of Linear Models’’ (Bergerud 1991) for another discussion of this topic.
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can have. Although this model provides no simplification, it does have the
largest likelihood any model can have and has the best fit. On the other
hand, the simplest model, the mean or intercept-only model, has only one
parameter and the smallest likelihood that a model can have.

All models, other than the saturated model, are called restricted  because
they provide some simplification when compared to the saturated model.
Some relationships are postulated between the experimental units so that
the number of parameters is reduced from that of the saturated model.
For instance, the simple regression model used in the caribou calf survival
example (section 4.1) has only two parameters, although the saturated
model would have as many parameters as caribou herds included in this
study. The model for the fertilizer study (section 4.3) has four parameters,
while the saturated model would have 24, reflecting the 24 experimental
units in this study. The mean model is the most restricted model because
only one parameter is used for all the experimental units. Contrasts or
planned compensations are restricted models with very specific patterns
postulated for the parameters.

A restricted model that fits the data better than the simplest model, but
also fits the data almost  as well as the saturated model, is suitable from a
statistical perspective. However, several restricted models may fit reasona-
bly well. In this case, final decisions about the most suitable model must
be based on the subject investigated.

3.3 Fitting Procedures The likelihood of a model is obtained by fitting the model to the data. In
general, this involves an iterative numerical search. This means that an
initial guess is made about the parameters of the model, which the fitting
procedure then uses to calculate better estimates. These are, in turn, fitted
to the data. This process is repeated until some criterion is met which
indicates an adequate fit. An obvious criterion would be to stop when the
parameter estimates change very little from one iteration to the next.
Problems can arise when a probability is zero or one because the corre-
sponding logit value will be unbounded (i.e., negative or positive infinity)
and the estimates never converge even though an adequate fit is obtained.
Therefore, the change in the residual sums of squares or likelihood is used
instead.

The Newton-Raphson method and the method of scoring are often
used as numerical search techniques and are well described in Dobson
(1983: 30–33). The likelihood for a simple one-way classification can be
calculated by hand and is developed in Section 7.2. Straightforward dis-
cussions of maximum likelihood can be found in Gilchrist (1984) and
Wetherill (1981). Other information about fitting methods can be found
in Bishop et al. (1975), McCullagh and Nelder (1983 or 1989), and Hos-
mer and Lemeshow (1989).

3.4 Criteria For
Assessing Fit

Three common criteria or measures of fit are used to compare models.
The first one is −2LogL, which is often the convergence criterion during
the fitting procedure. If the model has many variables (parameters) com-
pared to the number of observations available, −2LogL can be smaller
than if it was calculated with a sufficient amount of data. To account for
this effect, −2LogL can be adjusted in two ways:
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• Akaike Information Criterion: AIC = −2LogL + 2(1 + number of
explanatory variables)

• Schwartz Criterion: SC = −2LogL + (1 + number of explanatory vari-
ables) × log(total number of sampling units)

Unlike the coefficient of determinations (R 2 and the adjusted R 2) of
multiple regression, these variations of −2LogL are not constrained bet-
ween zero and one. Because the absolute values of these criteria do not
have any meaning, it is the difference between values from different
models that is of interest. If all three, −2LogL, AIC, and SC are similar in
size, then the sample size is adequate for the model being fit. The AIC
and SC can be used to compare the fit of models that are not nested in
one another. A generalized coefficient of determination has been added to
version 6.11 of SAS, and might also be used in analysis.

3.5 Using Deviance to
Compare Likelihoods

Each model that is fitted to the same set of data has a corresponding log-
likelihood value that is calculated at the maximum likelihood estimates for
that model. These values are used to compare and statistically test terms
in the models. In general, suppose that model one has t  parameters, while
model two is a subset of model one with only r  of the t  parameters so
that r < t. Model one will have a higher log-likelihood than model two.
For large sample sizes, the difference between these two likelihoods, when
multiplied by two, will behave like the chi-square distribution with t − r
degrees of freedom. This can be used to test the null hypothesis that the
t − r  parameters that are not in both models are zero.

Computer printouts produce either the log-likelihoods (LogL are nega-
tive values) or -2LogL (which are positive values). These values can be
used directly to calculate the differences for statistical tests. Differences
between -2LogL’s are called deviances, where:12

D = −2[l (model 2) − l (model 1)]
= −2LogL(model 2) − −2LogL(model 1), (5)

which under certain conditions approximately follows a chi-square dis-
tribution with t − r  degrees of freedom. A deviance test labelled the
Likelihood Ratio is printed at the bottom of the Maximum Likeli-
hood Analysis of Variance Table output by PROC CATMOD. This
test is the difference in deviance between the saturated model (model one
with t  parameters) and the restricted model which was just fit (model
two with r  parameters). Asymptotically (i.e., with large t ), it is a good-
ness-of-fit test (with df = t − r ) for the null hypothesis that the data are
binomially distributed. PROC LOGISTIC also outputs this deviance test
value under the column titled Intercept and Covariates, but does
not provide a p-value for it. As well, PROC LOGISTIC produces a reliable
test for the explanatory variables as a group (labelled Chi-square for
covariates). This test compares the deviances between the simplest,

12 The deviance is a likelihood ratio statistic.
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intercept-only model, with the current restricted model that has just been
fit to the data. In this case, model one is the restricted model with r
parameters, while model two has just one parameter. Thus, this deviance
test has df = r − 1.

Differences between deviances are also deviances which follow an
approximate chi-square distribution, if both deviances were calculated on
the same set of data and both either used the saturated model or the
intercept-only model (and sample sizes are sufficiently large). Thus, differ-
ences between the Likelihood ratio output by PROC CATMOD, or the
−2LogL output by PROC LOGISTIC, for restricted models nested in one
another are also deviances with a chi-square distribution.

3.6 Wald Statistics Asymptotically, each estimated parameter of a fitted model will have a
normal distribution. Thus, each parameter can be tested with the simple
t-test. Most computer programs will square the t-value (the ratio of the
parameter estimate divided by its estimated standard error) and output it
as a chi-square value (known as a Wald test). This statistic has an approx-
imate chi-square distribution with one degree of freedom. Wald tests are
particularly helpful when deciding which variables or terms should be
dropped from the model at hand. They are considered a ‘‘last-in’’ test;
that is, they test whether the current term, if it was the last term added to
the model, would substantially reduce the −2LogL. However, Wald statis-
tics are considered approximate and somewhat unreliable. Therefore, mar-
ginally significant results should be confirmed by fitting models with and
without the terms of interest, and then conducting the corresponding
deviance test. Problems can also arise with Wald statistics when complete
success or failure occurs in one or more of the experimental units. See
Appendix 1 for an example.

3.7 Model Checking When first looking at the data, it is useful to plot it on both the proba-
bility and the logit scale. A problem can arise with the logit if an experi-
mental unit has either complete success or failure. In this case, the logit is
undefined because the numerator or the denominator will be zero. If a
small value is added to both the top and bottom of the logit, then the
logit function becomes, for instance, log[(p + 0.01)/(1 − p + 0.01)]. This
is known as an empirical logit and can be used to plot the observed data,
since there will be points for each experimental unit. Values other than
0.01 may also be used when calculating empirical logits.

The various statistical tests outlined in sections 3.5 and 3.6 describe
ways to check the overall fit of models. When a reasonable model is
selected on the basis of these overall measures of adequacy, the next step
is to look at individual observations to determine if they appear to be well
fitted by the model. As in multiple regression, examining the residuals
(differences between the observed and fitted data points) and various
influence statistics is desirable. Influence statistics can be produced by
PROC LOGISTIC. More information about influence statistics can be
found in standard texts on multiple regression and in, for example,
Hosmer and Lemeshow (1989: section 5.3:149–170), McCullagh and
Nelder (1989, Chapter 12), and Agresti (1996, section 5.3.4).
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The simplest residuals to define are the observed minus the predicted,
namely yi − mi p̂ i , where p̂ i are the values fitted by the model. PROC
CATMOD produces two of these residuals for each observation: one for
success and one for failure, while PROC LOGISTIC produces only one
residual per observation. Plots of residuals output by PROC CATMOD will
have a characteristic ‘‘mirror’’ pattern about a horizontal line at zero if all
the residuals are plotted. While these are easily understood, they have the
disadvantage of non-constant variance (since the variance depends on the
proportions, π i ). Two other residuals produced by PROC LOGISTIC are
the Pearson residual:

reschi i =
(yi − mi p̂ i ) ,

√mi p̂ i (1 − p̂i )

and the deviance residual

resdevi = ± √2yi log{ yi } + 2(mi − yi ) log{ mi − yi },mi p̂ i mi (1 − p̂ i )

where the sign is positive if yi /mi  is greater than p̂ i and negative other-
wise. Given that the fitted model is correct, with suitably large mi , these
two types of residuals will follow an approximately normal distribution
with mean zero and constant variance. Thus, they can be plotted against
the predicted values and the various explanatory variables to look for
unusual patterns and data points. They can also be examined for nor-
mality with a normality test and cumulative probability plots.

3.8 Possible Problems
and Pitfalls

Logistic regression methods are useful because they allow analysis of bino-
mially distributed data without requiring the large experimental unit sizes
(mi ) necessary for normal distribution approximation. Interestingly, cur-
rent statistical tests require large enough samples sizes so that the observed
statistics behave like normally distributed statistics (the chi-square distri-
bution is based on the normal distribution). If sample sizes are suffi-
ciently large, the deviance and the Wald tests can both be compared to
the chi-square distribution to develop probability values for the observed
statistics.

The sample size must be adequate so that the statistics will behave
asymptotically. One way to achieve this is called m-asymptotics. This
occurs when the number of sampling units (mi ) for each or most experi-
mental units is large enough. The required sample size depends on π (see
Table 2). When the mi are small, the likelihood ratio test used to compare
a restricted model to the saturated model (output by PROC CATMOD) is
unreliable and should be ignored (McCullagh and Nelder, 1989:118–121).
Residuals also do not behave as normally distributed values do and must
be examined with caution. When the mi are large enough, then the
likelihood ratio test, the deviance tests, and the residuals behave as
expected. Another way of ensuring an adequate sample size is called
n-asymptotics. This occurs when n = Σmi is reasonably large, even if the
number of sampling units is small. While the goodness-of-fit likelihood
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ratio test is not well behaved in this case, the deviance statistic (equation
5) behaves as expected and is a reliable test statistic. It is also more reli-
able under a variety of conditions compared to the Wald tests and the
goodness-of-fit likelihood ratio test.

The most common problem associated with fitting models occurs when
an observed sample or experimental unit has complete failure or success.
The SAS Institute (SAS Institute 1989, 2:463) recommends the use of the
maximum likelihood method (the default fitting method) in this case.
Most importantly, though, is that the Wald statistics will be unreliable. An
example of this type of problem is described in Appendix 1. Study designs
with at least 25–30 experimental/observational units and with less than
20% of the treatment combinations having five or fewer experimental
units are desirable (SAS Institute 1989, 2:462).

4 WORKING WITH LOGISTIC REGRESSION: SOME FORESTRY EXAMPLES

This chapter shows how to use logistic regression analysis methods by
focusing on some forestry examples. The objective, design, and variables
for each study are described and specific logistic regression models are
developed. Each example is then explored in more depth by examining
specific data sets and fitting models. This is done without substantial
reference to the programs that were used to produce the results. Never-
theless, many of the figures presented are printer plots output by SAS.
Chapter 5 provides a detailed discussion of the SAS programs used and
can be referred to by the interested reader.

While sample sizes are kept small for illustrative purposes, some of
these studies might not be powerful enough to detect effect sizes of inter-
est. This could be determined using power analysis, a topic that is beyond
the scope of this handbook (see Agresti [1996:130–131]).

4.1 Simple Regression:
Caribou and Wolf

Predation

The objective of this example is to study the relationship between wolf
presence and the survival of caribou calves during their first year. It is
hypothesized that fewer calves will survive if high numbers of wolves are
in their vicinity.

This trial might be designed as follows. Several separate caribou herds
are selected and a random sample of calves from each herd are radio col-
lared in the spring soon after birth. The following winter a wolf census is
conducted for each herd and in the following spring all radio-collars are
located to determine the number of surviving calves (if calves have been
killed, the collar can still be found). For this investigation to be successful,
it is important that:

• wolf numbers range from low to high, so that any effects will be as
large as possible, making them easier to identify;

• wolves have only one herd available for predation, to ensure indepen-
dence of herd responses;

• the proportion of collared calves is small for each herd;
• the wolf census numbers have been determined with little error; and
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• the effect of other predators is small and can be neglected, or alter-
natively, that their effect is constant for all the herds in the study and
will not interact with wolf predation.

The data set will have the following variables:13

• j = herd number, j = 1, 2, . . . k (where there are k herds in all)
• mj = number of collared calves in herd j
• yj = number of surviving collared calves in herd j
• wj = estimated number of wolves living in the vicinity of herd j
• pj = yj/mj = observed proportion of calf survival for herd j

A simple regression might be an appropriate model

logit (π j) = µ + βwj , (6)

where π j = probability that a calf survives, if wj wolves live in the vicinity
of the herd, and the number of surviving calves is yj ∼ binomial(π j, mj ).14

Since the hypothesized relationship is of decreasing calf survival with
greater wolf presence, it is expected that β  will be negative. The general
form of this model is shown in Figure 6. The line is straight on the logit
scale, but has the characteristic S-shaped curve on the probability scale.
The data (yj /mj versus wj ) should be graphed to determine if this model
is appropriate.

4.1.1 Data collection For this study, a wildlife biologist collects data
from the published and unpublished work of other scientists to generate
an extensive data set on caribou herds scattered throughout the northern
hemisphere. Suitable information exists for the survival of collared calves
in nine herds during their first summer of life. A reliable estimate of wolf
presence is also available for the following winter. The presence of other
predators (e.g., grizzly bear and lynx) in the vicinity of these herds during
this time is estimated to be low and therefore need not be included in the
models. The herds are widely separated in space, so that no wolf pack has
access to more that one of the nine herds.

The data are shown in Table 8 and the observed proportions are plotted
against the wolf density estimates in Figure 7. It is apparent that the pro-
portion of surviving calves decreases with increasing wolf density. This is
an observational study because wolf density is an observed variable which
is not controlled by the researcher. Therefore, statements of cause and
effect are not valid on either statistical or study design grounds. If the
levels of wolf density were under the control of the researcher and were
randomly assigned to each herd, then the results could be clearly dis-
cussed in cause and effect terms.

13 Note that for all of the example studies, the subscript j  is used to number experimental
units, while i  is used for treatment levels.

14 The symbol ∼ means distributed as. So yj ∼ binomial(π j, mj ) means that yj has a binomial
distribution with parameters π j for probability of success and mj for sample size.
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 6 Forms of the simple regression model on the logit and probability scales.

 8 Listing of the data for the caribou calf survival example

Herd Wolf density Total Proportion
number (no. per 1000 km2) number Alive alive

1 9 15 14 0.933
2 10 7 7 1.000
3 12 4 3 0.750
4 13 5 5 1.000
5 15 10 9 0.900
6 23 10 9 0.900
7 31 15 9 0.600
8 34 13 4 0.308
9 38 13 1 0.077

This data is first analyzed using traditional simple and quadratic regres-
sion (section 4.1.2). Then a logistic regression model is fitted in section
4.1.3, and these two approaches are contrasted in section 4.1.4. The fit of
the logistic regression model is discussed in section 4.1.5, while the odds
ratio is discussed in section 4.1.6. SAS programs including detailed output
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 7 Plot of observed proportions against estimated wolf density (numbers repre-
sent herd number).

and comparison of the CATMOD and LOGISTIC procedures are presented
in section 5.2.

4.1.2 Analysis of simple and quadratic regression models Judging from
Table 8 and Figure 7, a regression of survival probability against wolf den-
sity is likely a reasonable model. A quadratic fit should also be considered
given the apparent curve to the data in Figure 7. We could start the analysis
by looking at a regression of the proportion of surviving calves against both
the number of wolves (wolf) and the squared number of wolves (wolf 2). The
fit of the simple and quadratic models is compared in the following table:

Sums of Mean Adjusted
Model df squares square F-value p-value R 2

Linear 1 0.69095 0.69095 27.7 0.0012 0.769
Quadratic 2 0.80556 0.40278 40.0 0.0003 0.907

The simple regression model shows a strong and statistically significant
correlation between the proportion of calves that survive the summer and
wolf density (adjusted R 2 = 0.77 with F = 27.6 and p-value = 0.0012).
The fit is improved though, when a quadratic model is used (adjusted
R 2 = 0.91 with F = 40.0 and p-value = 0.0003).

4.1.3 Logistic regression analysis The results of fitting a simple logistic
regression with wolf as the independent variable is shown in the following
table:
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Model
Intercept Intercept and Chi-square

Criterion only covariates for covariates

Akaike Information Criterion (AIC) 119.575 79.920 —
Schwartz Criterion (SC) 122.097 84.963 —
Log-likelihood 117.575 75.920 41.656a

a With 1 df  (p = 0.001).

The log-likelihood results are the final values from the iterative fitting
process. The first log-likelihood value is for an intercept-only model (i.e.,
a model with only one mean for all the data), while the second is for the
full model, which includes the intercept and model variables. The differ-
ence between the first two values provides an overall test for the signifi-
cance of the variables (called covariates here) in the model. For this
example, the value is χ 2 = 41.7 with one degree of freedom and
p-value ≤ 0.0001. This suggests that calf survival is correlated with the
estimated wolf density.

The next table provides parameter estimates, their standard error, and
Wald tests for the intercept and variable parameter estimates in the model:

Parameter Standard Wald Odds
Variable df estimate error χ 2 p-value ratio

Intercept 1 5.0993 1.0677 22.8 0.0001 165.9
Wolf 1 −0.1693 0.0352 23.1 0.0001 0.844

We can use the parameter estimates to specify the logistic regression
model fitted to the data by first defining the logit that corresponds to the
probability of an event; in this case, the event that a caribou calf does sur-
vive is estimated to be:

logit (probability of surviving) = 5.10 − 0.169 × Wolf

Therefore, the estimated probabilities of surviving or not are given by (see
equation 2):

probability of surviving, p̂ = exp(logit)/[1 + exp(logit)]
probability of not surviving, 1 − p̂ = 1/[1 + exp(logit)].

To illustrate the use of these equations, let us calculate both proba-
bilities for a wolf density of 10 wolves per 1000 km2. First, the estimated
logit of the survival probability = 5.10 − 0.169 × 10 = 3.41. Therefore, the
estimated survival probability is exp(3.41)/[1 + exp(3.41)] = 0.968, while
the estimated mortality probability is 1/[1 + exp(3.41)] = 0.032 or
1 − 0.968. The estimated probabilities for other wolf densities are shown
in Table 9.
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 9 Estimated probabilities of survival and mortality for different wolf densities

Probability of

Wolf density Logit Surviving Not surviving

0 5.10 0.994 0.006
10 3.41 0.968 0.032
20 1.72 0.85 0.15
30 0.03 0.51 0.49
40 −1.66 0.16 0.84

4.1.4 Comparing the regressions with the logistic regression It is inter-
esting to compare the results of the simple regression analysis of the sur-
vival proportions with that of the logistic regression. A simple approach is
to compare the predicted calf survival proportions for each model with the
observed data by looking at the residual sums of squares for the three models:

Uncorrected sums
Model of squares

Linear regression 0.175
Quadratic regression 0.060
Logistic regression 0.103

While the quadratic regression has the smallest residual sums of squares, it
is not much smaller than that of the logistic regression, which uses only
two parameters to the three of the quadratic model.

The predicted values are plotted in Figure 8. This figure shows that the
logistic regression fits the data better than did the linear regression. It
should be noted that one of the predicted values from the regression was
1.02 implying that more calves survived than existed! On the other hand,
the quadratic regression was a marked improvement on the linear regres-
sion and it had a smaller residual sums of squares than the logistic regres-
sion. However, note that the fitted values for the quadratic regression at
first increase with wolf density and then decrease; a pattern that we might
not expect nor believe is reasonable. In summary, the logistic regression is
a better model for this data than either the linear and quadratic regres-
sions because:

1. it fits the data adequately with only two parameters compared to the
three parameters of the quadratic fit;

2. it has the expected shape; and
3. it produces no predicted probabilities that are greater than one or less

than zero.

4.1.5 Examining the fit of the logistic regression model The adequacy
of the fit of the logistic regression should be further examined by various
plots. The printer plot of predicted values versus observed values (see Fig-
ure 9) is reasonably straight with a slope near one (hand drawn on the
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Simple Regression - Calf Survival

Plot of _PRED_*_OBS_. Legend: A = 1 obs, B = 2 obs, etc.
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 9 Printer plot of the predicted against the observed proportions for each herd. (Lines are hand-drawn.)
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figure). A slope of one is expected since the predicted values should be
about the same as the observed values. The printer plots of the residuals
(Figures 10, 11, 12, and 13) show little pattern. Thus, it is reasonable to
conclude that the logistic regression fits the data adequately.

4.1.6 Interpreting the odds ratio The odds ratio for survival is
exp(parameter estimate for wolf); that is the odds ratio, ψ = exp(β ),
where β is the parameter estimate for wolf (recall that the logistic model
is log[π/(1 − π )] = α + β wolf). This odds ratio is interpreted as the
change in odds of caribou calf survival when the wolf numbers are
increased by one. The odds ratio in this example is ψ = 0.844. As this is
less than one, it implies that the chance of calf survival decreases with
increasing wolf numbers. The change in the odds of calf survival for any
change in wolf numbers (∆w ) is ψ ∆w. Therefore, the change in log-odds
is ∆w log(ψ ) = ∆wβ. For example, an increase of ten wolves implies that
ψ = 0.84410 = 0.184 (i.e., less chance of survival), while a decrease of ten
wolves implies that ψ =  0.844−10 = 5.45 (i.e., greater chance of survival).
Recall that the odds ratio is a ratio of logits, not probabilities. Thus, a
constant change in the logits does not mean a constant change in the
probabilities. For more discussion of log-odds, refer to section 4.5.2.

4.2 One-way
Classification Study:
Survival and Age of

Stands with Root Rot

The objective of this example is to study the effect of stand age on the
survival of trees within stands that are infected with root rot. The
researcher examined an inventory database to find suitable even-aged
stands that might be considered ‘‘similar’’ based on selected attributes,
such as ecosystem classification and infestation level of root rot of differ-
ent stand ages.

Plot of _RESID_*_PRED_. Legend: A = 1 obs, B = 2 obs, etc.
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 10 Printer plot of the simple residuals against the predicted proportions for each herd.



28

Plot of _RESID_*HERD. Legend: A = 1 obs, B = 2 obs, etc.
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 11 Printer plots of simple residuals to check fit of the logistic regression model.
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Plot of RESDEV*HERD. Legend: A = 1 obs, B = 2 obs, etc.
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 12 Printer plots of deviance residuals against herd number and wolf density.
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Plot of RESCHI*HERD. Legend: A = 1 obs, B = 2 obs, etc.
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 13 Printer plots of Pearson residuals against herd number and wolf density.
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Serious thought is required to determine similar root rot levels; that is,
individual trees must have had the same exposure to root rot. One option
is to estimate levels of root rot when all stands were young, regardless of
current age. Suitable stands should be far enough apart physically that
independent response is a reasonable assumption. The stands are surveyed
and trees sampled in a simple random manner to estimate the proportion
of trees which had died. Since this is an observational study, a correlation
between stand age and mortality can be inferred, but any inferences
regarding cause and effect must be made on non-statistical grounds.

The data set will have the following variables:

• j = stand number, j = 1, 2, . . . , k (where there are k stands in all)
• i = stand age, i = 1, 2, 3
• yij = number of surviving trees in stand j at age i
• mij = number of trees sampled in stand j at age i
• pij = yij/mij = observed proportion of surviving trees in sample from

stand j at age i.

An appropriate model for this one-way classification study is:

logit (πij ) = µ + α i (7)

where πij = probability that a tree in stand j of age i is alive, with the
number of surviving trees, yij ∼ binomial(πij, mij ), and i = 1, 2, and 3, for
the three stand ages. The parameters αi indicate the additive effect of
stand age i. They are restricted to sum to zero so that µ is the average
response of the experiment on the logit scale.

4.2.1 Data for the one-way classification study Trees are sampled from
nine stands found suitable for this hypothetical study. The results are
shown in Table 10.

Each stand is identified as either young, middle-aged, or old, and values
of other variables are ‘‘matched’’ so that they are similar for these stands

 10 Data for trees sampled for root rot study

Stand Stand Total No. dead No. live Percent
number age trees trees trees dead

1 Young 41 13 28 32
2 Young 35 8 27 23
3 Middle 28 10 18 36
4 Middle 37 15 22 41
5 Middle 16 6 10 38
6 Old 16 7 9 44
7 Old 18 7 11 39
8 Old 41 19 22 46
9 Old 15 7 8 47

Total 247 92 155 37
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and need not be included in the modelling process. Three basic models
will be fitted to this data:

1. saturated model, where each experimental unit (stand) is assumed to
have different survival probabilities;

2. three groups model, where stands are grouped by age into three groups
and each group is assumed to have different survival probabilities; and

3. one group (or intercept-only) model, where all the stands are assumed
to have the same survival probability.

Comparisons between these increasingly simple models will answer the
questions:

• Are the responses between stands within the three groups reasonably
homogeneous? If so, this would mean that the three groups model pro-
vides a good fit to the data.

• Are the responses between the three groups similar enough that a one
group model provides a good fit? In this case, only one survival proba-
bility would be needed for all nine stands implying that there is little
evidence of a relationship with age.

The analysis examining the three group model is described in section
4.2.2. The differences between the three age groups is examined using
contrasts in section 4.2.3. Assuming that a two group model (i.e., no
difference between old and middle-aged stands) is appropriate for our
objectives, we will study its fit in section 4.2.4.

4.2.2 Logistic regression analysis of three group model The first
model fitted to the data is the three groups model. The Wald statistics and
likelihood ratio are:

Source df χ 2 p-value

Intercept 1 16.98 0.0000
Age 2 4.96 0.0836

Likelihood ratio 6 1.23 0.9755

The log-likelihoods and −2LogL for various models are summarized in
Table 11. The three group model is compared to the saturated model by
examining the likelihood ratio (which is calculated by taking the differ-
ence in −2LogL’s of the two models: 319.8 − 321.0 = 1.2, df = 6). When
the sample size is adequate, this also provides a goodness-of-fit test for the
model to the data. However, in this case, the sample size is not adequate.

The Wald statistic for age (χ 2 = 4.96, p-value = 0.084) provides weak
evidence against the null hypothesis of no age effect. A more accurate
overall test can be calculated by comparing the −2LogL with that of a one
group model (for all nine stands). The resulting deviance is 326.2 − 321.0
= 5.1 with two degrees of freedom. This has a p-value between 0.05 and
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 11 The log-likelihoods of four different models

Number of Log-
Model parameters likelihood −2LogL Difference (df)

1. Saturated 9 −159.9054 319.8108
1.228 (6)

2. Three groups 3 −160.5196 321.0392 6.356 (8)
5.128 (2)

3. One group 1 −163.0835 326.1670

4. Two groups 2 −160.8441 321.7092

0.10, similar to the previous value of 0.084. Thus, the two tests arrive at
the same conclusion.

The parameter estimates for the three group model are:

Standard
Effect Parameter Estimate error χ 2 p-value

Intercept 1 −0.5547 0.1346 16.98 0.0000
Age 2 −0.4081 0.2001 4.16 0.0414

3 0.0766 0.1885 0.17 0.6844

The first parameter estimate for age (−0.4081) compares ‘‘young’’ with the over-
all average effect on the logit scale of ‘‘young’’, ‘‘middle,’’ and ‘‘old,’’ while the
second parameter estimate (0.0766) compares the ‘‘middle’’ with this aver-
age. That the first is significant, while the second is not, suggests that young
stands may have lower mortality probabilities than the average, while the
mortality probability for the middle-aged stands is not much different from
the average. The difference between the old and the average effect is obtained
by adding the first two parameters and changing the sign, namely −1 ×
(−0.4081 + 0.0766) = −0.3315. In this case, these parameters do not directly
test questions of interest, but such questions can be tested with contrasts.

4.2.3 Contrast analysis of the three stand ages Depending on the
objectives of the study, different comparisons might be of interest. Two
interesting questions might be:

1. whether the young stands have different mortality compared to both
the middle- and old-aged stands, and;

2. whether the middle and old stands are different.

These questions can be tested with contrasts and the results are:

Contrast df χ 2 p-value

Young vs middle and old 1 4.16 0.0414
Middle vs Old 1 0.67 0.4137
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The first contrast is significant (p-value = 0.041). It matches the earlier
test for the first age parameter because the test for the difference between
young and the grand mean is the same as the test for the difference bet-
ween young stands and the other levels (because the parameters are con-
strained to add to zero). The test for a significant difference between
middle and old stands was not significant.

Another approach to determining the age effect might use linear and
quadratic contrasts to look for trends in response by age. The results of
these contrasts are:

Contrast df χ 2 p-value

Linear 1 4.94 0.0263
Quadratic 1 0.17 0.6844

The tests show that while the overall age effect was not strong, there is
some evidence of a simpler response. In this case, a linear relationship of
the logits of survival with age appears plausible. A more direct test for the
linear effect of age can be obtained by treating age as a continuous vari-
able. Notice that both of these approaches (the contrasts and age treated
as a continuous variable) assume that the ages are equally spaced. If we
knew the real ages, then we could use them to set up the spacing appro-
priately. For this example, we will assume that the ages are equally spaced.
When this direct analysis is performed, the following Wald test results are
obtained:

Source df χ 2 p-value

Intercept 1 11.75 0.0006
Age 1 4.86 0.0274

Likelihood ratio 7 1.39 0.9858

These results are similar to the earlier linear contrast and provide support
for the linear trend hypothesis. Because we are fitting the probability for
death, the parameter estimate for age (0.36, SE = 0.16) is positive, mean-
ing that the mortality probability increases with age.

There are two ways that we could look at the results:

• probability of survival decreases with increasing age; or
• probability of survival is higher for trees in young stands than for those

in middle-aged or old stands.

The conclusion depends, in part, on the objective of the study.

4.2.4 Analysis of a two group model Suppose that the appropriate
conclusion for our study objectives is that younger stands have a higher
survival rate than either the middle- or old-aged stands. To confirm the
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Wald test that the middle- and old-aged stands have similar responses, we
can use just two levels in our model: young and older stands. From Table
11, the difference in −2LogL is 321.7092 − 321.0392 = 0.67 (with 1 df  and
p-value = 0.30). Thus, the two group model provides as good a fit as the
three group model, and we may use it as a final description of the data.

The next step in our analysis is to examine more closely the fit of the
two group model to ensure that it is adequate. Printer plots of the simple
residuals (for the dead response only) against stand number and age are
shown in Figure 14. Because they do not show any unusual patterns, the
two group model appears to be an adequate model for this data.

Most of this analysis could also have been done using contingency
tables (except for the contrasts and the linear age effect). This is described
in section 7.1. In addition, the calculations required to fit the various
models and conduct the tests are simple enough to do by hand. This is
described in section 7.2.

4.3 One-way
Classification Study:

Fertilizer Trial

The objective of this example is to study the effectiveness of a fertilizer for
decreasing seedling mortality during the first year after outplanting. It is
hypothesized that increasing the amount of fertilizer will decrease the
seedling mortality.

A simple trial might be designed as follows. Each of four levels of fertil-
izer (including a control) are applied in a completely randomized manner
to six rows of ten seedlings soon after planting. Because each row is
treated independently, each row should respond to the treatments inde-
pendently. Nursery procedures such as watering, shading, and pest control
should be conducted in such a way as to maintain that independence of
response. A year later, each of the 240 seedlings is assessed for mortality.
Since the classification variable (level of fertilizer) is quantitative, and the
expected response could be linear (on the logit scale), an appropriate con-
trast is planned for the analysis.

The data set will have the following variables:

• j = row number, j = 1, 2, . . . , 24 (where there is a total of 24 rows)
• i = fertilizer level, i = 1, 2, 3, 4
• xij = amount of fertilizer applied to row j
• yij = number of surviving seedlings in row j given level i
• mij = 10 = number of seedlings in row j
• pij = yij/mij = observed proportion of surviving seedlings in row j with

treatment i.

An appropriate model for the one-way classification is:

logit (π ij ) = µ + α i , (8)

where π ij = probability that a seedling receiving fertilizer at level i survives
for one year, with the number of surviving seedlings yij ∼ binomial(π ij,
mij = 10), and i = 1, 2, 3, and 4 are the four increasing levels of fertilizer.
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Simple One-Way Classification Example
Two Group Analysis

Plots
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 14 Printer plots of the simple residuals for the two group model.
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The parameters α i indicate the additive effect of each level of fertilizer.
They are often restricted to sum to zero, so that α 1 + α 2 + α 3 + α 4 = 0.
This implies that µ is the average effect for the experiment on the logit
scale. Two possible results are plotted in Figure 15 and are labelled Out-
come 1 and Outcome 2. Note that the relative distances between points
around zero (between, say, −1.4 to 1.4) on the logit scale are little affected
by transformation to the probability scale (see outcome 1 in Figure 15),
whereas points far from zero are compressed (see outcome 2 in Figure
15). The linear and quadratic contrast coefficients for assessing the signifi-
cance of trends on the logit scale can be determined similarly as for
ANOVA (see section 5.1.1.1).
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 15 Two possible outcomes of a one-way classification study.

4.3.1 Data collection and methods In this example, we will look at data
from a hypothetical one-way classification. Twenty-four rows, each with
ten seedlings, are randomly assigned an amount of fertilizer. Suppose that
these amounts are 0, 100, 200, and 300 kg/ha. In all other respects, the
seedlings are treated similarly. A growing season later, survival of the seed-
lings is assessed. The one-way classification model is tested in section
4.3.2, while a simple linear relationship between survival response and fer-
tilizer amount is examined in section 4.3.3.

The initial data set appears below in contingency table form (see Table
12). This was produced using the SAS program code in section 5.4.1.

4.3.2 Contingency table Much of the analysis for this simple example
could be done using contingency tables (see section 7.1 for a further
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 12 Frequency counts for the one-way classification example

--------------------------------------------------------------------------
                          TABLE OF Y BY TREAT

         Y         TREAT

         Frequency
         Col pct         1       2       3       4  Total
         ---------+--------+--------+--------+--------+
         Alive         30      42      48      55     175
                    50.00   70.00   80.00   91.67 
         ---------+--------+--------+--------+--------+
         Dead          30      18      12       5      65
                    50.00   30.00   20.00    8.33 
         ---------+--------+--------+--------+--------+
         Total          60       60       60       60      240

                   STATISTICS FOR TABLE OF Y BY TREAT

         Statistic                     DF     Value        prob
         ------------------------------------------------------
         Chi-Square                     3    28.420       0.001
         Likelihood Ratio Chi-Square    3    29.411       0.001

         Sample Size = 240

--------------------------------------------------------------------------

discussion of this topic). The contingency table results shown in Table 12
suggest that there is a treatment effect (likelihood ratio χ 2 = 29.41, 3 df,
p-value ≤ 0.001). It is also useful to test for homogeneity of the row
responses within each treatment. The results are shown in Table 13. Three
of the four individual contingency tables used to obtain these results
received a warning about small sample sizes. This means that we must be
cautious about interpreting the results. Nevertheless, the overall test for
homogeneity of rows within treatments (obtained by adding the χ 2 values
and df for tests for each treatment) has a chi-square value of 21.67 with
20 degrees of freedom, which is quite a common value if the null hypoth-
esis is correct.15 Therefore we might conclude that none of the rows was
acting differently from any of the other rows receiving the same treat-
ment. The sample sizes within each row are fairly small. More seedlings
would probably be used in a real study. If this homogeneity test was
important, then the study should be designed with more trees per row.

15 See Biometrics Information Pamphlet No. 15 for a discussion of the expected values for the
chi-square distribution.
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 13 Number of surviving trees for each treatment separated by row, including
likelihood ratio chi-square from each contingency table analysis

Row within treatmentTreatment Likelihood ratio
level (kg/ha) 1st 2nd 3rd 4th 5th 6th χ 2

0 4 5 6 6 4 5 1.611
100 7 8 6 9 7 5 5.036
200 6 8 6 9 9 10 10.116
300 9 10 9 10 8 9 4.907

Total with 20 df : 21.670

4.3.3 One-way classification analysis The results of the logistic analysis
of this data is shown below:

Model df χ 2 p-value

Intercept 1 45.8 0.0001
Treatment 3 24.57 0.0001
Likelihood ratio 20 21.67 0.36

Note the Wald test for treatment effects is χ 2 = 24.57 (with 3 df ) is
similar to the results from Table 12 where the likelihood ratio χ 2 = 29.41
(with 3 df ). Thus, both tests offer the same conclusion that survival
responses differ with treatments. The test for homogeneity of rows within
treatment from Table 13 (χ 2 = 21.67) is exactly that shown above. These
results show that, with adequate sample sizes, the latter tests the goodness-
of-fit of the one-way model. The linear contrast is strongly significant
(χ 2 = 21.77, p-value ≤ 0.0001) confirming the impression from Table 12
that increasing amounts of fertilizer (over the range tested) are beneficial
in improving survival of the seedlings.

4.3.4 Simple linear relationship To obtain an equation for the linear
effect of fertilizer on survival, the logistic regression is rerun using treat-
ment level as a continuous variable. A lack-of-fit test for the linear model
is obtained by comparing the likelihoods from this model and that from
the one-way model: 251.27462 − 250.94999 = 22.00 − 21.67 = 0.325, with
two degrees of freedom. This is not significant and implies that the linear
model is reasonable. The equation (from Figure 36) is

logit = 0.0143 + 0.00757 × (treatment level).

The predicted values are given in Table 14 and are quite similar for both
models.

The adequacy of the fit of this linear model can be more fully checked
by looking at plots of the residuals (see Figure 16). These look fine,
remembering that the mirror image effect is due to the two residuals per
row (which must add up to zero within each row). The mirror image
effect could be eliminated by plotting only the survival response residuals.
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 14 Predicted survival probabilities for the two different models

Treatment (kg/ha): One-way classification Linear model

0 (control) 0.500 0.504
100 0.700 0.684
200 0.800 0.822
300 0.9167 0.908

Fertilizer study
Residual Plots

Plot of _RESID_*TREAT. Legend : A = 1 obs, B = 2 obs, etc.
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 16 Printer plots to check the simple residuals for unusual patterns.
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4.4 Multiple
Regression: Herbicide

Thinning Trial

The objective of this example is to study the effectiveness of a herbicide
lance injector for killing aspen trees of different sizes. A tree can receive
multiple doses of glyphosate and it is hypothesized that larger trees (as
measured by diameter at breast height [dbh]) require more injections to
be killed.

A simple trial design is to first select a stand of trees for treatment.
Trees to be thinned are chosen according to standard operational pro-
cedures. Each tree is then randomly assigned a number of injections. The
purpose of any treatment assignment scheme should be to ensure that all
treatments are assigned with equal probability to fairly large numbers of
trees. Also, it is important that the range of tree sizes assigned to each
treatment is large enough so that about half will survive. This will allow
good definition of the relationship between treatment, size of tree, and
probability of death. Notice that treatments would not be assigned like
this on an operational basis because the objective would be to kill all the
trees. Here, we are determining the minimum dose required to kill aspen
trees.

A year after herbicide injection the treated trees are assessed. The data
set has the following variables:

• j = tree number j = 1, 2, . . . , 92
• dj = dbh of tree j (to the nearest centimetre)
• xj = number of injections applied to tree j
• yj = 0 if tree is dead one year later

= 1 if tree is still alive one year later

A multiple regression model might be appropriate.

logit (π j ) = µ + βdj + γxj (9)

where: π j = probability of tree living given dj and xj, and whether the tree
dies or not is yj ∼ binomial(π j, mj = 1).

The number of injections could also be treated as a one-way classifica-
tion variable with a linear contrast of particular interest. The model shape
is presented in Figure 17. The parameter for dbh (β ) is assumed to be
positive since larger trees are more likely to survive the treatment. On the
other hand, the parameter for number of injections (γ ) is assumed to be
negative since trees of the same size should be less able to survive more
injections. Note that the lines on the logit scale are parallel and equally
spaced. This shows that the model simply adds the effect of the two inde-
pendent variables. The curves on the probability scale all have the same
shape and are equal distances apart horizontally at any particular
probability.
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 17 Form of a multiple regression model with one regression parameter negative
(dbh) and the other positive (injection number).

4.4.1 Initial data and methods The data for this study are listed in
Appendix 2.16 Computer output in Table 15 summarizes the tree sizes by
dbh class and the number of injections used in the study.

It is clear from this table that the study was designed so that larger
trees tended to receive more injections (thus the independent variables are
correlated by the design). There is only one tree greater than 35 cm in
diameter, and only three trees received just two injections, while another
three received eight injections. Otherwise, between 10 and 27 trees
received the different injection numbers. If we continue analyzing this
data with dbh classes instead of dbh directly, then we may want to pool
trees with dbh greater than 30 cm into one class. Table 16 shows the

16 This data is taken from SX84711Q. The analysis of a similar study with a more complicated
design is described in Bergerud (1988).
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 15 Number of trees in each dbh class with the number of injections given

--------------------------------------------------------------------------
TABLE OF DBH BY INJ

DBH(Aspen dbh (cm))   INJ(Number of Injections)
Frequency       2     3     4     5     6     7     8  Total
-----------+------+------+------+------+------+------+------+
0 - 15 cm     3    10     7                              20

-----------+------+------+------+------+------+------+------+
15 - 20 cm           5     9     5     1                  20
-----------+------+------+------+------+------+------+------+
20 - 25 cm           1     7     6     4     1     1      20
-----------+------+------+------+------+------+------+------+
25 - 30 cm                 3     7     7     3            20
-----------+------+------+------+------+------+------+------+
30 - 35 cm                 1     1     2     6     1      11
-----------+------+------+------+------+------+------+------+
40 - 45 cm                                         1       1
-----------+------+------+------+------+------+------+------+
Total           3     16     27     19     14     10      3       92

--------------------------------------------------------------------------

 16 Number of dead trees with total trees given a number of injections per dbh class

--------------------------------------------------------------------------
DBH(Aspen dbh (cm))     INJ(Number of Injections)

in cell:  number of dead/number of trees:
Frequency  
Frequency       2      3     4     5     6     7     8 Total
-----------+------+-------+------+------+------+------+------+
0 - 15 cm   3/3  10/10   7/7                             20

-----------+------+-------+------+------+------+------+------+
15 - 20 cm          3/5   5/9   5/5   1/1                 20
-----------+------+-------+------+------+------+------+------+
20 - 25 cm          0/1   2/7   2/6   2/4   0/1   1/1     20
-----------+------+-------+------+------+------+------+------+
25 - 30 cm                0/3   0/7   0/7   0/3           20
-----------+------+-------+------+------+------+------+------+

> 30 cm                  0/1   0/1   0/2   1/6   0/2     12
-----------+------+-------+------+------+------+------+------+
Total:        3/3   13/16  14/27   7/19   3/14   1/10    1/3   42/92
Percent Dead: 100%   81%    52%    37%    21%    10%     33%    46%

--------------------------------------------------------------------------

results when the last two size classes are pooled. We should also consider
what to do with the three trees that received two injections: we may either
leave them out or pool them with those trees that received three injections.

The response variable is percentage of defoliation, which is measured in
5% increments. For the logistic regression, these values are converted to



‘‘dead’’ or ‘‘alive’’ so that trees with 95% or more defoliation are consid-
ered dead.

Overall, about half the trees died (46%) and most of the injection
numbers are not completely successful in killing the trees. This is appro-
priate for an experimental trial because it provides a range of data to
which the logistic regression models can be adequately fit. Then the mod-
els can be used to estimate the size of tree that each injection number
kills. After all, if most or all of the trees either died or survived, it would
be hard to assess what minimum dose would have a good chance of kill-
ing the trees.

The analysis will proceed as follows: first the multiple regression model
is fitted and interpreted, and the residuals of the multiple regression
model are examined. Then tests for lack of fit of the multiple regression
model are performed. This is accomplished by fitting factorial models
using dbh class and/or injection number as categorical variables. Since this
is not a complete factorial, some fitting problems will occur. However, we
can still compare the results to the multiple regression model.

4.4.2 Multiple logistic regression model We will start with a multiple
logistic regression model where both dbh and number of injections are
treated as continuous variables (covariates). The results of model fitting
are shown in the computer output in Figure 18. The chi-square test for
the combined contribution of the two variables is 85.6 with two degrees
of freedom, which is strongly significant with a p-value ≤ 0.0001. The
Wald tests for INJ (p-value = 0.0027) and DBH (p-value ≤ 0.0001) sug-
gest that they are both important components in the model.

The Wald tests for the individual effects in the model are approximate
and values with marginally significant p-values (0.05 ≤ p-values ≤ 0.10)
can be confirmed by fitting models with and without each term. While
this is hardly necessary here, the differences in the −2LogL statistic
between models with and without each variable is quite large and are
summarized in Table 17. This value increases from 41.87 to 58.68 (a dif-
ference of 16.81 with one degree of freedom) when injection numbers are
removed from the model. When only dbh is removed, this value increases
to 107.23, a change of 65.36 with one degree of freedom. The model with
neither variable fits one probability to all the data assuming that there is
no effect of either variable (the intercept only model). In this case, the
likelihood ratio increases from 41.87 to 127.50, a change of 85.60 for two

 17 Deviance tests for number of injections and dbh

Model −2LogL Test for Deviance df p-value

Injection and dbh 41.869
Dbh 65.364 1 ≤0.0001

Injection 107.233
Injection 16.809 1 ≤0.0001

Dbh 58.678
Dbh and Injection 85.627 2 ≤0.0001

Intercept only 127.496

44
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--------------------------------------------------------------------------
Aspen Injection Trial

Logistic Regression Analysis

The LOGISTIC Procedure

Model Fitting Information and Testing Global Null Hypothesis BETA=0

Intercept
Intercept      and

Criterion     Only     Covariates  Chi-Square for Covariates

AIC           129.496      47.869       .
SC            132.017      55.435       .
-2 LOG L      127.496      41.869     85.626 with 2 DF (p=0.0001)
Score            .           .        56.137 with 2 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard   Wald       Pr    Standardized  Odds
Variable DF Estimate   Error Chi-Square Chi-Square  Estimate   Ratio

INTERCPT 1  -11.0306   2.5545   18.6458     0.0001           .  .
INJ      1   -2.0743   0.6919    8.9874     0.0027   -1.662060 0.126
DBH      1    0.9813   0.2292   18.3323     0.0001    3.684249 2.668

--------------------------------------------------------------------------

 18 Results of the multiple regression fit.

degrees of freedom. These likelihood ratio tests provide even stronger evi-
dence for tree size (dbh) and injection number effects than do the Wald
tests. Therefore, a reasonable model includes both variables in a linear
multiple logistic regression model.

4.4.3 Model interpretation To understand this model, we first look at
the parameter estimates that appear in Figure 18. These can be used to
determine the equation which describes the model for fitting the proba-
bility of survival, namely:

logit (π ij ) = −11.0306 − 2.0743 × INJ + 0.9813 × DBH.

It is useful to write this equation out separately for each number of injec-
tions and to calculate the size of tree which will have a corresponding 50
and 95% chance of being killed. The results are presented in Table 18.

To show how the predicted size of trees at a given probability of mor-
tality can be calculated, let us use the above equation to make the calcula-
tion for four injections and a mortality probability of 95%. The equation
for survival is: logit (π ij ) = −19.3278 + 0.9813 × DBH. A mortality of 95%
(or 5% survival) implies that the above equation should be equal to
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 18 Survival logit equations for each injection number, with the size of tree (in dbh, cm) expected to have a 50
and 95% chance of survival

--------------------------------------------------------------------------
Aspen Injection Trial

Logistic Regression analysis
Using Multiple Regression Model

Listing of equations for each injection number

Injection                            Predicted Size    Predicted Size
Number    Intercept  B2 * DBH     at 50% mortality  at 95% mortality

1     -13.1049    0.98133           13.3542           10.3537
2     -15.1792    0.98133           15.4679           12.4675
3     -17.2535    0.98133           17.5817           14.5812
4     -19.3278    0.98133           19.6955           16.6950
5     -21.4021    0.98133           21.8092           18.8088
6     -23.4764    0.98133           23.9230           20.9225
7     -25.5507    0.98133           26.0368           23.0363
8     -27.6250    0.98133           28.1505           25.1501

--------------------------------------------------------------------------

logit(.05) = log(.05/.95) = −2.94 (see Table 3).17 Rearranging and solving
for dbh, we obtain: DBH = (19.3278 − 2.94) / 0.9813 = 16.70 cm.

It would also be useful to calculate the dbh of trees predicted by the
model to die with specific probabilities for each number of injections.
These values could be used to prepare field guides about treatment of
trees of different sizes. In this case, a graph of the results shows that the
constant probability lines are straight and that with each additional injec-
tion the size of tree must increase (by about 2.1 cm from Figure 19) to
have the same probability of surviving or of dying.

4.4.4 Assessing the adequacy of the multiple regression model As a
final check of the multiple regression model, the residuals should be plot-
ted against the independent variables, dbh and inj, and the tree injection
number. The plots (Figures 20 and 21) show no obvious patterns and no
particular observation appears to stick out, suggesting that the model is
adequate.

4.4.5 Factorial models: looking for non-linearity in response It is pos-
sible with this example to check for non-linearity in the survival proba-
bility responses to both dbh and injection number. We can do this by
examining more complicated models. For instance, because many trees
(experimental units) are assigned to each injection number, we could treat
injection number as a categorical variable and leave dbh as a continuous

17 We use logit(0.05) instead of logit(0.95) because the equation fits the probability of survival
not of mortality. A mortality of 95% corresponds to a 5% survival.
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Aspen Injection Trial
Pearson Residual Plots

Plot of RESCHI*DBH. Legend: A = 1 obs, B = 2 obs, etc.
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 20 Printer plots of the Pearson residuals for model diagnostics.
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Aspen Injection Trial
Deviance Residual Plots

Plot of RESDEV*DBH. Legend: A = 1 obs, B = 2 obs, etc.
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 21 Printer plots of the deviance residuals for model diagnostics.
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variable at first. The test for injection number would then check for any
differences between the numbers of injections and not just for a linear
trend in the response. The difference in −2LogL of this model and the
multiple regression would be a test for non-linear trends in the response
to number of injections. When this analysis is performed, the resulting
difference in −2LogL (comparing the discrete model with the continuous
multiple regression model) is 41.87 − 40.56 = 1.31 with four degrees of
freedom, which is clearly not significant. The test for a linear response
using a contrast is χ 2 = 7.52 with one degree of freedom and a p-value of
0.0061. These results suggest that a linear response to numbers of injec-
tions is sufficient.

To test for non-linearity for both injection number and dbh, requires
that we convert the dbh variable into a categorical variable. We can do
this by using the class intervals of Table 16 and fitting a two-way factorial
to the data. This treats both dbh class and injection number as categorical
variables, which allows us to look for any pattern in the response to these
variables. We might expect to have some trouble with this model because
many combinations of dbh class and injection number are missing (indi-
cated by the missing cells in Table 16). See section 5.5.5 for more discus-
sion of fitting problems.

An overall test of the lack of fit of the multiple regression model can be
calculated by looking at the difference in the −2LogL’s of the multiple
regression and full factorial models: 41.87 − 40.62 = 1.25, with 89 − 78 =
11 df. This is clearly not significant, which implies that the multiple
regression model appears to be quite adequate at fitting the data.

4.5 One-way
Classification With

Covariate: Root Collar
Weevil Study

The objective of this example is to study the effectiveness of screefing
(removing the duff from around the seedling) to protect recently planted
seedlings from the root collar weevil. Since the weevil lives in the duff, it
is hypothesized that screefing will reduce its ability to attack the seedling.
The problem is complicated because even in small areas the density of
root collar weevil is highly variable. Therefore some measure of weevil
density is needed to indicate the chances of attack.

A completely randomized design is planned for a cutblock with a
high prevalence of the root collar weevil. Twenty-eight square plots, each
containing sixteen seedlings, are chosen as experimental units. The screef-
ing treatment is randomly assigned to fourteen of the plots. Individual
seedlings within these plots are screefed. The fourteen remaining plots are
left as untreated controls. A weevil trap is placed in the middle of each
plot. It is expected that the numbers of weevils caught in the traps will
not be affected by the treatment assigned to the plots. It is also expected
that the trap will accurately indicate weevil density throughout the plot,
while not affecting the weevil attack rate for any seedling within the plot.
For instance, the seedlings next to the trap are assumed as likely of attack
as those farther away. Responses from each plot should be independent.

At the end of the season, presence or absence of attack is assessed for
each seedling and the numbers of weevils found in each trap counted.
The data set would have the following variables:
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• j = plot number, j = 1, 2, . . . , 28 (where there are 28 plots in all)
• i = 0 if plot was not screefed

= 1 if plot was screefed
• xij = number of weevils found in trap of plot j, treatment i
• yij = number of seedlings attacked in plot j, treatment i
• mij = 16 = number of seedlings in plot j, treatment i
• pij = yij/mij = observed proportion of seedlings attacked in plot j,

treatment i

4.5.1 A standard model of parallel lines The probability of weevil
attack (π ij ) can be hypothesized to increase with weevil numbers, but be
reduced by the screefing treatment. Thus the data might be modeled by:

logit (π ij ) = µ + α i + βxij , (10)

where: π ij is the proportion of seedlings attacked by the root collar
weevil, with α 1 < α 0, β > 0 and the number of attacked seedlings is
yij ∼ binomial(π ij , mij = 16).

Equation (10) can be rewritten as two predictive equations, one for
each treatment:

control: logit (π 0j ) = µ + α0 + βx0j (11)
treatment: logit (π 1j ) = µ + α 1 + βx 1j .

The treatment terms (α0 and α1)18 are usually defined so that α0 + α1 = 0
or α0 = −α1.

On the logit scale, this is a model of parallel lines with different inter-
cepts for each treatment (if the response variable were normally distrib-
uted, this would be a typical analysis of covariance model: see Biometrics
Information Pamphlets Nos. 31 and 46 and Biometrics Information
Handbook No. 1). The slope β should be positive because increases in
weevil numbers will increase the probability of attack. The intercept α0

(control) will be larger than α1 (screefed) if the treatment is effective.
The form of the model is shown in Figure 22.

Parallel lines on the logit scale (see Figure 22a) transform into logistic
curves of the same shape, but shifted sideways from each other on the
probability scale (see Figure 22b). Both the horizontal and vertical differ-
ences between parallel logit lines is constant, while only the constant hori-
zontal distance is maintained on the probability scale. The constant vertical
difference between two parallel logit lines is δ = (α0 − α1), while the hori-
zontal difference19 is (x0j − x1j ) = δ/β. The back-transformation to the
probability scale preserves the horizontal distance of δ/β (showing that

18 Otherwise the model would have three parameters: µ, α0, and α1 to describe only two
means or intercepts. This is called overparameterization. One way to deal with this is to
restrict the parameters so that instead of three, there are really only two (after all, if you
know α0 then you know α1 = −α0).

19 This can be found by setting logit (π 0j ) = logit (π 1j ) and solving for (x0j − x1j ).
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 22 Form of the model where the treatment effect is to shift down or sideways
with the attack rate.

the curves are shifted sideways from each other), but not the vertical dis-
tance of δ. This is because the logit lines near low and high values (for
values less than −1.4 [π about 0.2] and greater than 1.4 [π about 0.8]) are
compressed to make the characteristic S-shaped curves (see Figure 23a
and 23c). The lines remain nearly parallel for probability values between
0.2 and 0.8 (see Figure 23b).

Interestingly, the obvious parallelism on the logit scale is apparently lost
on the probability scale if the entire logistic curve is not shown on the
graph. This would occur, for instance, when the range of the x-variable or
covariate is narrow relative to the curve. To see this more clearly let us
examine the probability plot in Figure 23 more closely. The whole figure
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 23 Illustration of how the parallel model can appear non-parallel when the whole curve is not examined.

has been split into three parts. Only the middle part (Figure 23b) still
looks like a parallel-lines model. The other two parts (Figures 23a and
23c) do not appear to be similarly shaped probability models that have
been shifted sideways. This can lead to the confusing situation where a
parallel logit model will appear to predict non-parallel probability curves.
An example of this will be seen in the data analysis (section 4.5.7). When
drawing pictures of expected and fitted results, we should remember this
possible phenomenon.

4.5.2 The log-odds ratio Another important concept associated with the
parallel-lines model is the log-odds: log[π /(1 − π)], first defined as the
logit transformation of the probability (π ) in section 2.3. Note that the
term, π /(1 − π ), is known as the odds in gambling. For instance, if π is
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the probability of throwing a one on a die, then 1 − π is the probability
of not throwing a one on the die. If these probabilities are 1/6 and 5/6,
then the odds of throwing a one are (1/6)/(5/6) = 1/5. That is, the odds
of throwing a one are 1:5. On the other hand, the odds of not throwing a
one are 5:1. The log-odds is simply the log of this odds. This concept is
used extensively in the health sciences, especially in the field of epidemol-
ogy. See, for example, Breslow and Day (1980). The log-odds ratio is the
log of the ratio of two sets of odds. For the root collar weevil study, the
log-odds ratio that compares screefed and control plots can be obtained
by subtracting the two parts of equation (11):

log[π0j /(1 − π0j )] − log [π1j /(1 − π1j )] = µ − µ + α0 − α1 + β(x0j − x1j )

so that,
log {π0j /(1 − π0j )} = δ + β(x0j − x1j ) (recall that δ = α0 − α1)π1j /(1 − π1j )

(12)

The term on the left is the log-odds ratio, while the term inside the
braces is called the odds ratio (ψ ). Hence:

log ψ = δ + β (x0j − x1j ) . (13)

This equation shows that if weevil numbers are the same for the control
and treated plots (i.e., x0j = x1j ), then the odds ratio of attack is equal to
ψ = exp(δ ). For example, suppose that δ = 0.9, then the odds ratio is
exp(0.9), which is about 2.5. This means that the odds of attack, regard-
less of the number of weevils, is about 2.5 times greater for control trees
than for treated trees. Note that because of the S-shaped curve, the proba-
bilities of attack do not have a simple relationship which is independent
of weevil density. At low levels of weevil density, the attack probabilities
may be very low for both groups, while at a medium level of weevil den-
sity the attack probabilities may be very different, although the odds ratio
is 2.5 in both cases.

4.5.3 Separate-lines model The model just described is very commonly
used when the data include one or more categorical variables and one or
more continuous-valued covariables. Nevertheless, other models are pos-
sible. Considering the possible results of successful treatments can lead to
quite a different model. For instance, if the screefing treatment is very
successful, then the attack probability should be close to zero, whatever
the prevailing weevil population. Expected treatment results are shown in
Figure 24. A model that may fit this pattern is:

logit (π ij ) = µ + α i + β ixij (14)

This model implies that:

control: logit (π 0j ) = µ + α0 + β 0 x 0j

treatment: logit (π 1j ) = µ + α1 + β 1 x 1j
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In addition to allowing different intercepts (indicated by α i ), this model
allows the two treatments to have different slopes (indicated by β i ). For
this example, we might expect that when xij approaches zero, the two
treatment probabilities would both be about zero, so that
logit(π 0j ) = logit (π 1j ) = − ∞ (infinity). This implies that α0 = α1 = 0,
with µ having a large negative value. Further, if screefing is very success-
ful, then we may expect that β 1 = 0. Thus, a final model to consider fit-
ting is:

logit (π ij ) = µ + β 0xij (15)

This equation implies that:

control: logit (π 0j ) = µ + β 0 x 0j

treatment: logit (π 1j ) = µ

Weevil numbers

Treatment

Control

Treatment

Control

0.0

0.5

1.0

0.0

0.5

1.0

Weevil numbers

Pr
ed

ict
ed

 lo
gi

ts
Pr

ed
ict

ed
 p

ro
ba

bi
lit

y

b)

a)

 24 Plots of weevil attack if treatment is very successful. Note that the proba-
bility plot (b) might have a corresponding logit plot with parallel lines as
shown in Figure 22 and not as shown here.
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The log-odds ratio is log ψ = β 0x 0j , which is no longer independent of
weevil density. As the weevil numbers increase, the odds of attack for the
control plots would increase compared to the odds of attack for the
treated plots.

4.5.4 Initial data input and methods for root collar weevil study
Suppose that this hypothetical study has been designed and conducted as
described. The numbers of weevils collected in traps were counted and the
number of seedlings that were attacked by the root collar weevil was
recorded. These data are listed in Appendix 2 and summarized in Table
19. A printer plot of the data is presented in Figure 25.

The analysis will proceed as follows: first, we fit the standard analysis of
covariance type model of two parallel lines (section 4.5.5). We then test for
non-parallelism of the lines (heterogeneity of regression). If this is not
rejected, then we test if the slope of the lines is zero and if the separation
between the lines (the screefing effect for this model) is zero. Secondly, we
parameterize the model by using two different variables for weevil numbers
(one for each treatment level) instead of just one variable. This reparame-
terization allows us to easily fit the alternate model (section 4.5.6). Finally,
we compare the fit of three of the eight models examined (section 4.5.7).

 19 Data collected for root collar weevil study

Treatment Control

Plot No. of seedlings No. of No. of seedlings No. of
No. attacked weevils attacked weevils

1 0 10 6 12
2 1 13 6 12
3 0 11 12 17
4 2 16 7 12
5 1 16 9 14
6 1 9 7 12
7 0 6 7 12
8 1 14 3 8
9 1 17 9 14

10 1 19 13 19
11 0 0 0 2
12 0 3 0 1
13 0 2 0 0
14 0 1 0 1

4.5.5 Standard analysis of covariance model The explanatory variables in
this example include the treatment, screefing or not, as a categorical vari-
able. The second variable, numbers of root collar weevil, is a continuous
variable and is required to confirm that root collar weevils were present and
a potential threat to the seedlings. This type of design is a one-way classi-
fication with a covariable and is typically considered an analysis of covari-
ance. It is in fact a study of two lines as you can see from Figure 25. The
sequence of logistic regression models fitted is shown in Table 20. The
resulting tests comparing the models are summarized in Table 21.
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Root Collar Weevil
Plot of the Observed Data
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COUNT |
13 + C

|
12 + C

|
11 +

|
10 +

|
9 + CC
|

8 +
|

7 + CCC
|

6 + CC
|

5 +
|

4 +
|

3 + C
|

2 + S
|

1 + S S S S S S
|

0 + SC SCC SC S S S S
|
---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Numbers of Weevils

NOTE: 8 obs hidden (but have been added to graph).

 25 Printer plot of the observed attack counts out of 16 trees per plot.

 20 Models fitted to the root collar weevil data

Likelihood
Models fit to the data df ratio χ 2

Model 1: Full model with two separate lines 24 8.38
Model 2: With two parallel lines 25 9.85
Model 3: With treatment only (two groups) 26 102.0
Model 4: With weevil only (one line) 26 112.9

 21 Test results comparing the four models in Table 20

Models
Test used df χ 2-value p-value

H0: Lines are parallel 1 and 2 1 1.47 0.23
H0: Parallel: no treatment differences 2 and 4 1 92.15 0.0001
H0: Parallel: slope of line is zero 2 and 3 1 103.05 0.0001
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The first model is the full model which fits two logit lines with separate
intercepts and slopes. Since mi = 16 is small, we ignore the likelihood
ratio test as a goodness-of fit test. The Wald tests for treatment, weevils,
and their interaction (χ 2 = 0.70, 24.83, and 1.69, respectively with 1 df
each) suggest a weevil effect, but not much of an interaction or a treat-
ment effect. Nevertheless, these results should be checked by running the
reduced (or simpler) models and comparing the change in the likelihood
ratio. Model 2 leaves out the interaction between weevil and treatment
which forces the two slopes to be the same (i.e., forcing the lines to be
parallel).

The difference in χ 2 between Model 1 and 2 is small (9.85 − 8.38
= 1.47 with 1 df ), so we could decide to consider the slopes as reasonably
parallel and that this simpler model fits adequately. The Wald tests for
treatment and weevils (χ 2 = 60.4 and 43.2 respectively, with df = 1 each)
are now much larger with p-values ≤ 0.0001. Models 3 and 4 can be used
to confirm the Wald tests on whether treatment or weevil should be in
the final model (although this is hardly necessary because the probabilities
for them are very low; this is more important when the p-values are bor-
derline). The likelihood ratio statistics increase dramatically for models 3
and 4 (χ 2 = 102.0 and 112.9, respectively). Hence we conclude that the
‘‘ordinary’’ type ANCOVA model of two parallel lines which are shifted
sideways by the treatment fits this data well and that there are both treat-
ment and weevil effects.

4.5.6 Alternative models Recalling the discussion in section 4.5.3 sug-
gests that we should consider some other models. At low numbers of
weevils, we could expect the attack probabilities for both treatments to be
small and therefore we could fit two separate lines with a common inter-
cept. This is a radiating lines model. Since the probability of attack
increases with increasing root collar weevil numbers, the lines should have
positive slopes. If the treatment is very effective, then the slope for the
treatment could be zero. An easy way to test these questions is to create
two new weevil variables from the original weevil variable (xij ), one with
the weevil values for the treatment observations (x 1j only), but zero values
for the control observations, with the other variable arranged in the
opposite way (x 0j only). The fitting results are summarized in Table 22
and appropriate tests are presented in Table 23. The model which includes
both of these variables and treatment (to indicate the intercept) is the
same as the full model with non-parallel lines, since separate intercepts
and slopes are fit to each line (see models in Table 20 and model 5 in
Table 22).

The model that forces the slope to zero for the treated trees, but allows
a slope for the control trees (equation 15 and model 8) may be reason-
able, but does not fit as well as the two radiating lines model (model 6
which includes both of the new weevil variables). Its fit is worse than that
of the full model (χ 2 = 9.32, p-value <0.01). On the other hand, the radi-
ating lines model fits almost as well as the full model (χ 2 = 0.80,
p-value = 0.37), and would be a suitable final model.
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 22 Alternative models fitted to the root collar weevil data

Likelihood
Models fit to the data df ratio χ 2

Model 5: Two weevil variables and treatment 24 8.38
Model 6: Two radiating lines model 25 9.18
Model 7: Treatment weevil variable only 26 144.45
Model 8: Control weevil variable only 26 17.70

 23 Test results comparing the four models in Table 22

Models
Test used df χ 2-value p-value

H0: Both lines have same intercept 5 and 6 1 0.80 0.37
H0: Slope for treatment is zero 6 and 7 1 8.52 0.0035
H0: Slope for control is zero 6 and 8 1 135.27 0.0001
H0: Same intercept and treated slope is zero 5 and 8 2 9.32 <0.01

4.5.7 Comparing the models To compare these models further, we
could look at the sums of squares of the simple residuals (Table 24). They
show little difference in fit between the parallel and two radiating lines
models. The one line only model shows 10% more variability than the
two radiating lines model, while having one less parameter. The equations
for the three models are shown in Table 25. Plots of the predicted logits
and probabilities are presented in Figures 26, 27, and 28.

We should also look at plots of the residuals to check that the models
do adequately fit the data. The Pearson residuals are shown in Figure 29
while the deviance residuals are shown in Figure 30. The plots for the two
kinds of residuals are similar and indicate that all three models provide
reasonable fits.

The parallel lines model (model 2) and the two radiating lines model
(model 6) fit the data similarly, while the one line for control only model
(model 8) does not fit quite as well. The final choice of model would
depend on the objectives of the study, how the model is to be used, and
knowledge of the biology for this specific situation.

It is odd that the parallel lines and the two radiating lines models
should fit so similarly. On the logit scale where we are fitting straight
lines, they look quite different (see Figure 26). While on the probability
scale they look very similar (see Figure 27). We can see from the
probability curves that the data covers only the lower part of the S-shaped
probability curves for the treatment. This is where the fitted logit values
are back-transformed into a narrow range of probability values so that the
difference between the lines on the logit scale is not so marked on the
probability scale (recall the discussion in section 4.5.1). These plots help
us to understand why the parallel lines model fits so well, even though the
lines are not parallel on the probability scale.
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 24 Sums of squares of the simple residuals for three models

Uncorrected sums
Model of squares

Parallel lines 0.02877
Two radiating lines 0.03000
One line for control 0.03297

 25 Three final models to fit the root collar weevil data

Parallel lines model (Model 2)

Control: logit = −4.1217 + 0.3086 * Weevil
(SE = 0.61) (SE = 0.047)

Screefed: logit = −7.5321 + 0.3086 * Weevil
(SE = 0.61) (SE = 0.047)

Two radiating lines model (Model 6)

Control: logit = −4.8370 + 0.3335 * Weevil
(SE = 0.64) (SE = 0.049)

Screefed: logit = −4.8370 + 0.1358 * Weevil
(SE = 0.64) (SE = 0.048)

One weevil variable: for control only (Model 8)

Control: logit = −3.6086 + 0.2721 * Weevil
(SE = 0.34) (SE = 0.028)

Screefed: logit = −3.6086 + 0.0000 * Weevil
(SE = 0.34) (SE = 0.0 since model restricted to this value)
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Plot of LOGIT*WEEVIL. Symbol is value of TRMT.
Plot of LOGIT1*WEEVIL. Symbol used is '*'.
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 26 Printer plots of observed (C or S) and fitted (*) values on the logit scale. Zero counts are converted to
logits by the empirical logit = log(0.01/1.01) = −4.62. (Lines are hand-drawn.)



62

Plot of PROP*WEEVIL. Symbol is value of TRMT.
Plot of PRED1*WEEVIL. Symbol used is '*'.
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 27 Printer plots of data (C or S) and predicted (*) values on the probability scale.
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Plot of PROP*WEEVIL. Symbol is value of TRMT.
Plot of PRED3*WEEVIL. Symbo use is '*'.
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 28 Printer plots of the observed (C or S) and fitted values (*) on both the probability and logit scales for the
one line only for control plots model.
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Plot of RESID1*PLOT. Legend: A = 1 obs, B = 2 obs, etc.
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 29 Printer plots of simple residuals against the plot number for three models.
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Plot of RESID1*WEEVIL. Symbol is value of TRMT.
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 30 Printer plots of simple residuals against the weevil count for three models.
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5 CALCULATING LOGISTIC REGRESSION WITH SAS: WORKED EXAMPLES

Although several computer packages are available for logistic regression
computations, PROC CATMOD and PROC LOGISTIC20 in SAS are presently
the most accessible programs for Ministry staff. This chapter describes and
contrasts these two procedures and then goes on to provide a detailed dis-
cussion of example programs used to analyze the five studies in Chapter 4.
Note that the following discussion is based on Version 6.10 of SAS (SAS
Institute 1989). Minor differences exist between the various versions.

5.1 Using PROC
CATMOD and PROC

LOGISTIC For
Logistic Regression

The differences between PROC LOGISTIC and PROC CATMOD are similar
to the differences between PROC GLM and PROC REG. For instance, both
PROC GLM and PROC CATMOD are designed to fit models, such as analysis
of variance and covariance, that primarily include categorical variables,
but may also include covariates or continuous variables. PROC GLM uses a
CLASS statement to define the categorical variables, while PROC CATMOD
simply assumes that all variables are categorical unless otherwise specified
by a DIRECT statement. On the other hand, PROC REG and PROC
LOGISTIC are primarily regression procedures and do not directly
include categorical variables in the models. To include such variables, they
must be converted to indicator or dummy variables in an earlier data step
and then included in the model (see section 6 for an advanced discussion
of this topic). PROC GLM and PROC CATMOD create these variables in a
hidden manner and users may not even realize that the conversion has
taken place for model fitting. Note that these two procedures create the
indicator variables differently. This is important when examining para-
meter estimates and defining contrasts. Defining contrast coefficients for
PROC CATMOD is discussed in section 5.1.1.1.

The order of the levels for the response variable is presented early in
the computer output for both the CATMOD and LOGISTIC procedures
and both model the probabilities for the first level that is printed. If the
procedure is not fitting the preferred response value, the parameter esti-
mates will simply be different in sign. All the tests and criterion values
will be the same. There are various ways to choose the response value to
be fitted. See the appropriate SAS manuals for some options.
PROC REG and PROC LOGISTIC have many features that make them

valuable for the traditional regression model-building exercise. For
instance, both procedures will:

• fit either the model specified in the MODEL statement or select variables
from those listed in the MODEL statement to test for inclusion in the model;

• allow forward, backward, or stepwise selection of model variables;
• help to identify if the models provide reasonable fits and to check for

unusual points in the data using various regression diagnostics;

20 PROC GENMOD is another SAS procedure that may be used.
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• produce data sets including predicted and residual values (OUTPUT
statement) or the estimated parameters (OUTEST option); and

• determine predicted values for observations with missing response
values (note that PROC CATMOD will not do this because such observa-
tions are deleted from the analysis).

PROC LOGISTIC treats each observation in the data as an experimental
unit. On the other hand, PROC CATMOD may lump observations together,
so the POPULATION statement should be used to correctly identify the
experimental units and keep them properly separated.

For response variables with just two levels, PROC CATMOD has only one
way to specify the response, while PROC LOGISTIC has two. In this case,
two variables may be used on the left side of the model statement, where
one variable contains the count of successes or events and the other con-
tains the total count. This feature avoids the WEIGHT statement that is
often necessary with PROC CATMOD (in fact the WEIGHT statement should
be avoided with PROC LOGISTIC). See the examples in sections 5.2, 5.3,
and 5.4.

The two procedures also produce slightly different test statistics. The
likelihood ratio output at the bottom of the analysis of variance table
from PROC CATMOD compares the current model with a saturated model
(each ‘‘population’’ or experimental unit fit individually). PROC LOGIS-
TIC does not test this value, but generates an overall test for the compo-
nents of the model (denoted by -2 LOG L under the Chi-Square for
Covariates column) by comparing the current model to the intercept-
only model.

Both procedures will output residuals, but do so differently. PROC
CATMOD will produce simple residuals, two for each experimental unit:
one for the success response and one for the failure response. On the
other hand, PROC LOGISTIC will produce either or both of the other
kinds of residuals: the deviance or Pearson residuals. Only one residual is
output for the success response for each experimental unit.

5.1.1 PROC CATMOD Data for this procedure are organized in one of
two ways. First, each observation can represent a separate sampling unit
with an associated response variable. Groupings of observations into
experimental units are specified with a POPULATION statement. The data
must be organized this way if m = 1 because each experimental unit con-
tains only one sampling unit (as in the herbicide thinning trial example,
section 4.4). When m > 1 (i.e., each experimental unit contains several
sampling units), then the data are either organized in this way or the
response for each experimental unit is counted. The second organizational
procedure requires two observations in the SAS data set for each experi-
mental unit; one observation specifies the number of failures, while the
second specifies the number of successes. PROC CATMOD uses both obser-
vations to determine the total number of sampling units in each experi-
mental unit. If a count is zero, then that observation is unnecessary and is
ignored by PROC CATMOD, although no problem is created by including
the observation. The example programs in this chapter use the variable
COUNT to indicate the number. The value of Y indicates whether the



68

count represents success or failure. If Y is zero or one, then the parameter
estimates calculated by PROC CATMOD will predict the logits and proba-
bility values for Y = 0. Thus the models generated by the programs in this
chapter will predict collared calf mortality rate, seedling survival rate,
mortality rate of herbicide treated trees, and weevil attack probability.

While PROC CATMOD is well documented in the various editions of the
SAS User’s Guide, the procedure is so versatile that the discussion relevant
to logistic regression is scattered. The following SAS statements are useful
for logistic regression analysis.

• POPULATION: defines the experimental units of the study. If this state-
ment is missing, all experimental units with the same variable values in
the MODEL statement are grouped together as if they were just one
experimental unit. This makes it impossible to compare models when
an explanatory variable is completely missing in one of them.

• WEIGHT: denotes the variable that specifies the number of sampling
units within an experimental unit which either failed or succeeded.

• DIRECT: denotes those model variables to be treated as continuous
variables. Variables not noted here are treated as categorical variables.
Continuous variables will be tested with only one degree of freedom,
while categorical variables will have degrees of freedom equal to the
number of categories minus one.

• MODEL: describes the model to be fitted to the data. Models can be
described in exactly the same manner as for PROC’s ANOVA and GLM
except that the shorthand notation using vertical bars to show interac-
tions is not available in Version 5. If no variables are listed, then a
mean or intercept-only model is fit. Some of the useful options for this
statement are:
ML: estimates the model using maximum likelihood methods. This is
the default method (for Version 6) and so does not need to be
specified.
PRED=FREQ: prints out the predicted frequencies for each experimental
unit (can be a long printout). [You may use only one of the PRED=
options.]
PRED=PROB: prints out the predicted probabilities for each experimen-
tal unit (can be a long printout).
NOPROFILE: suppresses printing of the population and response pro-
files (may reduce length of printout).
NOITER: suppresses printing of the iteration history required to con-
verge to an adequate fit.
COVB: prints out the covariance matrix of the parameter estimates.
CORRB: prints out the correlation matrix of the parameter estimates.

• CONTRAST: specifies that a specific contrast for a categorical variable be
tested. Proper use of this statement requires some understanding of the
design matrix that PROC CATMOD uses. This is described in the man-
uals. See section 5.1.1.1 for more discussion.

• RESPONSE LOGIT/OUT = data name: outputs a data set containing
predicted values and simple residuals (two for each experimental unit,
one for success and one for failure).
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• RESPONSE LOGIT/OUTEST = data name: outputs a data set containing
fitted parameter estimates and their variance-covariance matrix.

5.1.1.1 Determining Contrast Coefficients for  PROC CATMOD Contrasts
of predicted probabilities of logistic regression models can be designed
and tested in the same way as contrasts of predicted means in ANOVA.
Contrast coefficients designed for ANOVA (and PROC GLM in particular)21

must be converted to those necessary for PROC CATMOD. This is because
PROC’s CATMOD and GLM establish indicator variables for categorical
variables differently (see Chapter 6 for a discussion of this point). A sim-
ple method to convert contrast coefficients is to subtract the last contrast
coefficient from all the other coefficients. Thus, the last coefficient
becomes zero and is deleted from the list of coefficients in the CONTRAST
statement for PROC CATMOD. In this case, the coefficients may not add up
to zero. The list of coefficients can be divided or multiplied by a constant.

The following are some common example contrast coefficients:

Treatment level: 1 2 3 4 5
Linear contrast:

ANOVA: −2 −1 0 1 2
CATMOD: −4 −3 −2 −1 a

Quadratic contrast:
ANOVA: 2 −1 −2 −1 2
CATMOD: 0 −3 −4 −3 a

a No value is used for the last treatment level.

The corresponding CONTRAST statements are:

Linear Contrast:

PROC GLM:     Contrast ‘Treatment: Linear’ Treat -2 -1  0  1  2; 
PROC CATMOD:  Contrast ‘Treatment: Linear’ Treat -4 -3 -2 -1   ;

Quadratic Contrast:

PROC GLM:     Contrast ‘Treatment: Quad’ Treat    2 -1 -2 -1  2;
PROC CATMOD:  Contrast ‘Treatment: Quad’ Treat    0 -3 -4 -3   ;

The contrast coefficients for the levels of the treatments must be in the
order assumed by the procedure. This order can be verified by examining
the POPULATION PROFILES.

5.1.2 PROC LOGISTIC There are two ways to define the response vari-
able for PROC LOGISTIC. When experimental units contain m > 1

21 Determining contrast coefficients for ANOVAs are described in most textbooks on ANOVA
and in Biometrics Information Pamphlets Nos. 12, 14, 16, and 23.
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sampling units, it is easiest to use two variables in ratio form as the
response variable. For example, if the variable total includes the
number of sampling units (mi ), and alive is the variable that represents
the number of sampling units still alive at the end of the study, then their
ratio alive/total = . . . would be used in the model statement (see
example in section 5.2). The response indicated by the variable, alive, is
called the EVENT on the printout. On the other hand, if m = 1 and Y is
the variable that represents 0 or 1 (depending on the unit’s response),
then a model statement that uses Y = . . . would be easier.

The following basic statements are used with PROC LOGISTIC to per-
form logistic regression analysis. The WEIGHT statement is used differently
with PROC LOGISTIC and should be avoided because many of the statis-
tical tests will be incorrect (SAS Institute 1989:1086).

• MODEL: describes the model to be fitted to the data. Models can be
described by listing possible explanatory variables in this statement. If
no variables are listed, then an intercept-only model will be fitted.
Interactions between variables are not allowed; combination variables
must be created in an earlier data step. Only one model statement is
allowed for each PROC step. Some useful options for this statement are:
INFLUENCE and IPLOTS produce useful influence diagnostics and
plots. Discussing their output is beyond the scope of this text. Discus-
sions can be found in Hosmer and Lemeshow (1989) and McCullagh
and Nelder (1989), Agresti (1996).

• OUTPUT OUT = data name: produces a data set that includes the origi-
nal data plus other variables as chosen by keywords. Some of the more
useful keywords are:
RESDEV = var name: outputs one deviance residual for each observa-
tion or experimental unit.
RESCHI = var name: outputs one Pearson residual for each observation
or experimental unit.
PRED = var name: outputs predicted probabilities for each observation.
LOWER or L = var name: outputs the lower confidence limit for the
predicted probability of an event response.
UPPER or U = var name: outputs the upper confidence limit for the
predicted probability of an event response.
ALPHA = is an option used to select the confidence level for the confi-
dence limits output by LOWER and UPPER. The default level is
ALPHA = 0.05. This option must be written after an ‘‘/’’ in the OUTPUT
statement.

5.2 Simple Regression:
Caribou Calf and Wolf

Predation

Recall that the objective of this hypothetical study was to examine the
relationship between wolf presence and the survival of caribou calves dur-
ing their first year. The primary hypothesis of this example was that fewer
calves will survive if high numbers of wolves are in their vicinity (see sec-
tion 4.1 for full details).
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5.2.1 Initial data input and examination The following program reads
in the data from Appendix 2 (Calf Data) and prints out the data in Table
26. The format alive describes the meaning of the zeros and ones for
the response variable y. To examine the data, the observed proportions are
plotted against the wolf density estimate in Figure 7 (page 23). SAS state-
ments in boldface type are essential for the program to do the correct cal-
culations; the other statements are used to improve the appearance of the
output and provide comments.

title ‘Simple Regression Example- Calf Survival’;
proc format; value alive 0 = ‘0——Died’ 1 = ‘1—Alive’; run;
data calf;
infile ‘calf.dat’;
input herd wolf alive total ;
count = alive;        y = 1; prop = count/total; output;
count = total-alive;  y = 0; prop = count/total; output;

label   y = ‘Survived or not’
wolf = ‘Wolf Density (Numbers per 1000 km2)’
total = ‘Total Number’    alive = ‘Number Survived’
count = ‘Count’  herd = ‘Herd Number’   prop = ‘Proportion’;

format y alive.;
run;
proc print data=calf label;
id herd;  var wolf total count y prop;

title2 ‘Listing of data’;               * <== Similar to Table 26;
run;
proc plot data = calf;
where y = 1;     * <== to analyse only the survival proportions;
plot prop*wolf = herd / haxis = 0 to 40 by 5;*<== Similar to Figure 7;

title2 ‘Plot of the Proportion Surviving against Measure of Wolf Presence’;
run;
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 26 Listing of the data, with two observations per experimental unit (from PROC CATMOD)

----------------------------------------------------------------------
Simple Regression - Calf Survival

Listing of data

Wolf Density
Herd     (Numbers per     Total             Survived
Number      1000 km2)     Number    Count     or not     Proportion

1            9           15        14     1—Alive       0.93333
1            9           15         1     0——Died       0.06667
2           10            7         7     1—Alive       1.00000
2           10            7         0     0——Died       0.00000
3           12            4         3     1—Alive       0.75000
3           12            4         1     0——Died       0.25000
4           13            5         5     1—Alive       1.00000
4           13            5         0     0——Died       0.00000
5           15           10         9     1—Alive       0.90000
5           15           10         1     0——Died       0.10000
6           23           10         9     1—Alive       0.90000
6           23           10         1     0——Died       0.10000
7           31           15         9     1—Alive       0.60000
7           31           15         6     0——Died       0.40000
8           34           13         4     1—Alive       0.30769
8           34           13         9     0——Died       0.69231
9           38           13         1     1—Alive       0.07692
9           38           13        12     0——Died       0.92308

----------------------------------------------------------------------

5.2.2 Simple and quadratic regression models Based on Figure 7, it seems
reasonable that the decreasing trend of the observed proportions could be well
fit by a linear or quadratic regression. The following program uses PROC REG
to fit both these models to the data. Essential statements appear in boldface
type. The computer output is shown in Figure 31.

proc reg data=calf;
where y = 1;     * <== to analyse only the survival proportions;
model prop = wolf;

title1 ‘Simple Regression Analysis - Linear Fit’;
run;
data calf; set calf; wolf2 = wolf * wolf; run;
proc reg data=calf;
where y = 1;     * <== to analyse only the survival proportions;
model prop = wolf wolf2;

title1 ‘Simple Regression Analysis - Quadratic Fit’;
run;
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Simple Regression Model - Linear Fit
Analysis of Variance

Sum of         Mean
Source          DF      Squares       Square      F Value       Prob>F

Model            1      0.69095      0.69095       27.640       0.0012
Error            7      0.17499      0.02500
C Total          8      0.86594

Root MSE       0.15811     R-square       0.7979
Dep Mean       0.71866     Adj R-sq       0.7691
C.V.          22.00031

Parameter Estimates

Parameter      Standard    T for H0:
Variable  DF      Estimate         Error   Parameter=0    Prob > T

INTERCEP   1      1.257311    0.11521578        10.913        0.0001
WOLF       1     -0.026205    0.00498432        -5.257        0.0012

Simple Regression Analysis - Quadratic Fit
Analysis of Variance

Sum of         Mean
Source          DF      Squares       Square      F Value       Prob>F

Model            2      0.80556      0.40278       40.021       0.0003
Error            6      0.06038      0.01006
C Total          8      0.86594

Root MSE       0.10032     R-square       0.9303
Dep Mean       0.71866     Adj R-sq       0.9070
C.V.          13.95931

Parameter Estimates

Parameter      Standard    T for H0:
Variable  DF      Estimate         Error   Parameter=0    Prob > T

INTERCEP   1      0.562394    0.21852403         2.574        0.0421
WOLF       1      0.051475    0.02323602         2.215        0.0686
WOLF2      1     -0.001688    0.00050016        -3.374        0.0150

 31 Output from the linear and quadratic regression models.
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5.2.3 Logistic regression analysis using PROC CATMOD and PROC
LOGISTIC SAS can fit a simple logistic regression to this data using the
maximum likelihood fitting methods available in both PROC CATMOD and
LOGISTIC.

5.2.3.1 PROC CATMOD The following SAS code fits the logistic regression
using PROC CATMOD. Essential statements appear in boldface type.

proc catmod data=calf;

population herd; * <== identifies herd as the experimental/observational units;
weight count;    * <== the variable that contains the counts per response;
direct wolf;     * <== identifies wolf as a continuous and not a class variable;
model y = wolf;

title1 ‘Simple Logistic Regression Model’;

run;

The first part of output is:

CATMOD PROCEDURE

Response: Y                           Response Levels (R)=     2
Weight Variable: COUNT                Populations     (S)=     9
Data Set: CALF                        Total Frequency (N)=    92
Frequency Missing: 0                  Observations  (Obs)=    16

Note that the number of observations is 16 and not 18, because two of
the observations had zero counts. PROC CATMOD deletes these observa-
tions from the analysis. It would also delete any observations with missing
values for the response variable (Y in this case).

POPULATION PROFILES
Sample

Sample  HERD     Size
----------------------

1    1          15
2    2           7
3    3           4
4    4           5
5    5          10
6    6          10
7    7          15
8    8          13
9    9          13

RESPONSE PROFILES

Response     Y
-----------------

1    0——Died
2    1—Alive
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Basic information about the data to be analyzed is provided in the pre-
ceding output tables. The nine populations (experimental/observational
units) are described in the POPULATION PROFILES section, while the
values of the response variable are displayed in the RESPONSE PROFILES
section. This allows us to check that the experimental units and response
variable are correctly defined. The next part of the output shows the itera-
tion history for the parameter estimates.

MAXIMUM-LIKELIHOOD ANALYSIS

Sub        -2 Log     Convergence    Parameter Estimates
Iteration   Iteration   Likelihood    Criterion         1           2
------------------------------------------------------------------------

0           0       127.53908       1.0000            0           0
1           0       80.891384       0.3658      -3.0940      0.1070
2           0       76.384036       0.0557      -4.4174      0.1485
3           0        75.92853     0.005963      -5.0005      0.1663
4           0       75.919606     0.000118      -5.0971      0.1692
5           0       75.919601    6.1244E-8      -5.0993      0.1693
6           0       75.919601    1.741E-14      -5.0993      0.1693

The following output summarizes the fit of the simple logistic regres-
sion model to the data. The sample sizes are not large enough to use the
LIKELIHOOD RATIO as a goodness-of-fit test. Both the INTERCEPT and
WOLF Wald χ2-statistics (denoted by Chi-square below) are significant,
which suggests that neither the intercept nor the slope for wolf is zero.

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1        22.81    0.0000
WOLF                      1        23.09    0.0000

LIKELIHOOD RATIO          7         7.78    0.3524

ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES

Standard    Chi-
Effect            Parameter  Estimate    Error    Square   Prob
----------------------------------------------------------------
INTERCEPT                 1   -5.0993    1.0678    22.81  0.0000
WOLF                      2    0.1693    0.0352    23.09  0.0000
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PROC CATMOD can also output predicted and residual values which can
be tabulated and plotted. The programming requires the addition of the
response statement:

proc catmod data=calf;

population herd; * <== identifies herd as the experimental/observational units;
weight count;    * <== the variable that contains the counts per response;
direct wolf;     * <== identifies wolf as a continuous and not a class variable;
model y = wolf / ml;

response logit / out = pred;  * <== needed to output predicted values;
title1 ‘Simple Logistic Regression Model’;

run;

proc print;

title2 ‘Listing of output data set’;

run;

This statement causes the predicted values to be placed into a data set
called pred. It also specifies that the procedure should use the logit link
function (identified in the response statement by logit). The logit
link function is the default link; therefore the response statement is not
really necessary except that we want to use the out = option to create a
data set with the predicted values. The printout of this new data set is
shown on page 77.

SAS creates this data set by using some of the original variables and
then adding special SAS variables. The variables with underscores at the
beginning and end of the variable name, such as —SAMPLE—, —NUMBER—,
. . . , —RESID—, are the special SAS variables. In this case, the sample or
experimental unit number (—SAMPLE—) has the same value as HERD.
The variable —TYPE— describes the type of observation. For logistic
regression models there are two types: FUNCTION to indicate the pre-
dicted logit of 0——Died (the first response value listed in the RESPONSE
PROFILE table) and PROB to indicate the predicted probabilities. For
each population/experimental unit or —SAMPLE— number there are two
observations with —TYPE— = PROB. These are separated by the

—NUMBER— variable whose values are shown in the earlier RESPONSE
PROFILES table. In this table, 1 is for 0——Died and 2 is for 1—Alive.
The —OBS— variable contains the observed logit or proportion and

—SEOBS— is its estimated standard error. The variable —PRED— is the pre-
dicted logit or proportion, —SEPRED— is its estimated standard error, and

—RESID— is the simple difference between —OBS— and —PRED—. This dif-
ference does not have a constant variance and should be interpreted care-
fully. PROC LOGISTIC calculates residuals that take this into account (the
deviance and chi-squared residuals, resdev and reschi, respectively).

To illustrate, let us look at the three lines output for the second herd
with a wolf density of 10 wolves per 1000 km2. This is herd 2 on the
output. The predicted logit (for not surviving) is on the first line
with —TYPE— = FUNCTION. The value under the —PRED— column is
−3.40642 as we calculated earlier in section 4.1.3. The two lines with
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Simple Logistic Regression Model

Listing of output data set

OBS HERD    Y   —SAMPLE— —TYPE—  —NUMBER—  —OBS—  —SEOBS—  —PRED— —SEPRED—  —RESID—

1   1        .    1    FUNCTION    1   -2.63906 1.03510 -3.57571 0.76691  0.93665

2   1  0——Died    1    PROB        1    0.06667 0.06441  0.02723 0.02032  0.03943

3   1  1—Alive    1    PROB        2    0.93333 0.06441  0.97277 0.02032 -0.03943

4   2        .    2    FUNCTION    1     .       .      -3.40642 0.73433   .

5   2  0——Died    2    PROB        1    0.00000 0.00000  0.03210 0.02281 -0.03210

6   2  1—Alive    2    PROB        2    1.00000 0.00000  0.96790 0.02281  0.03210

7   3        .    3    FUNCTION    1   -1.09861 1.15470 -3.06784 0.66997  1.96923

8   3  0——Died    3    PROB        1    0.25000 0.21651  0.04445 0.02846  0.20555

9   3  1—Alive    3    PROB        2    0.75000 0.21651  0.95555 0.02846 -0.20555

10   4        .    4    FUNCTION    1     .       .      -2.89855 0.63827   .

11   4  0——Died    4    PROB        1    0.00000 0.00000  0.05223 0.03159 -0.05223

12   4  1—Alive    4    PROB        2    1.00000 0.00000  0.94777 0.03159  0.05223

13   5        .    5    FUNCTION    1   -2.19722 1.05409 -2.55997 0.57611  0.36275

14   5  0——Died    5    PROB        1    0.10000 0.09487  0.07176 0.03837  0.02824

15   5  1—Alive    5    PROB        2    0.90000 0.09487  0.92824 0.03837 -0.02824

16   6        .    6    FUNCTION    1   -2.19722 1.05409 -1.20565 0.35953 -0.99157

17   6  0——Died    6    PROB        1    0.10000 0.09487  0.23047 0.06376 -0.13047

18   6  1—Alive    6    PROB        2    0.90000 0.09487  0.76953 0.06376  0.13047

19   7        .    7    FUNCTION    1   -0.40547 0.52705  0.14867 0.29241 -0.55413

—TYPE— = PROB show a fitted probability of 0.03210 for 0——Died and a
fitted probability of 0.96790 for 1—Alive which also matches our earlier
calculations.

When this data set is merged with the original data set it becomes eas-
ier to plot and summarize the results. The following program will do this
(essential statements appear in boldface type). The output in Table 27 lists
the predicted values.

/* Note that version 6.04 will not add herd to the pred data set!  */

proc sort data = pred; by herd y; run;  * <== ensuring that both data sets are;
proc sort data = calf; by herd y; run;  * <== sorted the same way for merging;
data new;

merge calf pred;

by herd y;   * <==  matching variables;
if y ne . ;  * <==  keeping the predicted probabilities only;
keep y wolf herd count prop —obs— —pred— —resid— total;

proc print data = new;                  *<==  Output is in Table 27;
title2 ‘Listing of final data set with predicted values’;

run;

proc plot data = new;

plot —pred—*—obs— ;                   *<== Output is in Figures 9, 10, and 11);
plot —resid—*(—pred— herd wolf) / vref = 0;

title2 ‘Plots’;

run;
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Note that PROC CATMOD produces output for two observations for each
experimental unit. This means that each experimental unit has two resid-
uals: one for Alive and one for Died. This leads to a mirror effect in
plots of the residuals. This can be eliminated by using a where —number—
= 1; statement, for instance, so that there is only one residual in the graph
per observation. PROC LOGISTIC only produces one residual per experi-
mental unit.

 27 Listing of predicted values from PROC CATMOD

------------------------------------------------------------------
Simple Regression - Calf Survival

Listing of final data set with predicted values

OBS HERD WOLF TOTAL COUNT    Y      PROP   —OBS—   —PRED—  —RESID—

1   1    9    15     1  0——Died 0.06667 0.06667 0.02723  0.03943
2   1    9    15    14  1—Alive 0.93333 0.93333 0.97277 -0.03943
3   2   10     7     0  0——Died 0.00000 0.00000 0.03210 -0.03210
4   2   10     7     7  1—Alive 1.00000 1.00000 0.96790  0.03210
5   3   12     4     1  0——Died 0.25000 0.25000 0.04445  0.20555
6   3   12     4     3  1—Alive 0.75000 0.75000 0.95555 -0.20555
7   4   13     5     0  0——Died 0.00000 0.00000 0.05223 -0.05223
8   4   13     5     5  1—Alive 1.00000 1.00000 0.94777  0.05223
9   5   15    10     1  0——Died 0.10000 0.10000 0.07176  0.02824
10   5   15    10     9  1—Alive 0.90000 0.90000 0.92824 -0.02824
11   6   23    10     1  0——Died 0.10000 0.10000 0.23047 -0.13047
12   6   23    10     9  1—Alive 0.90000 0.90000 0.76953  0.13047
13   7   31    15     6  0——Died 0.40000 0.40000 0.53710 -0.13710
14   7   31    15     9  1—Alive 0.60000 0.60000 0.46290  0.13710
15   8   34    13     9  0——Died 0.69231 0.69231 0.65848  0.03383
16   8   34    13     4  1—Alive 0.30769 0.30769 0.34152 -0.03383
17   9   38    13    12  0——Died 0.92308 0.92308 0.79145  0.13163
18   9   38    13     1  1—Alive 0.07692 0.07692 0.20855 -0.13163
------------------------------------------------------------------

5.2.3.2 PROC LOGISTIC The following SAS code fits the logistic regres-
sion model using PROC LOGISTIC for the analysis. The data is read in
again because we only need one record per experimental unit and not two
as for PROC CATMOD. Essential statements appear in boldface type.

Note that the original input variables are used in the model statement:
the variable alive is the count of surviving calves, while total is the
total number of calves. PROC LOGISTIC is able to analyze these variables
directly when the response variable has only two levels (alive or dead in
this case). The output statement creates a data set that, in addition to all
the variables in the original data set, will include the predicted values
(named pred) and two types of residuals, resdev and reschi,
described in section 3.7.
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title ‘Simple Regression Example - Calf Survival’;
proc format; value alive 0 = ‘0 .. Died’ 1 = ‘1 ..Alive’; run;
data calfr;
infile ‘calf.dat’;
input herd wolf alive total ;

label wolf = ‘Wolf Density (Numbers per 1000 km2)’
total = ‘Total Number’ alive = ‘Number Survived’
herd = ‘Herd Number’ ;

run;
proc logistic;
model alive/total = wolf ;
output out=predr p=pred resdev=resdev reschi=reschi;

title2 ‘Logistic Regression Analysis’;  
run;
proc print;
title3 ‘Listing of output data set’; run;
proc plot vpercent = 50;

plot (resdev reschi)*(herd wolf) / vref = 0;
title2 ‘Plots’; run;

The first section of the output below summarizes the variables, the
number of observations, and the levels of the response variable. The
default link function is the logit, which means that a logistic regression is
fitted to the data. The response level EVENT is defined by ALIVE; that is,
for the event that a calf survived.

Simple Regression - Calf Survival
Logistic Regression Analysis

The LOGISTIC Procedure

Data Set: WORK.CALF
Response Variable (Events): ALIVE     Number Survived
Response Variable (Trials): TOTAL     Total Number
Number of Observations: 9
Link Function: Logit

Response Profile

Ordered  Binary
Value  Outcome      Count

1  EVENT           61
2  NO EVENT        31

This next section of output provides various tests of the usefulness of
the model variables for fitting the data. The line −2 LOG L provides the
final values of the −2Log-likelihood from the iterative fitting process. The
first value in this line (Intercept Only) is for a model with only one
mean for all the data, while the second is for the full model (Intercept
and Covariates). This second value is the same as that produced by
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the iteration summary from PROC CATMOD (see output in previous sec-
tion). The difference between the first two values provides an overall test
for the model’s covariates. This is a more reliable test than the Wald test
and is not output by PROC CATMOD. In this case, the test shows a highly
significant result (p-value 0.0001). The other criterion measures (except
Score) were discussed in section 3.4.

Testing Global Null Hypothesis: BETA=0

Intercept
Intercept        and

Criterion       Only       Covariates    Chi-Square for Covariates

AIC             119.575        79.920         .
SC              122.097        84.963         .
-2 LOG L        117.575        75.920       41.656 with 1 DF (p=0.0001)
Score              .             .          35.896 with 1 DF (p=0.0001)

Wald statistics for the intercept and variables in the model are provided
in the next section of output. These tests are identical to those produced
by PROC CATMOD. Notice that although the parameter estimates have the
same magnitude, they are different in sign. This is because PROC LOGIS-
TIC has fitted the probability of survival, while PROC CATMOD fitted the
probability of death.

Analysis of Maximum Likelihood Estimates

Parameter Standard    Wald       Pr >    Standardized     Odds
Variable DF  Estimate   Error  Chi-Square Chi-Square   Estimate      Ratio

INTERCPT 1     5.0993   1.0678    22.8077     0.0001            .  163.907
WOLF     1    -0.1693   0.0352    23.0882     0.0001    -1.035538    0.844

The final predicted data is given below.

Listing of output data set

OBS HERD WOLF ALIVE TOTAL COUNT    Y      PROP    PRED   RESCHI   RESDEV

1   1    9    14    15    14  1—Alive 0.93333 0.97277 -0.93834 -0.79489
2   2   10     7     7     7  1—Alive 1.00000 0.96790  0.48179  0.67580
3   3   12     3     4     3  1—Alive 0.75000 0.95555 -1.99463 -1.41449
4   4   13     5     5     5  1—Alive 1.00000 0.94777  0.52489  0.73238

5   5   15     9    10     9  1—Alive 0.90000 0.92824 -0.34602 -0.32798
6   6   23     9    10     9  1—Alive 0.90000 0.76953  0.97970  1.07200
7   7   31     9    15     9  1—Alive 0.60000 0.46290  1.06489  1.06436
8   8   34     4    13     4  1—Alive 0.30769 0.34152 -0.25718 -0.25938
9   9   38     1    13     1  1—Alive 0.07692 0.20855 -1.16815 -1.30289
10  10   15     .     .     .  1—Alive  .      0.92824   .        .
11  11   25     .     .     .  1—Alive  .      0.70414   .        .
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Predicted values for specific wolf densities may be of interest, even if these
values do not occur in the data. These values can be obtained by adding
them to the original data set with missing response variables. The pre-
dicted data set output by PROC LOGISTIC will then contain their pre-
dicted values. As an example, two missing observations have been added
to the end of the data set as herds 10 and 11. They have missing values
for the response variables (alive and total). Note that they have been
assigned predicted probabilities based on the fitted logistic regression
model. Predicted values are easier to obtain from PROC LOGISTIC than
from PROC CATMOD.

5.2.4 Calculating and fitting predicted values to compare the three
models A comparison of the results of the linear, quadratic and logistic
regression models was presented in section 4.1. The SAS code that was
used to calculate the predicted values follows. New and essential SAS code
appear in boldface type.

** First rerun the regressions and obtain output data sets;

proc reg data=calf;

where y = 1;  model prop = wolf;

output out = regpred1 p = regpred1 r = regresd1;

title2 ‘Simple Regression Analysis - Linear Fit’;

run;

proc reg data=calf;

where y = 1;  model prop = wolf wolf2;

output out = regpred2 p = regpred2 r = regresd2;

title2 ‘Simple Regression Analysis - Quadratic Fit’;

run; 

** Sort the predicted data sets for proper merging;

proc sort data=regpred1; by herd y; run;

proc sort data=regpred2; by herd y; run;

proc sort data=pred    ; by herd y; run;    *<== Data was created previously;
**  Merge the three data sets.  Regpred1 has all the original data plus

the new predicted values from the regression.     ;

data new;

merge regpred1 regpred2 pred;

by herd y;

if y eq 1 ;  *<==  keeping the predicted probabilities for survival;
keep y wolf wolf2 herd count prop

—obs— —pred— —resid— total regpred1 regpred2 regresd1 regresd2;

label —pred— =’Logistic Predicted Value’

regpred1 = ‘Linear Predicted Value’

regpred2 = ‘Quadratic Predicted Value’

regresd1 =’Linear Regr Residual’

regresd2 =’Quadratic Regr Residual’

—resid—  =’Logistic Residual’;

run;
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proc print data=new label;

title2 ‘Listing of final data set with predicted values’;

id herd;                     *<== Output is in Table 28;
var y wolf count —pred— regpred1 regpred2;  * —resid— regresd1 regresd2;

title2 ‘Listing of final data set with predicted values’;

run;

** Plot the data with all three models;

proc plot data = new;

plot —obs— * wolf = herd

regpred1 * wolf = ‘*’

regpred2 * wolf = ‘@’    /*<== Output for Figure 8 in section 4.1.4;*/
—pred— * wolf = ‘+’  /overlay;

title2 ‘Comparing the predicted values for all three models’;

run;

** Calculate the sums of squares of the differences between observed and 

predicted values;

proc means n mean uss;  *<== uss = uncorrected sums of squares;
var regresd1 regresd2 —resid—;   *<== Output is in Table 29;

title2 ‘Residual Sums of Squares’;

run;

The predicted values are shown in Table 28 and the sums of squares of
the simple residuals (that is, the difference between the observed and pre-
dicted values) are shown in Table 29.

 28 Predicted values for the three different models fitted. Maximum values are bolded.

-----------------------------------------------------------------------------

Simple Regression - Calf Survival

Listing of final data set with predicted values

Wolf Density            Logistic     Linear    Quadratic

Herd    Survived   (Numbers per           Predicted   Predicted   Predicted

Number    or not      1000 km2)    Count     Value       Value       Value

1     1 Alive          9          14     0.97277     1.02147     0.88896

2     1 Alive         10           7     0.96790     0.99527     0.90837

3     1 Alive         12           3     0.95555     0.94286     0.93706

4     1 Alive         13           5     0.94777     0.91665     0.94634

5     1 Alive         15           9     0.92824     0.86424     0.95477

6     1 Alive         23           9     0.76953     0.65461     0.85349

7     1 Alive         31           9     0.46290     0.44497     0.53617

8     1 Alive         34           4     0.34152     0.36635     0.36148

9     1 Alive         38           1     0.20855     0.26154     0.08130

-----------------------------------------------------------------------------
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 29 Residual sums of squares for the three models is tabulated under the USS (for Uncorrected Sums of
Squares) column

--------------------------------------------------------------------------
Variable   Label                    N           Mean             USS
--------------------------------------------------------------------------
REGRESD1     Linear Regr Residual     9     -2.46716E-17        0.1749861
REGRESD2     Quadratic Regr Residual  9     -6.74615E-19        0.0603847

—RESID—      Logistic Residual        9       -0.0096426        0.1026476
--------------------------------------------------------------------------

5.2.5 Checking the fit of the logistic regression model The adequacy of
the fit of the logistic regression can be examined by various plots. Besides
checking the adequacy of the model, the plots help identify unusual data
points that might need further investigation. The plot of predicted values
versus observed values (see Figure 9, page 26) is reasonably straight with a
slope near one (hand drawn on the figure). Since the predicted values
should be about the same as the observed values, a slope of one is
expected. The plots of the residuals are shown in Figures 10 and 11 (pages
29 and 30), output by PROC CATMOD. The four plots of residuals produced
using PROC LOGISTIC are shown in Figures 12 and 13 (pages 28 and 29).
All the plots show little pattern so we might decide that the model fits
adequately and that none of the data points are particularly unusual.
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5.3 One-way
Classification Study:
Survival and Age of

Stands with Root Rot

In this example we will look at a simple one-way classification. Recall
from the study description in section 4.2 that a researcher has searched an
inventory database for suitable stands for this study. In this case, nine sep-
arate stands with similar levels of root rot infestation are chosen and sam-
pled. This is another observational study and the case for any cause and
effect relationships will accordingly be weak.

Section 5.3.1 describes the SAS code for the initial data input. The SAS
programs required to accomplish the analysis of the three age group
model are described in section 5.3.2. The programs used to test for the
linear and quadratic trends in stand age are outlined in section 5.3.3. The
model is then refitted with just two age groups (young and old) using the
programs in section 5.3.4. Detailed output is included in all sections.

5.3.1 Initial data input The following program reads in the tree sam-
pling data and produces Table 30, which shows frequency counts of dead
and live trees. SAS statements appearing in boldface type are essential for
the performance of the program. The other statements generally improve
the appearance of the output.

title ‘Simple One-Way Classification Example’;
**  Reading in the data ;
proc format; value age 1 = ‘1..Young’ 2 = ‘2..Middle’ 3 = ‘3..Old’;

value alive 0 = ‘0..Dead’ 1 = ‘1..Alive’; run;
data one;
input dead alive @@;
stand + 1;                             *<== Creating the stand number;
age = 1 + (stand ge 3) + (stand ge 6); *<== Creating the age variable;
total = dead + alive;
count = dead;  y = 0; prop =  dead/total; output;
count = alive; y = 1; prop = alive/total; output;

label age = ‘Age’ stand = ‘Stand Number’
alive = ‘Alive’  dead = ‘Dead’
count = ‘Count’  total = ‘Total Count’
prop = ‘Observed Proportion’ y = ‘Survive?’ ;

format age age. y alive.;
cards;                  * The notes below cannot be in the SAS data lines;
13 28  8 27             *<==  Young stands;
10 18 15 22  6 10       *<==  Middle-aged stands;
7  9  7 11 19 22  7  8 *<==  Old stands;
;
proc print data = one label;
id age stand; var dead alive count y prop;

title2 ‘Listing of data’;      *<== the output is not shown;
proc freq data = one;
weight count;                *<== Output is in Table 30;
table  y * stand / norow nopercent;  * chisq;

title2 ‘Frequency Counts’;
run;
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 30 Counts of dead trees for the root rot and stand age example

--------------------------------------------------------
Y(Survive?)     stand(Stand Number)

Frequency  ----Young----     -------Middle-Aged-------
Col Pct         1       2       3       4       5
---------+--------+--------+--------+--------+--------+
0..Dead       13       8      10      15       6 

  31.71   22.86   35.71   40.54   37.50 
---------+--------+--------+--------+--------+--------+
1..Alive      28      27      18      22      10 

  68.29   77.14   64.29   59.46   62.50 
---------+--------+--------+--------+--------+--------+
Total          41       35       28       37       16

Frequency  ------------Old Stands-----------
Col Pct         6       7       8       9  Total
---------+--------+--------+--------+--------+
0..Dead        7       7      19       7      92

  43.75   38.89   46.34   46.67 
---------+--------+--------+--------+--------+
1..Alive       9      11      22       8     155

  56.25   61.11   53.66   53.33 
---------+--------+--------+--------+--------+
Total          16       18       41       15      247
--------------------------------------------------------

5.3.2 Logistic regression analysis of the three age group model The
following code performs the analysis for the one-way classification for the
three age groups. The population statement only needs to include the
stand variable. However, when both age and stand variables are included
they will appear in the Population Profiles and in any output data
set specified by the response statement (for version 6.10 and later).
This makes it easier to merge the predicted data set with the original data
set when producing a final data set.

**  Three Group Model  ;
proc catmod data=one;
population age stand;
weight count;
model y = age / ml;
contrast ‘Young vs Midl & Old’  age -1 0;    
contrast ‘Middle vs Old’        age  1 2;    

title2 ‘Three Group Analysis’;
run;

The first part of the output is shown below. It allows us to check that the
data have been defined correctly.
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Simple One-Way Classification Example
Three Group Analysis

CATMOD PROCEDURE
Response: Y                           Response Levels (R)=     2
Weight Variable: COUNT                Populations     (S)=     9
Data Set: ONE                         Total Frequency (N)=   247
Frequency Missing: 0                  Observations  (Obs)=    18

POPULATION PROFILES
Sample

Sample    Age     Stand     Size
---------------------------------

1   1..Young    1          41
2   1..Young    2          35
3   2..Middle   3          28
4   2..Middle   4          37
5   2..Middle   5          16
6   3..Old      6          16
7   3..Old      7          18
8   3..Old      8          41
9   3..Old      9          15

RESPONSE PROFILES

Response     Y
------------------

1    0..Dead
2    1..Alive

The next part of the output displays the iteration history for the fitting
procedure. The last value of the −2 Log Likelihood can be used to
check hand calculations in section 7.2.

Simple One-Way Classification Example
Three Group Analysis

MAXIMUM-LIKELIHOOD ANALYSIS

Sub       -2 Log     Convergence      Parameter Estimates
Iteration  Iteration  Likelihood    Criterion      1         2         3
--------------------------------------------------------------------------

0          0      342.41471       1.0000         0         0        0
1          0      321.11188       0.0622   -0.5287   -0.3660   0.0596
2          0      321.03923     0.000226   -0.5543   -0.4075   0.0763
3          0      321.03921    4.5882E-8   -0.5547   -0.4081   0.0766
4          0      321.03921    2.125E-15   -0.5547   -0.4081   0.0766
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The rest of the output is shown in Figure 32.

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1        16.98    0.0000
AGE                       2         4.96    0.0836

LIKELIHOOD RATIO          6         1.23    0.9755

ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES

Standard    Chi-
Effect            Parameter  Estimate    Error    Square   Prob
----------------------------------------------------------------
INTERCEPT                 1   -0.5547    0.1346    16.98  0.0000
AGE                       2   -0.4081    0.2001     4.16  0.0414

3    0.0766    0.1885     0.17  0.6844

CONTRASTS OF MAXIMUM-LIKELIHOOD ESTIMATES

Contrast                     DF   Chi-Square      Prob
------------------------------------------------------
Young vs Midl & Old           1         4.16    0.0414
Middle vs Old                 1         0.67    0.4137

CONTRASTS OF MAXIMUM-LIKELIHOOD ESTIMATES

Contrast                     DF   Chi-Square      Prob
------------------------------------------------------
Linear                        1         4.94    0.0263
Quadratic                     1         0.17    0.6844

 32 Results of fitting the three groups model to the data, with two sets of contrasts. 
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This program fits the one group or intercept only model and the satu-
rated model. Essential statements appear in boldface type.

**  One Group Model  ;
proc catmod data=one;
population age stand;
weight count;
model y =  ;

title2 ‘One Group Analysis’;
run;
**  Saturated Model  ;
proc catmod data=one;
population age stand;
weight count;
model y =  stand;

title2 ‘Saturated Model’;
run;

The following part of the output is salient to the discussion in sections
4.2.2 and 4.2.3:

Simple One-Way Classification Example
One Group Analysis

CATMOD PROCEDURE

MAXIMUM-LIKELIHOOD ANALYSIS

Parameter
Sub        -2 Log     Convergence   Estimates

Iteration   Iteration   Likelihood    Criterion         1
------------------------------------------------------------

0           0       342.41471       1.0000            0
1           0       326.17462       0.0474      -0.5101
2           0       326.16695    0.0000235      -0.5216
3           0       326.16695     4.91E-11      -0.5216

Simple One-Way Classification Example
One Group Analysis

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1        15.71    0.0001

LIKELIHOOD RATIO          8         6.36    0.6074
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ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES

Standard    Chi-
Effect            Parameter  Estimate    Error    Square   Prob
----------------------------------------------------------------
INTERCEPT                 1   -0.5216    0.1316    15.71  0.0001

Simple One-Way Classification Example
Saturated Model

CATMOD PROCEDURE

MAXIMUM-LIKELIHOOD ANALYSIS

Sub       -2 Log    Convergence     Parameter Estimates
Iteration  Iteration  Likelihood   Criterion      1        2        3
------------------------------------------------------------------------

0          0      342.41471      1.0000         0        0        0
1          0      319.93263      0.0657   -0.4713  -0.2604  -0.6145
2          0        319.811    0.000380   -0.4938  -0.2732  -0.7183
3          0      319.81088   3.5348E-7   -0.4943  -0.2730  -0.7221
4          0      319.81088   4.701E-13   -0.4943  -0.2730  -0.7221

Parameter Estimates
Iteration      4          5          6          7          8           9
------------------------------------------------------------------------

0           0          0          0          0          0         0
1     -0.1002     0.0929    -0.0287     0.2213     0.0268    0.3249
2     -0.0940     0.1108    -0.0170     0.2425     0.0418    0.3472
3     -0.0935     0.1113    -0.0165     0.2430     0.0423    0.3477
4     -0.0935     0.1113    -0.0165     0.2430     0.0423    0.3477

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1        11.90    0.0006
STAND                     8         6.00    0.6471

LIKELIHOOD RATIO          0          .       .

5.3.3 Contrast analysis The objectives of the study will dictate which
contrasts are of interest. The program for two of the contrasts was shown
in section 5.3.2, and output shown in Figure 32. This section will fit lin-
ear and quadratic contrasts to examine a trend response with age. The test
results are shown in the bottom half of the output in Figure 32. New
statements appear in boldface type.
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**  Three Group Model  ;
proc catmod data=one;
population age stand;
weight count;
model y = age / ml;
response logit / out = pred;
contrast ‘Linear   ‘  age 2  1;
contrast ‘Quadratic’  age 0 -3;

title2 ‘Three Group Analysis’;
run;

A more direct test for the linear effect of age can be obtained by run-
ning the above code again, but now specifying that age is a DIRECT effect
so that age is treated as a continuous variable. The boldface SAS state-
ment shows where the change in the program is required. Note that the
contrast statements have been left out since they are only relevant for
age when it is a categorical variable.

**  Three Group Model - Linear Effect ;
proc catmod data=one;
population age stand;
weight count;  direct age;
model y = age / ml;     *<== Output is in Figure 33;

title2 ‘Three Group Analysis - Linear Effect’;
run;

The output is presented in Figure 33. Notice that because the parameter
estimate for age is positive and the CATMOD procedure fits the probability
of the lowest response level (in this case 0.. Dead), the mortality proba-
bility increases with age.

Simple One-Way Classification Example
Three Group Analysis - Linear Effect

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1        11.75    0.0006
AGE                       1         4.86    0.0274

LIKELIHOOD RATIO          7         1.39    0.9858

ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES

Standard    Chi-
Effect            Parameter  Estimate    Error    Square   Prob
----------------------------------------------------------------
INTERCEPT                 1   -1.2788    0.3730    11.75  0.0006
AGE                       2    0.3626    0.1644     4.86  0.0274

 33 Output for the model with age as a direct effect (continuous variable).
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5.3.4 Analysis of the two age group model The next step in our anal-
ysis is to fit the model with the two groups: younger stands and older
stands. The following program includes the required SAS programming
code. The middle- and old-aged stands are pooled into one new category
by giving them the same formatted value defined in PROC FORMAT. The
CATMOD output is presented in Figure 34. The predicted values are placed
into a data set called pred and are shown in Table 31, while the residuals
are plotted in Figure 14 (page 36). Note that the residuals and predicted
values are output only for the dead response observations (by using a
where statement when creating the NEW data set). New SAS codes appear
in boldface type.

proc format; value age 1 = ‘1..Young’ 2, 3 = ‘Older’;

**  Two Group Model  ;

proc catmod data=one;

population age stand;

weight count;

model y = age;

response logit / out = pred;

format age age.;

title2 ‘Two Group Analysis’;

run;

proc sort data=one;  by stand y; run;

**  Adding predicted values to original dataset ;

data new;

merge one pred; by stand y;

if —type— ne ‘FUNCTION’ and y = 0; *<== Keeping the Dead Probabilities only;
label age = ‘Age’ stand = ‘Stand Number’

prop = ‘Observed Proportion’ y = ‘Survive?’

—obs— = ‘Observed Proportion’ —pred— = ‘Predicted Proportion’

—resid— = ‘Residual Proportion’;

keep y age stand count —obs— —pred— —resid— total;

run;

proc print data=new label;

id age stand;

var y count —obs— —pred— —resid— total;

title2 ‘Listing of final dataset with predicted values’;

proc plot data=new;

plot —pred—*—obs—;

plot —resid—*(stand age) / vref = 0;

title2 ‘Plots’;

run;



92

Simple One-Way Classification Example
Two Group Analysis

CATMOD PROCEDURE

Response: Y                           Response Levels (R)=     2
Weight Variable: COUNT                Populations     (S)=     9
Data Set: ONE                         Total Frequency (N)=   247
Frequency Missing: 0                  Observations  (Obs)=    18

POPULATION PROFILES
Sample

Sample    AGE     STAND     Size
---------------------------------

1   1..Young    1          41
2   1..Young    2          35
3   Older       3          28
4   Older       4          37
5   Older       5          16
6   Older       6          16
7   Older       7          18
8   Older       8          41
9   Older       9          15

RESPONSE PROFILES

Response     Y
------------------

1    0..Dead
2    1..Alive

MAXIMUM-LIKELIHOOD ANALYSIS

Sub        -2 Log     Convergence    Parameter Estimates
Iteration   Iteration   Likelihood    Criterion         1           2
------------------------------------------------------------------------

0           0       342.41471       1.0000            0           0
1           0       321.78082       0.0603      -0.6170     -0.2778
2           0       321.70925     0.000222      -0.6522     -0.3097
3           0       321.70923    4.5782E-8      -0.6527     -0.3102
4           0       321.70923    2.297E-15      -0.6527     -0.3102

 34 Fit of the two group model.
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Simple One-Way Classification Example         
Two Group Analysis            

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1        18.96    0.0000
AGE                       1         4.28    0.0385

LIKELIHOOD RATIO          7         1.90    0.9653

ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES

Standard    Chi-
Effect            Parameter  Estimate    Error    Square   Prob
----------------------------------------------------------------
INTERCEPT                 1   -0.6527    0.1499    18.96  0.0000
AGE                       2   -0.3102    0.1499     4.28  0.0385

 34 (continued)

 31 Listing of the predicted proportions and simple residuals from the two group model

---------------------------------------------------------------------
Simple One-Way Classification Example

Two Group Analysis
Listing of final dataset with predicted values

Stand                 Observed   Predicted  Residual  Total
Age      Number Survive? Count Proportion Proportion Proportion Count

1..Young    1   0..Dead    13    0.31707    0.27632    0.040757   41
1..Young    2   0..Dead     8    0.22857    0.27632   -0.047744   35
Older       3   0..Dead    10    0.35714    0.41520   -0.058062   28
Older       4   0..Dead    15    0.40541    0.41520   -0.009799   37
Older       5   0..Dead     6    0.37500    0.41520   -0.040205   16
Older       6   0..Dead     7    0.43750    0.41520    0.022295   16
Older       7   0..Dead     7    0.38889    0.41520   -0.026316   18
Older       8   0..Dead    19    0.46341    0.41520    0.048210   41
Older       9   0..Dead     7    0.46667    0.41520    0.051462   15
---------------------------------------------------------------------
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5.4 One-way
Classification Study:

Fertilizer Trial

Recall from section 4.3 that this one-way classification study consists of
twenty-four rows, each with ten seedlings, which were randomly assigned
fertilizer treatments of 0, 100, 200, and 300 kg/ha. In all other respects,
the seedlings are treated similarly. The seedling’s survival is assessed after
the first growing season. The SAS code for the initial data input and con-
tingency table output appears in the next section. The one-way classifica-
tion model is programmed in section 5.4.2. Section 5.4.3 presents the
program code used to determine a linear equation for the fertilizer
response and to test the linear fit.

5.4.1 Contingency table The following SAS program code reads in the
fertilizer study data and the first freq procedure provides summary
counts in the form of a contingency table (see Table 12, page 38). The
second freq procedure provides the results by rows within the treatments
to check for homogeneity of row response. These results were summarized
in Table 13 (page 39). Essential SAS statements appear in boldface type.

title ‘Fertilizer study’;
proc format; value alive 0=’Alive’ 1=’Dead’;
data fert;  total = 10;
do treat = 0 to 300 by 100;
do rw  = 1 to 6;

row = 6 * (treat/100) + rw;  *To get row numbers from 1 to 24;
input count @@;
y = 0; output;
y = 1; count = total - count; output;

end; end; format y alive.;
datalines;
4  5  6  6  4  5
7  8  6  9  7  5
6  8  6  9  9 10
9 10  9 10  8  9
;
proc freq; weight count;
table y*treat / norow nopercent chisq;

title2 ‘Response Frequencies by Treatments’;
proc freq; by treat notsorted; weight count;
table y*rw / norow nopercent chisq;

title2 ‘Are rows similar within each treatment?’;
run;
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5.4.2 One-way classification analysis The logistic analysis of this data
using PROC CATMOD, including a test for linear response to the treatments
on the logit scale, is accomplished with the following SAS program code:

proc catmod;
population treat row;
weight count;  *<== To include the number of trees surviving in each row;
model y = treat;
contrast ‘Linear’ treat -3 -2 -1;

title2 ‘Correct Analysis keeping rows as the experimental units’;
run;

The output is shown in Figure 35. The initial parts of the output show
the populations and response profiles. Note that the likelihood ratio out-
put at the bottom of the MAXIMUM LIKELIHOOD ANALYSIS OF VARI-
ANCE TABLE is exactly the same as the test results for homogeneity of
rows with treatment shown in Table 13 (page 39).
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Fertilizer study 
Correct Analysis keeping rows as the experimental units

CATMOD PROCEDURE

Response: Y                           Response Levels (R)=     2
Weight Variable: COUNT                Populations     (S)=    24
Data Set: FERT                        Total Frequency (N)=   240
Frequency Missing: 0                  Observations  (Obs)=    45

POPULATION PROFILES
Sample

Sample  TREAT  ROW     Size
----------------------------

1     0     1         10
2     0     2         10
3     0     3         10
.     .     .          .
.     .     .          .
.     .     .          .
22   300     4         10
23   300     5         10
24   300     6         10

RESPONSE PROFILES

Response    Y
---------------

1    Alive
2    Dead

Fertilizer study
Correct Analysis keeping rows as the experimental units

MAXIMUM-LIKELIHOOD ANALYSIS

Sub       -2 Log    Convergence             Parameter Estimates
Iteration  Iteration  Likelihood   Criterion        1         2         3         4
--------------------------------------------------------------------------------------

0          0      332.71065      1.0000           0         0         0         0
1          0      254.33126      0.2356      0.9167   -0.9167   -0.1167    0.2833
2          0      251.08306      0.0128      1.1139   -1.1139   -0.2671    0.2630
3          0      250.95052    0.000528      1.1552   -1.1552   -0.3079    0.2311
4          0      250.94999   2.1132E-6      1.1579   -1.1579   -0.3106    0.2284
5          0      250.94999   4.183E-11      1.1579   -1.1579   -0.3106    0.2284

 35 Logistic regression analysis for the one-way classification.
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MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      prob
--------------------------------------------------
INTERCEPT                 1        45.80    0.0000
TREAT                     3        24.57    0.0000

LIKELIHOOD RATIO         20        21.67    0.3586

ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES

Standard    Chi-
Effect            parameter  Estimate    Error    Square   prob
----------------------------------------------------------------
INTERCEPT                 1    1.1579    0.1711    45.80  0.0000
TREAT                     2   -1.1579    0.2502    21.41  0.0000

3   -0.3106    0.2626     1.40  0.2369
4    0.2284    0.2852     0.64  0.4232

CONTRASTS OF MAXIMUM-LIKELIHOOD ESTIMATES

Contrast                     DF   Chi-Square      prob
------------------------------------------------------
Linear                        1        21.77    0.0000

 35 (continued)

5.4.3 Simple linear relationship The following program determines a lin-
ear equation (on the logit scale) for the treatment responses and examines
the adequacy of the linear fit. The DIRECT statement is used to designate
treatment as a continuous variable. The salient part of the output is shown
in Figure 36. The plots of the residuals (Figure 16, page 40) show a good
fit. Remember that the mirror image effect is due to the two residuals per
row (which must add up to zero within each row). We could plot only the
survival residuals if we used a where = 0; in the PLOT procedure.

proc catmod;

population treat row;  direct treat;

weight count;  *<== to include the number of trees surviving in each row;
model y = treat;   *<== Output is in Figure 36;
response logit / out = pred;

title2 ‘Correct Analysis keeping rows as the experimental units’;

run;

proc print data=pred;

where —type— = ‘PROB’;  *<== predicted values in Tables 14;
run;

proc plot data=pred vpercent = 50;

where —type— = ‘PROB’;

plot —resid— * (treat row) / vref = 0;  *<== plots are in Figure 16;
title2 ‘Residual Plots’;

run;
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Fertilizer study
Correct Analysis keeping rows as the experimental units

MAXIMUM-LIKELIHOOD ANALYSIS

Sub        -2 Log     Convergence    Parameter Estimates
Iteration   Iteration   Likelihood    Criterion         1           2
------------------------------------------------------------------------

0           0       332.71065       1.0000            0           0
1           0       254.53063       0.2350       0.1067    0.005400
2           0       251.33136       0.0126       0.0270    0.007269
3           0       251.27465     0.000226       0.0146    0.007562
4           0       251.27462     1.076E-7       0.0143    0.007568
5           0       251.27462    2.647E-14       0.0143    0.007568

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1         0.00    0.9495
TREAT                     1        24.95    0.0000

LIKELIHOOD RATIO         22        22.00    0.4602

ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES

Standard    Chi-
Effect            Parameter  Estimate    Error    Square   Prob
----------------------------------------------------------------
INTERCEPT                 1    0.0143    0.2265     0.00  0.9495
TREAT                     2   0.00757   0.00152    24.95  0.0000

 36 Logistic regression analysis using fertilizer treatment as a continuous variable.

5.5 Multiple
Regression: Herbicide

Thinning Trial

In this trial, a herbicide lance that injects glyphosate into trees using a
shotgun shell was tested for the number of shells needed to kill aspen
trees of different sizes. The size of the trees was measured by their dbh
(diameter at breast height). The main hypothesis of this study is that
larger trees will require more injections (see section 4.4).

5.5.1 Initial data input and summary The data for this study are listed
in Appendix 2.22 The following program reads in the data and produces a

22 This data is taken from SX84711Q. The analysis of a similar study with a more complicated
design is described in Bergerud (1988).
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summary of the data (see Table 15, page 43) by dbh class and number of
injections. Essential statements appear in boldface type. Other statements
improve the appearance of the output.

title ‘Aspen Injection Trial’;
options linesize=90 pagesize=59;
proc format; value dbhclass    0 - 15 = ‘ 0 - 15 cm’
15.1 - 20 = ‘15 - 20 cm’  20.1 - 25 = ‘20 - 25 cm’
25.1 - 30 = ‘25 - 30 cm’  30.1 - 35 = ‘30 - 35 cm’
35.1 - 40 = ‘35 - 40 cm’  40.1 - 45 = ‘40 - 45 cm’  ;
value dead 0 = ‘0 ..Alive’  1 = ‘1 .. Dead’;

run;
data aspen;
infile ‘aspen.dat’ ;
input dbh inj def;
dead = (def ge 95);** If def ge 95 then dead = 1, otherwise dead = 0;
tree + 1;  ** assigning each tree a unique identifier;

label dbh = ‘Aspen dbh (cm)’       inj = ‘Number of Injections’
def = ‘Percent Defoliation’ dead = ‘Dead or Alive’;

format dead dead.;  run;
proc freq data=aspen;
table dbh*inj / norow nocol nopercent;

format dbh dbhclass.;
run;

The Proc Format code establishes the 5 cm dbh classes and Proc
Freq uses these classes to create the table (indicated by the format state-
ment: format dbh dbhclass.;). To develop some intuitive feel for the
data, Table 16 (page 43) was produced by modifying the standard SAS
output to include the number of dead trees in each cell. In addition, the
last two size classes are pooled.

5.5.2 Multiple logistic regression model The following program fits the
multiple regression model. Essential SAS statements appear in boldface
type.

proc logistic;
model dead = dbh inj;

title2 ‘Logistic Regression Analysis’;
run;

The first part of the output, which describes the data, is shown on page
100. The model fitting information is presented in Table 17 (page 44).
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Aspen Injection Trial
Logistic Regression Analysis 

The LOGISTIC Procedure

Data Set: WORK.ASPEN
Response Variable: DEAD      Dead or Alive
Response Levels: 2
Number of Observations: 92
Link Function: Logit

Response Profile

Ordered
Value    DEAD     Count

1       0        47  
2       1        45

The rest of the output appeared in Figure 18 (page 45). Since Dead = 0
is the first value listed in the Response Profile above, the program fits the
probability of survival.

To confirm the marginally significant p-values, the models are rerun
with and without each term. The following program fits these submodels
for dbh and inj to perform deviance tests. The output is presented in
Figure 37.

proc logistic;
model dead =     inj;

title2 ‘Logistic Regression Analysis’;
title4 ‘With just Number of Injections’;
run;

proc logistic;
model dead = dbh    ;

title2 ‘Logistic Regression Analysis’;
title4 ‘With just dbh’;
run;
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Aspen Injection Trial
Logistic Regression Analysis 

With just Number of Injections

Model Fitting Information and Testing Global Null Hypothesis BETA=0

Intercept
Intercept        and

Criterion       Only       Covariates    Chi-Square for Covariates

AIC             129.496       111.233         .
SC              132.017       116.277         .
-2 LOG L        127.496       107.233       20.262 with 1 DF (p=0.0001)
Score              .             .          18.455 with 1 DF (p=0.0001)

With just dbh

The LOGISTIC Procedure

Model Fitting Information and Testing Global Null Hypothesis BETA=0

Intercept
Intercept        and

Criterion       Only       Covariates    Chi-Square for Covariates

AIC             129.496        62.678         .
SC              132.017        67.721         .
-2 LOG L        127.496        58.678       68.818 with 1 DF (p=0.0001)
Score              .             .          50.385 with 1 DF (p=0.0001)

 37 Results of simple logistic regression fitting procedure.

5.5.3 Model interpretation The following program calculates the fitted
dbh values for 50 and 95% mortality of trees for each number of injec-
tions and produces plots of the predicted equations. The program shows
both PROC CATMOD and PROC LOGISTIC approaches, although the out-
put from PROC LOGISTIC will be used for subsequent program steps. To
do this, we first run the multiple regression model, but now output two
data sets, which I have called:

1. parms containing the parameter estimates, using the outest
= parms; option and,

2. pred containing the predicted values, using the out = pred option.

Note that these option statements appear in different places within the
two procedures. The parameter estimates can be used to determine the
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fitted equations, fitted values, and sizes of trees that would be expected to
die if given a specific number of herbicide injections. New SAS statements
appear in boldface type.

/*  PROC CATMOD Approach:  
proc catmod data=aspen;
direct inj dbh; population tree;
model dead = inj dbh / noprofile noiter;
response logit / out = pred outest = parms;

title3 ‘Using Multiple Regression Model’;
*/
/*  PROC LOGISTIC Approach:  */
proc logistic data=aspen outest = parms;
model dead = inj dbh;
output out = pred p = pred reschi = reschi resdev = resdev;

title3 ‘Using Multiple Regression Model’;
run;

proc print data=parms; title4 ‘PARMS dataset’;
run;

The PROC CATMOD output for the parms data set is:

PARMS dataset

OBS    —METHOD—    —TYPE—    —NAME—          B1       B2          B3

1        ML       PARMS               -11.0306    -2.07431     0.98133
2        ML       COV         B1        6.5255     0.69319    -0.45788
3        ML       COV         B2        0.6932     0.47875    -0.13877
4        ML       COV         B3       -0.4579    -0.13877     0.05253

Note that the parms data set includes the parameter estimates on the first
line—B1 is the intercept, B2 is the slope or coefficient for the number of
injections, and B3 is the slope for dbh. The other three lines provide the
covariance matrix for these parameter estimates. This matrix can be used
to determine the confidence limits around fitted values.

The PROC LOGISTIC output for the parms data set is:

Aspen Injection Trial
Parms Data Set

OBS  —LINK—   —TYPE—    —NAME—     INTERCEP     INJ        DBH     —LNLIKE—

1    LOGIT    PARMS    ESTIMATE   -11.0306  -2.07431    0.98133   -20.9346
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The parameter estimates are labelled INTERCEP, INJ, DBH instead of B1,
B2, B3, and the log-likelihood for the model is in a variable called

—LNLIKE—. The model’s −2LogL can be obtained by multiplying this
value by −2. If COVOUT were added to the PROC LOGISTIC statement,
the covariance matrix would also be added to the parms data set. Table
18 (page 46), showing the equations and probabilities of mortality for
given numbers of injections, was created using the following code (based
on the parms data set output by PROC LOGISTIC):

data eqns;  set parms;

if —type— = ‘PARMS’;      * <== to select only the parameter estimates;
logit50 = log(0.50/0.50); * <== calculate logit value for mortality of 50%;
logit95 = log(0.05/0.95); * <== calculate logit value for mortality of 95%;
do inj = 1 to 8;

intrcept = b1 + b2 * inj;   * <== calculate intercept for each injection no.;
dbh50   = (logit50 - intrcept) / b3;  *<==  predicted tree size at 50% mortality;
dbh95   = (logit95 - intrcept) / b3;  *<==  predicted tree size at 95% mortality;
output;

end;  

label intrcept = ‘Intercept’ b2 = ‘B2 * DBH’  inj = ‘Injection—number’

dbh50 = ‘Predicted size—at 50% mortality’

dbh95 = ‘Predicted size—at 95% mortality’;

run;

proc print split = ‘—’;

id inj; var intrcept b2 dbh50 dbh95;

title4 ‘Listing of equations for each injection number’; run;

Graphs of the fitted curves will be easier to read if a good range of inj
and dbh values is available. These values are calculated using the parms
data set above and the following code:

data plot;  set parms (rename = (intercep = b1 dbh = b2 inj = b3));
if —type— = ‘PARMS’;         * <== to select only the parameter

estimates;
do inj = 1 to 8;             * <== range of injection numbers;

do dbh = 6 to 38;          * <== range of tree sizes;
logit = b1 + b2*inj + b3*dbh;
pred = 1/(1 + exp(logit));* <== predicted probability of mortality;
output;  end; end; run;

proc plot data=plot;           *<== Output in Figure 38;
plot pred*dbh = inj / haxis = 6 to 38 by 2;

title3 ‘Plots of Predicted Probability of Mortality versus Aspen size’;
run;

The graph produced (see Figure 38) shows how mortality probability
decreases with increasing tree size and that this can be counter-balanced
by injecting the tree with more glyphosate capsules.
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Aspen Injection Trial
Logistic Regression Analysis

Plots of Predicted Probability of Mortality versus Aspen Size

Plot of PRED*DBH. Symbol is value of INJ.
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|

1.0 + 1 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8
| 1 2 3 4 5 6 7 8
| 4 5 6 7 8
| 1 2 3 Hand
| 7 8
| 5 6
| 3 4

0.8 + 1 2
|
| 7 8
| 6
| 5
| 4
| 3

0.6 + 1 2
|
| 8
| 7
| 6
| 5
| 4

0.4 + 3
| 2
| 1
| 8
| 7
| 6
| 4 5

0.2 + 3
| 1 2
| 8
| 5 6 7
| 2 3 4
| 1 6 7 8
| 1 2 3 4 4 5 5 6 7 8

0.0 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+--

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

DBH

NOTE: 156 obs hidden.

1 1 1 1
1

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2

2

2

2

2

2

2

2

2

3 3

3

3

3

3

3

3

3

3

4 4
4

4

4

4

4

4

4

4 4

5

5
5

5

5

5

5

5

5 5

6 6

6

6

6

6

6

6

6

6
6

7 7

7

7

7

7

7

7

7

7

7

8 8

8

8

8

8

8

8

8

8
8

 38 Printer plot of curves for the multiple regression model showing predicted probability of mortality versus
aspen size. (Lines are hand-drawn.)
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The predicted values from the fitting procedure were output into a data
set called pred. The code and some of that data are shown below:

proc print data = pred;
title3 ‘Listing of the PRED dataset’; run;

Aspen Injection Trial
Predicted Data Set

OBS   DBH  INJ  DEF    DEAD    TREE  —LEVEL—     PRED    RESCHI    RESDEV

1  11.0   2   100  1 .. Dead   1  0 ..Alive  0.01232  -0.11166  -0.15743
2  11.0   2   100  1 .. Dead   2  0 ..Alive  0.01232  -0.11166  -0.15743
3  12.0   2   100  1 .. Dead   3  0 ..Alive  0.03220  -0.18239  -0.25583
4  10.5   3   100  1 .. Dead   4  0 ..Alive  0.00096  -0.03097  -0.04379
5  11.5   3   100  1 .. Dead   5  0 ..Alive  0.00255  -0.05059  -0.07149
6  12.0   3   100  1 .. Dead   6  0 ..Alive  0.00416  -0.06465  -0.09134
7  12.0   3   100  1 .. Dead   7  0 ..Alive  0.00416  -0.06465  -0.09134
8  13.0   3   100  1 .. Dead   8  0 ..Alive  0.01103  -0.10560  -0.14893
9  13.0   3   100  1 .. Dead   9  0 ..Alive  0.01103  -0.10560  -0.14893
10  13.0   3   100  1 .. Dead  10  0 ..Alive  0.01103  -0.10560  -0.14893
.    .    .     .    ..        .    ..        .         .         .     
.    .    .     .    ..        .    ..        .         .         .     
.    .    .     .    ..        .    ..        .         .         .     
82  28.0   7    15  0 ..Alive  82  0 ..Alive  0.87287   0.38163   0.52147
83  30.0   7     5  0 ..Alive  83  0 ..Alive  0.97995   0.14304   0.20127
84  30.5   7    25  0 ..Alive  84  0 ..Alive  0.98763   0.11192   0.15779
85  31.0   7    10  0 ..Alive  85  0 ..Alive  0.99239   0.08757   0.12361
86  31.0   7    10  0 ..Alive  86  0 ..Alive  0.99239   0.08757   0.12361
87  33.0   7    20  0 ..Alive  87  0 ..Alive  0.99892   0.03282   0.04641
88  33.0   7    10  0 ..Alive  88  0 ..Alive  0.99892   0.03282   0.04641
89  34.5   7     5  0 ..Alive  89  0 ..Alive  0.99975   0.01572   0.02223
90  24.5   8   100  1 .. Dead  90  0 ..Alive  0.02706  -0.16676  -0.23422
91  32.5   8    20  0 ..Alive  91  0 ..Alive  0.98619   0.11835   0.16679
92  42.0   8     0  0 ..Alive  92  0 ..Alive  1.00000   0.00112   0.00158

To calculate the dbh of trees predicted by the model to die with specific
probabilities (0.01, 0.50, and 0.99) for each number of injections, the fol-
lowing code is used. These values are plotted in Figure 19 (page 47). This
graph shows that the constant probability lines are straight. With each
additional injection, the size of the tree must increase to have the same
probability of surviving.
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data eqns;  set parms (rename = (intercep = b1 dbh = b2 inj = b3));
if —type— = ‘PARMS’;          * <== to select only the parameter

estimates;
do prob = 0.01, 0.50, 0.99;
logit = log((1-prob)/prob);
do inj = 1 to 8;
intrcept = b1 + b3 * inj;
dbh = (logit - intrcept) / b2;
output;

end; end;
label intrcept = ‘Intercept’      b2 = ‘Slope for Dbh’

b3 = ‘Slope for Inj Number’  b1 = ‘Simple Intercept’
prob = ‘Probability of Survival’
logit =’Logit of Survival’;

run;
proc format; value prob 0.01 = ‘&’ 0.50 = ‘*’  0.99 =’+’; run;
proc plot;
plot dbh * inj = prob/vaxis = 0 to 35 by 5;   *<== Output in Figure 19;

*plot dbh * inj = logit;
format prob prob.;

title3 ‘Size of Tree Predicted to Die with the Specified Probability’;
run;

5.5.4 Assessing the adequacy of the multiple regression model As a
final check of the multiple regression model, the residuals should be plot-
ted against the independent variables, dbh and inj. The following code
will do this.

proc plot data = pred;*<== Output in Figures 20 and 21;
plot (reschi resdev)*(dbh inj) / vref = 0;

title3 ‘Diagnostic Plots’;
run;

Recall that PROC LOGISTIC produces two types of residuals and these
are plotted against dbh and inj in Figures 20 and 21 (pages 48 and 49).
The plots show no obvious patterns and no particular observation appears
to stick out, suggesting that the model is adequate.
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5.5.5 Factorial models: looking for non-linearity in response More
complicated models are necessary to check for non-linearity in survival
probability responses. The following program refits the logistic regression
model with number of injections as a categorical variable and dbh as a
continuous variable (using dbh values directly and not grouping them
into classes). First we must define the proper experimental unit in a Pop-
ulation statement so that we can compare the various models we fit to
each other. In this case, each tree is independently assigned a treatment
(number of injections) and is the experimental unit. A further assump-
tion of the analysis is that each tree responds independently to the treat-
ments. Therefore, trees are the correct experimental unit and the variable
tree identifies each tree uniquely. Essential SAS statements appear in
boldface type. The output appears in Figure 39.

proc catmod data = aspen;
population tree;
direct dbh;      * <== indicates that dbh is a continuous variable;
format dbh 5.1;  * <== use dbh values and not class (formatted) values;

* (only necessary if dbh had been assigned   
the dbhclass format in the data step);

model dead = inj dbh / noprofile noiter;
contrast ‘Injections: linear’ inj 6 5 4 3 2 1;  * 7 levels;

title3 ‘Treating inj as a class variable and dbh as a covariate’;
run;

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1        14.71    0.0001
INJ                       5*         .       .
DBH                       1        15.92    0.0001

LIKELIHOOD RATIO         85        40.56    1.0000

NOTE: Effects marked with ‘*’ contain one or more
redundant or restricted parameters.

CONTRASTS OF MAXIMUM-LIKELIHOOD ESTIMATES

Contrast                     DF   Chi-Square      Prob
------------------------------------------------------
Injections: linear            1         7.52    0.0061

 39 Fit of the model with number of injections as a categorical variable and dbh as
a covariate (continuous variable).
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In Figure 39, note that the degrees of freedom for inj are five and not
six as expected (since inj has seven levels, it should have six degrees of
freedom).

We can expand the non-linearity test to include dbh by using the dbh
class intervals. The following program fits a two-way factorial design with
dbh class and injection number as the two factors. Essential SAS state-
ments appear in boldface type.

proc format; value dbhclass    0 - 15 = ‘0 - 15 cm’
15.1 - 20 = ‘15 - 20 cm’  20.1 - 25 = ‘20 - 25 cm’
25.1 - 30 = ‘25 - 30 cm’  30.1 - 45 = ‘ > 30 cm’;

run;
proc catmod;
population tree;
model dead = inj dbh inj*dbh / noiter; *<== Output is in Figure 40;
contrast ‘Injections: linear’ inj 6 5 4 3 2 1;  * 7 levels;
contrast ‘Dbh: linear’        dbh     4 3 2 1;  * 5 levels;

format dbh dbhclass.; *  <== to use dbh class values defined by the
dbhclass format;
title2 ‘Logistic Regression Analysis’;
run;

This program redefines the dbh classes with the proc format so that
all the trees greater than 30 cm are pooled together. The population
statement identifies the experimental units with the variable tree. The
model statement indicates that the response variable is dead, which is fit-
ted with a model including inj, dbh, and inj*dbh as categorical vari-
ables (since there is no direct statement). The option in the model
statement indicates that information about the number of iterations
required to fit the model are not to be output (noiter). The contrast
statements are similar to those of PROC GLM and are described in section
5.1.1.1. The format statement specifies that the categorical values
(defined by the format dbh class) are used instead of the actual dbh
values.

The output is shown in Figure 40. It describes the various ‘‘popula-
tions’’ under consideration and the values of the response variable. While
the list of population and response profiles can be deleted with the
noprofile option in the model statement, it is important to look at
this output at least once to ensure that the experimental units are cor-
rectly identified by the population statement and to check which level
of the response variable is first and being fitted by the procedure. All
models run on one data set should have the same defined experimental
units so that these models can be correctly compared to each other. This
is checked by seeing if the different models have the same total degrees of
freedom (calculated by adding up the degrees of freedom column in the
MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE produced by
each Model statement—92 in this case). This total should be equal to the
number of experimental units in the study. The proper definition of the
experimental units is an important concern because PROC CATMOD can
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automatically pool observations in ways that may be inappropriate. This
would occur, for instance, when fitting a model with dbh, but not injec-
tion number. Such a model could not be compared to the full model
without the use of the population statement.

In this example, the main effects and interaction—dbh, inj and
dbh*inj—do not have the degrees of freedom expected of them because
of the missing dbh and injection number combinations, nor has SAS pro-
vided the tests as we would have liked. The output contains a warning
message (NOTE: Effects marked with ‘*’ contain one or more
redundant or restricted parameters.) to let us know that there
is a problem. An overall test of the lack of fit of the multiple regression
program is calculated by looking at the difference in −2LogL of the multi-
ple regression and factorial models: 41.87 − 40.62 = 1.25 with 89 − 78
= 11 degrees of freedom. This is clearly not significant and implies that
the multiple regression model is quite adequate.
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CATMOD PROCEDURE

Response: DEAD                        Response Levels (R)=     2
Weight Variable: None                 Populations     (S)=    92
Data Set: ASPEN                       Total Frequency (N)=    92
Frequency Missing: 0                  Observations  (Obs)=    92

POPULATION PROFILES
Sample

Sample  TREE     Size
----------------------

1     1          1
2     2          1
3     3          1
.     .          .
.     .          .
.     .          .
90    90          1
91    91          1
92    92          1

RESPONSE PROFILES

Response     DEAD
--------------------

1     0 ..Alive
2     1 .. Dead

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1         0.68    0.4101
INJ                       3*         .       .
DBH                       2*         .       .
INJ*DBH                   8*         .       .

LIKELIHOOD RATIO         78        40.62    0.9999

NOTE: Effects marked with ‘*’ contain one or more
redundant or restricted parameters.

CONTRASTS OF MAXIMUM-LIKELIHOOD ESTIMATES

Contrast                     DF   Chi-Square      Prob
------------------------------------------------------
Injections: linear            1         1.15    0.2828
Dbh: linear                   1         2.41    0.1203

 40 Fit of the two-way factorial model.



111

5.6 One-way
Classification With

Covariable: Root Collar
Weevil Study

The data collected are as in Appendix 2. The purpose of this study was to
test if screefing the duff from around seedlings would protect them from
the root collar weevil which lives in the duff. The study’s main hypothesis
was that the probability of weevil attack would increase with weevil
numbers, but decrease with the screefing treatment.

5.6.1 Initial data input and plotting The following program reads in
the data and plots the observed proportions for an exploratory look.
Essential SAS statements appear in boldface type. The output appeared in
Figure 25 of Section 4.5.4 (page 57).

title ‘Root Collar Weevil Example’;

** To help remind us of the meaning of the levels of y and trmt  ;

proc format; value y    2 =’2: Not Attacked’  1 = ‘1: Attacked’;

value trmt 0 = ‘Screefed’        1 = ‘Control (1)’;     run;

data weevil;

infile ‘weevil.dat’;   

input trmt plot number weevil;

** Two observations for each plot are required.  One observation for the 

number of attacked seedlings and another for those not attacked.;

count = number;      y = 1; prop = count/16; 

logit = log((prop+0.01)/(1-prop+0.01)); output;

count = 16 - number; y = 2; prop = count/16; 

logit = log((prop+0.01)/(1-prop+0.01)); output;

**  Labels to help remind us of what the variables are.;

label trmt = ‘Treatment’  weevil = ‘Numbers of Weevils’

prop = ‘Observed Proportion’  logit = ‘Empirical Logit’

number= ‘Seedlings Attacked’ plot =’Plot Number’;

format y y. trmt trmt.;

run;

proc sort; by trmt weevil;  run;

proc print;

id trmt plot;  var weevil number y count prop;

run;

proc plot data=weevil;

where y = 1;  * <==  plotting the attack counts only;
plot count * weevil = trmt;  *<== Output in Figure 25;
*plot logit * weevil = trmt; *<== Output would look much the same for this data;

title2 ‘Plot of the Observed Data’;

run;

5.6.2 Standard analysis of covariance This program fits several logistic
regression models to the data. Essential SAS statements appear in boldface
type. Specific details are discussed with the output after the program.
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proc catmod;
population trmt plot;
direct weevil;  weight count;
model y = trmt weevil trmt*weevil / noiter;
title2 ‘Model 1: Full model with two separate lines’;

run;
model y = trmt weevil             / noiter noprofile;
title2 ‘Model 2: With two parallel lines’;

run;
**  The next models are included to provide more exact tests of the trmt

and weevil effects and to check the Wald statistics   ;
model y = trmt                    / noiter noprofile;
title2 ‘Model 3: With treatment only - Two groups’;

run;
model y =      weevil             / noiter noprofile;
title2 ‘Model 4: With weevil only - One line’;

run;

The first part of the output shows the population/experimental unit
profiles and describes the response values. This is used to check that the
data are properly defined.

Root Collar Weevil
Model 1: Full Model with two separate lines

CATMOD PROCEDURE

Response: Y                           Response Levels (R)=     2
Weight Variable: COUNT                Populations     (S)=    28
Data Set: WEEVIL                      Total Frequency (N)=   448
Frequency Missing: 0                  Observations  (Obs)=    45

Note that since 11 observations have zero counts, CATMOD recognizes 45
observations instead of 56. Therefore, observations with zero counts need
not be kept in the data set.
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POPULATION PROFILES
Sample

Sample     TRMT      PLOT     Size
-----------------------------------

1   Screefed       1         16
2   Screefed       2         16
3   Screefed       3         16
4   Screefed       4         16
.      .           .         . 
.      .           .         . 
.      .           .         . 
25   Control (1)   11         16
26   Control (1)   12         16
27   Control (1)   13         16
28   Control (1)   14         16

RESPONSE PROFILES

Response         Y
-------------------------

1    1: Attacked
2    2: Not Attacked

The MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE for
model 1 is shown in Figure 41, that of model 2 is shown in Figure 42
while those of models 3 and 4 are shown in Figure 43.

Model 1: Full model with two separate lines

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1        42.05    0.0000
TRMT                      1         0.70    0.4015
WEEVIL                    1        24.83    0.0000
WEEVIL*TRMT               1         1.69    0.1932

LIKELIHOOD RATIO         24         8.38    0.9987

 41 Output from model 1: separate lines for each treatment level.
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Model 2: With two parallel lines

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1        68.66    0.0000
TRMT                      1        60.42    0.0000
WEEVIL                    1        43.20    0.0000

LIKELIHOOD RATIO         25         9.85    0.9970

ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES

Standard    Chi-
Effect            Parameter  Estimate    Error    Square   Prob
----------------------------------------------------------------
INTERCEPT                 1   -5.8269    0.7032    68.66  0.0000
TRMT                      2   -1.7052    0.2194    60.42  0.0000
WEEVIL                    3    0.3086    0.0469    43.20  0.0000

 42 Output from model 2: parallel lines, one for each treatment level.

Model 3: With treatment only - Two groups

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1       102.12    0.0000
TRMT                      1        48.45    0.0000

LIKELIHOOD RATIO         26       102.00    0.0000

Model 4: With weevil only - One line

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1        80.68    0.0000
WEEVIL                    1        46.41    0.0000

LIKELIHOOD RATIO         26       112.90    0.0000

 43 Partial output for models 3 and 4.
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5.6.3 Comparing the models The following program fits alternative
models (models 5 to 8) to the data. Two new variables, wvltrt and
wvlcon are created in the data step and are shown in Table 32. Essential
SAS code appears in boldface type.

data weevil;
set weevil;
wvltrt = (trmt=0) * weevil;
wvlcon = (trmt=1) * weevil;

run;
proc sort data=weevil; by trmt count y;
proc print data=weevil;  where y = 1;    *<==  Output in Table 32;
id plot; by trmt; var number weevil wvltrt wvlcon;

title2 ‘The new variables: wvltrt and wvlcon’;
run;
proc catmod;
population trmt plot;
weight count;
direct wvltrt wvlcon;
model y = trmt wvltrt wvlcon   / noiter noprofile;
title2 ‘Model 5: With two weevil variables and an intercept’;

run;
model y = wvltrt wvlcon   / noiter noprofile;
title2 ‘Model 6: With two weevil variables’;
title3 ‘i.e. Two radiating lines from the origin’;

run;
model y = wvltrt         / noiter noprofile;
title2 ‘Model 7: With weevil for treatment only’;
title3 ‘i.e. flat line for control’;

run;
model y =        wvlcon  / noiter noprofile;
title2 ‘Model 8: With weevil for control only’;
title3 ‘i.e. flat line for treatment’;

run;

The output for model 5 is shown in Figure 44, for model 6 is shown in
Figure 45, for model 7 is shown in Figure 46 and for model 8 is shown in
Figure 47.
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 32 The value of the new continuous variables, weevil, wvltrt, and wvlcon

--------------------------------------------------------------------------

Root Collar Weevil Example
The new variables: wvltrt and wvlcon

--------------------------- Treatment=Screefed ---------------------------

PLOT    NUMBER    WEEVIL    WVLTRT    WVLCON

1        0        10        10         0
2        1        13        13         0
3        0        11        11         0
4        2        16        16         0
5        1        16        16         0
6        1         9         9         0
7        0         6         6         0
8        1        14        14         0
9        1        17        17         0
10        1        19        19         0
11        0         0         0         0
12        0         3         3         0
13        0         2         2         0
14        0         1         1         0

------------------------- Treatment=Control (1) --------------------------

PLOT    NUMBER    WEEVIL    WVLTRT    WVLCON

1        6        12         0        12
2        6        12         0        12
3       12        17         0        17
4        7        12         0        12
5        9        14         0        14
6        7        12         0        12
7        7        12         0        12
8        3         8         0         8
9        9        14         0        14
10       13        19         0        19
11        0         2         0         2
12        0         1         0         1
13        0         0         0         0
14        0         1         0         1

--------------------------------------------------------------------------
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Model 5: With two weevil variables and an intercept
i.e. Full model with two separate lines       

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1        42.05    0.0000
TRMT                      1         0.70    0.4015
WVLTRT                    1         4.64    0.0313
WVLCON                    1        36.70    0.0000

LIKELIHOOD RATIO         24         8.38    0.9987

ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES
Standard    Chi-

Effect            Parameter  Estimate    Error    Square   Prob
----------------------------------------------------------------
INTERCEPT                 1   -5.1325    0.7915    42.05  0.0000
TRMT                      2   -0.6640    0.7915     0.70  0.4015
WVLTRT                    3    0.1969    0.0914     4.64  0.0313
WVLCON                    4    0.3360    0.0555    36.70  0.0000

 44 Output from model 5: full model with two weevil variables and an intercept.

Model 6: With two weevil variables
Two Radiating Lines Model

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1        57.84    0.0000
WVLTRT                    1         8.09    0.0044
WVLCON                    1        54.29    0.0000

LIKELIHOOD RATIO         25         9.18    0.9983

ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES
Standard    Chi-

Effect            Parameter  Estimate    Error    Square   Prob
----------------------------------------------------------------
INTERCEPT                 1   -4.8370    0.6360    57.84  0.0000
WVLTRT                    2    0.1358    0.0477     8.09  0.0044
WVLCON                    3    0.3635    0.0493    54.29  0.0000

 45 Output from model 6: two radiating lines model with two weevil variables only.
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Model 7: With weevil for treatment only
i.e. flat line for control  

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1        49.13    0.0000
WVLTRT                    1        23.95    0.0000

LIKELIHOOD RATIO         26       144.45    0.0000

 46 Output from model 7: one weevil variable for the treatment and a flat line for the control.

Root Collar Weevil
Model 8: With weevil for control only  

i.e. flat line for treatment  

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source                   DF   Chi-Square      Prob
--------------------------------------------------
INTERCEPT                 1       114.89    0.0000
WVLCON                    1        94.49    0.0000

LIKELIHOOD RATIO         26        17.70    0.8865

ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES
Standard    Chi-

Effect            Parameter  Estimate    Error    Square   Prob
----------------------------------------------------------------
INTERCEPT                 1   -3.6086    0.3367   114.89  0.0000
WVLCON                    2    0.2721    0.0280    94.49  0.0000

 47 Output from model 8: one weevil variable for the control and a flat line for the treatment.

To further compare models 2, 6, and 8, we should look at various plots
to confirm that the models do adequately fit the data. The following pro-
gram reruns these models to obtain residuals and predicted values (see
Table 33) and then combines them with the original data set to create the
plots in Figures 26–30 in section 4.5.7 (pages 61–65). New SAS code
appears in boldface type.

The equations were used to calculate the predicted values plotted in
Figures 26–28 (pages 61–63). To show clearly the predicted lines amidst
the data in this case required calculating an abundance of predicted
values. Often this can be adequately accomplished with the observed inde-
pendent values, but in this case a separate SAS program was required to
generate predicted values for a range of weevil numbers. The SAS pro-
gram used to do this is not shown.



119

proc catmod;

population trmt plot;

direct weevil;  weight count;

model y = trmt weevil             / noiter;

response logit / out = pred1;

title2 ‘Model 2: With parallel lines’;

run;

direct wvlcon wvltrt;

model y = wvlcon wvltrt           / noiter noprofile;

response logit / out = pred2;

title2 ‘Model 6: Two radiating lines’;

run;

model y =              wvlcon     / noiter noprofile;

response logit / out = pred3;

title2 ‘Model 8: sloping line for control and a flat line for the treatment’;

run;

**  Sorting the data sets prior to merging;

proc sort data=weevil; by trmt plot y; run;

proc sort data=pred1;  by trmt plot y; run;

proc sort data=pred2;  by trmt plot y; run;

proc sort data=pred3;  by trmt plot y; run;

data pred1; set pred1; pred1 = —pred—; resid1 = —resid—;  run;

data pred2; set pred2; pred2 = —pred—; resid2 = —resid—;  run;

data pred3; set pred3; pred3 = —pred—; resid3 = —resid—;  run;

data all;

merge weevil pred1 pred2 pred3;

by trmt plot y;

if y eq 1; * <== keeping the attack probabilities only;
label prop = ‘Observed Proportion’       pred1 = ‘Parallel Lines Pred’

pred2 = ‘Two Rad. Lines Pred’      pred3 = ‘Control Line Pred’

resid1 = ‘Parallel Lines Residual’ resid2 = ‘Two Rad. Lines Residual’

resid3 = ‘Control Line Residual’  ;

run;

proc sort data=all;  by trmt weevil; run;

proc print data = all label;

by trmt; id plot; format y 2.;         *<== Output in Table 33;
var weevil number prop pred1 pred2 pred3;

title2 ‘Listing of Predicted Proportions’;

run;

proc plot data = all vpercent = 33;

plot (pred1  pred2  pred3 )*prop / vaxis = 0 to 1 by 0.2;

plot (resid1 resid2 resid3)*(trmt)

(resid1 resid2 resid3)*(plot)

(resid1 resid2 resid3)*weevil=trmt / vref = 0;

run;

proc means data=all n mean uss;

var resid1 resid2 resid3;

title2 ‘Listing of Residual Sums of Squares for Three Models’;

run;
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 33 Predicted values for models 2, 6, and 8

--------------------------- Treatment=Screefed ---------------------------

Numbers                                        Two     Control
Plot      of    Seedlings   Observed    Parallel     Lines     Line
Number  Weevils   Attacked  Proportion  Lines Pred    Pred      Pred

11        0        0        0.0000      0.00054   0.007868  0.026375
14        1        0        0.0000      0.00073   0.009002  0.026375
13        2        0        0.0000      0.00099   0.010298  0.026375
12        3        0        0.0000      0.00135   0.011778  0.026375
7        6        0        0.0000      0.00340   0.017595  0.026375
6        9        1        0.0625      0.00854   0.026210  0.026375
1       10        0        0.0000      0.01159   0.029907  0.026375
3       11        0        0.0000      0.01571   0.034108  0.026375
2       13        1        0.0625      0.02873   0.044278  0.026375
8       14        1        0.0625      0.03871   0.050393  0.026375
4       16        2        0.1250      0.06947   0.065092  0.026375
5       16        1        0.0625      0.06947   0.065092  0.026375
9       17        1        0.0625      0.09226   0.073859  0.026375
10       19        1        0.0625      0.15853   0.094720  0.026375

------------------------- Treatment=Control (1) --------------------------

Numbers                                           Two     Control
Plot       of     Seedlings    Observed     Parallel     Lines      Line
Number   Weevils    Attacked   Proportion   Lines Pred     Pred      Pred

13         0          0        0.0000       0.01596    0.00787   0.02637
12         1          0        0.0000       0.02160    0.01128   0.03434
14         1          0        0.0000       0.02160    0.01128   0.03434
11         2          0        0.0000       0.02918    0.01614   0.04460
8         8          3        0.1875       0.16069    0.12688   0.19281
1        12          6        0.3750       0.39680    0.38349   0.41497
2        12          6        0.3750       0.39680    0.38349   0.41497
4        12          7        0.4375       0.39680    0.38349   0.41497
6        12          7        0.4375       0.39680    0.38349   0.41497
7        12          7        0.4375       0.39680    0.38349   0.41497
5        14          9        0.5625       0.54943    0.56274   0.55001
9        14          9        0.5625       0.54943    0.56274   0.55001
3        17         12        0.7500       0.75474    0.79296   0.73439
10        19         13        0.8125       0.85084    0.88794   0.82653

--------------------------------------------------------------------------
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6 USING INDICATOR (DUMMY) VARIABLES WITH LOGISTIC
REGRESSION PROGRAMS

This technically oriented chapter discusses the regression approach to
modelling a classification factor and will help to explain what is happen-
ing ‘‘behind the scenes’’. This information allows you to include categori-
cal variables with a logistic regression package that does not set them up
automatically (as does, for instance, PROC CATMOD). The one-way classi-
fication studies and the ANCOVA example will be used to illustrate the dif-
ferences in calculation methods.

6.1 One-way
Classification Study:
Root Rot and Stand

Age

The regression approach requires the creation of indicator variables (also
known as dummy variables). At least as many indicator variables are needed
as degrees of freedom for that categorical variable. For the one-way classi-
fication with three levels of stand age, two indicator variables are required.
Although many ways exist to define the indicator variables, the simplest is to
create two new variables such that the first (AGE1) has a value of one for
the first age class and zero for the other age classes. The second variable
(AGE2) has a value of one for the second age class and zero otherwise.
These two new variables are shown in Table 34. Note that a third variable is
unnecessary because the third age class is identified by the zero values in
both AGE1 and AGE2 (PROC GLM uses this method, but also includes an
unnecessary AGE3 variable). Another common way to define the indicator
variables is to set the values as for AGE1 and AGE2 except that the last classi-
fication level is assigned a value of −1 instead of zero (PROC CATMOD uses
this method). These values are listed as variables AGE1CAT and AGE2CAT in
Table 34. Other approaches for creating indicator variables include choosing
values so that one fits a linear trend within the age class, while the second
fits a quadratic response. Although these definitions of indicator or dummy
variables are independent of the statistical package used to run the analysis,
it may be important to determine what approach a particular package is
using. This should be described in the package’s documentation.

 34 Indicator variables created for the root rot study

------------------------------------------------------------------------
Stand                                                 Total   Observed
Number  Age        AGE1  AGE2  AGE1CAT  AGE2CAT  Dead  Count  Proportion

1    1..Young     1     0       1        0     13     41     0.31707
2    1..Young     1     0       1        0      8     35     0.22857
3    2..Middle    0     1       0        1     10     28     0.35714
4    2..Middle    0     1       0        1     15     37     0.40541
5    2..Middle    0     1       0        1      6     16     0.37500
6    3..Old       0     0      -1       -1      7     16     0.43750
7    3..Old       0     0      -1       -1      7     18     0.38889
8    3..Old       0     0      -1       -1     19     41     0.46341
9    3..Old       0     0      -1       -1      7     15     0.46667

------------------------------------------------------------------------
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The rest of this section explains how to use SAS to conduct an analysis
of the root rot and stand age example using PROC LOGISTIC, instead of
PROC CATMOD. First, indicator variables are added to the data set. They
are defined using Boolean algebra in variable assignment statements. For
instance, SAS assigns the term: (stand ge 3) a value of one if true (i.e.,
the value of stand is greater than or equal to 3), or a value of zero if false
(i.e, the value of stand is less than 3). In the program below, for example
AGE1 will have a value of one for stands 1 and 2, and a value of zero for
the other stands. The analysis uses the second set of indicator variables. In
the following SAS program essential SAS code appears in boldface type.

title ‘Simple One-Way Classification Example’;
proc format; value age 1 = ‘1..Young’ 2 = ‘2..Middle’ 3 = ‘3..Old’;

value alive 0 = ‘0 .. Dead’ 1 = ‘1 ..Alive’;   run;
data one;
input dead alive @@;
stand + 1;

*  Creating the indicator variables;
age  = 1 + (stand ge 3) + (stand ge 6);
age1 = 1 - (stand ge 3);
age2 = (stand ge 3 and stand lt 6);
age1cat = (stand lt 3) - (stand ge 6);
age2cat = (stand ge 3 and stand lt 6) - (stand ge 6);
total = dead + alive;
prop  = dead/(total);
output;

label age = ‘Age’ stand = ‘Stand Number’
alive = ‘Alive’  dead = ‘Dead’
total = ‘Total Count’
prop = ‘Observed Proportion’ ;

format age age. dead alive. ;
cards;
13 28  8 27
10 18 15 22  6 10
7  9  7 11 19 22  7  8
;
proc print data = one label;
id stand age ;  var age1 age2 age1cat age2cat dead total prop;

title2 ‘Listing of data’;
run;
proc logistic data=one;
model dead/total = age1cat age2cat;
output out=pred p=pred resdev=resdev reschi=reschi;

title2 ‘Logistic Regression Analysis with indicator variables’;
title3 ‘Using Catmod indicator variables’;
run;
** Output for the following procedures is not shown; 
proc print;
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title3 ‘Listing of output data set’;
id stand age;  var age1cat age2cat dead total prop pred reschi resdev;
run;
proc plot vpercent=50;

plot (resdev reschi)*(age stand) / vref = 0;
title3 ‘Plots’;
run;  

The output from the first print procedure appears in Table 34. The out-
put from the logistic procedure appears below. This first part identifies the
data set and response profile.

Simple One-Way Classification Example
Logisitic Regression Analysis with indicator variables

Using Catmod indicator variables

The LOGISTIC Procedure

Data Set: WORK.ONE
Response Variable (Events): DEAD      Dead
Response Variable (Trials): TOTAL     Total Count
Number of Observations: 9
Link Function: Logit

Response Profile

Ordered  Binary
Value  Outcome      Count

1  EVENT           92
2  NO EVENT       155

The following output shows the test results for the overall fit of the
model to the data. Note that the −2 LOG L for the model with both inter-
cept and covariates (namely 321.039) is the same as that from the three
group analysis in section 4.2.2 (see Table 11, page 33). The test for the
covariates (-2 LOG L = 5.128 with 2 DF) is the same for the test of
group differences in section 4.2.2.

Testing Global Null Hypothesis: BETA=0
Intercept

Intercept        and
Criterion       Only       Covariates    Chi-Square for Covariates

AIC             328.167       327.039         .
SC              331.676       337.567         .
-2 LOG L        326.167       321.039        5.128 with 2 DF (p=0.0770)
Score              .             .           5.037 with 2 DF (p=0.0806)
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The Wald statistics are presented in the following output. Note that the
parameter estimates for the intercept and both indicator variables are
identical to the CATMOD output in Figure 32 (page 87). This occurs
because both procedures are modelling the same response level. The odds
ratios are the estimated odds of not surviving for each age compared to
the average of all three ages.

Analysis of Maximum Likelihood Estimates

Parameter Standard    Wald       Pr >    Standardized     Odds
Variable DF  Estimate   Error  Chi-Square Chi-Square   Estimate      Ratio

INTERCPT 1    -0.5547   0.1346    16.9808     0.0001            .     .
AGE1CAT  1    -0.4081   0.2001     4.1593     0.0414    -0.184405    0.665
AGE2CAT  1     0.0766   0.1885     0.1652     0.6844     0.035189    1.080

Previously, we pooled the last two levels of age into two groups: young
and older. To do that here, we rerun the analysis without AGE2CAT. This
will confirm the Wald test that showed middle- and old-aged stands to
have similar responses.

proc logistic data=one;
model dead/total = age1cat        ;
output out=pred p=pred resdev=resdev reschi=reschi;

title2 ‘Logistic Regression Analysis with indicator variables’;
title3 ‘Using Catmod indicator variables’;
run;
proc print;
title3 ‘Listing of output data set for two group model’;
id stand age;  var age1cat age2cat dead total prop pred reschi resdev;
run;
proc plot vpercent=50;

plot (resdev reschi)*(age stand) / vref = 0;
title3 ‘Plots for the two group model’;
run;

The output (not shown) provides the same results as that of the pre-
vious analysis (see section 4.2.4 and section 5.3.4).

6.2 One-way
Classification Study:

Fertilizer Trial

The data analysis for this fertilizer trial could also be performed using
PROC LOGISTIC instead of PROC CATMOD. In the process, we examine
indicator variables more closely and see how the logistic regression pro-
gram is used to analyze designed studies. Two sets of indicator variables
are explored. The first set (dum1, dum2, dum3) matches the indicator
variables that PROC CATMOD uses and therefore the output from both
procedures will provide the same results. The second set uses polynomials
and the output for the linear indicator variable matches that of the linear
contrast output by PROC CATMOD because this is a balanced design.
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data fert;
set fert;
if y = 0;  ** keeping only the surviving trees;

*  Creating the PROC CATMOD indicator variables;
dum1 = (treat=1) - (treat=4);
dum2 = (treat=2) - (treat=4);
dum3 = (treat=3) - (treat=4);

*  Creating the polynomial indicator variables;
linear = -3*(treat=1) -1*(treat=2) +1*(treat=3) +3*(treat=4);
quad   =  1*(treat=1) -1*(treat=2) -1*(treat=3) +1*(treat=4);
cubic  = -1*(treat=1) +3*(treat=2) -3*(treat=3) +1*(treat=4);

run;
proc logistic;
model count/total = dum1 dum2 dum3;

title2 ‘Logistic Regression with indicator variables’;
run;
proc logistic;
model count/total = linear quad cubic;

title2 ‘Logistic Regression with contrasts for indicator variables’;
run;
proc logistic;
model count/total = linear;

title2 ‘Logistic Regression with linear contrast only’;
run;
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The output from the first PROC LOGISTIC is:

Fertilizer study 
Logistic Regression with indicator variables

The LOGISTIC Procedure

Data Set: WORK.FERT
Response Variable (Events): COUNT
Response Variable (Trials): TOTAL
Number of Observations: 24
Link Function: Logit

Response Profile

Ordered  Binary
Value  Outcome      Count

1  EVENT          175
2  NO EVENT        65

The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

Intercept
Intercept        and

Criterion       Only       Covariates    Chi-Square for Covariates

AIC             282.361       258.950         .
SC              285.842       272.873         .
-2 LOG L        280.361       250.950       29.411 with 3 DF (p=0.0001)
Score              .             .          28.420 with 3 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard    Wald       Pr >    Standardized     Odds
Variable DF  Estimate   Error  Chi-Square Chi-Square   Estimate      Ratio

INTERCPT 1     1.1579   0.1711    45.7976     0.0001            .     .
DUM1     1    -1.1579   0.2502    21.4140     0.0001    -0.452338    0.314
DUM2     1    -0.3106   0.2626     1.3988     0.2369    -0.121330    0.733
DUM3     1     0.2284   0.2852     0.6413     0.4232     0.089236    1.257
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Notice that the parameter estimates, standard errors, and Wald statistics
for the three indicator variables (dum1, dum2, dum3) are exactly the same
as those calculated by PROC CATMOD (see parameters 2, 3, and 4 in Fig-
ure 35, page 96). The chi-square for the covariates is similar to the cor-
responding Wald statistic from the PROC CATMOD output (χ 2 = 24.57,
df = 3), but not exactly the same. The test from the PROC LOGISTIC
output is generally considered more reliable than the Wald statistic in
PROC CATMOD.

The following output lists results from the second PROC LOGISTIC
model fit. Notice that the chi-square for the covariates test is exactly the
same as in the previous output for dum1, dum2, and dum3. The parame-
ter estimates are different because this model was reparameterized, and
the parameters have different meanings. Notice that the test for the linear
indicator variable is exactly the same as for the linear contrast used with
PROC CATMOD (χ 2 = 21.77, df = 1 from Figure 35, page 96). This is gen-
erally true with balanced study designs.

Fertilizer study 
Logistic Regression with contrasts for indicator variables

The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

Intercept
Intercept        and

Criterion       Only       Covariates    Chi-Square for Covariates

AIC             282.361       258.950         .
SC              285.842       272.873         .
-2 LOG L        280.361       250.950       29.411 with 3 DF (p=0.0001)
Score              .             .          28.420 with 3 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard    Wald       Pr >    Standardized     Odds
Variable DF  Estimate   Error  Chi-Square Chi-Square   Estimate      Ratio

INTERCPT 1     1.1579   0.1711    45.7976     0.0001            .     .
LINEAR   1     0.3866   0.0829    21.7658     0.0001     0.477642    1.472
QUAD     1     0.0411   0.1711     0.0576     0.8103     0.022694    1.042
CUBIC    1     0.0390   0.0696     0.3149     0.5747     0.048236    1.040
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The next output listing was generated from the third logistic model and
includes only the linear contrast. The parameter estimate is slightly differ-
ent and the chi-square for covariates is slightly smaller.

Fertilizer study
Logistic Regression with linear contrast only

The LOGISTIC Procedure
Testing Global Null Hypothesis: BETA=0

Intercept
Intercept        and

Criterion       Only       Covariates    Chi-Square for Covariates

AIC             282.361       255.275         .
SC              285.842       262.236         .
-2 LOG L        280.361       251.275       29.087 with 1 DF (p=0.0001)
Score              .             .          27.686 with 1 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates
Parameter Standard    Wald       Pr >    Standardized     Odds

Variable DF  Estimate   Error  Chi-Square Chi-Square   Estimate      Ratio

INTERCPT 1     1.1495   0.1666    47.6331     0.0001            .     .
LINEAR   1     0.3784   0.0758    24.9504     0.0001     0.467472    1.460

The second model, with just the linear contrast fits the data just as well
as the model with all three contrasts (the difference of χ 2 = 29.411, 3 df
versus χ 2 = 29.087, 1 df yields χ 2 = 0.324, 2 df ). This is clearly not signif-
icant so that a linear model provides an adequate fit. The predicted
response equation on the logit scale is:

logit (survival) = 1.1495 + 0.3784 × Linear.

The following table shows the predicted logits and probabilities for the
four treatments:

Values of Logit Probability
‘‘Linear’’ equation Logit of survival

−3 1.1495 + 0.3784(−3) 0.0143 0.504
−1 1.1495 + 0.3784(−1) 0.7711 0.684

1 1.1495 + 0.3784( 1) 1.5279 0.822
3 1.1495 + 0.3784( 3) 2.2847 0.908

Note that because the response is linear on the logit scale the dif-
ferences between successive treatments are constant at 2(0.3786) = 0.76.
This is not the case on the probability scale, where differences between
successive treatments are 0.180, 0.138, and 0.086.
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6.3 One-way
Classification with

Covariable: Root Collar
Weevil Study

Fitting this model using PROC LOGISTIC should now be straightforward
to set up. Since the categorical variable for this example has only two
values (levels), it can be used as the indicator variable. Nevertheless, to
directly compare the parameter estimates between the output from PROC
LOGISTIC and PROC CATMOD requires changing the treatment variable
so that it has values of 1 and −1. The statistical tests are the same regard-
less of which values we use for the indicator variables. Many models were
fit to this data in section 4.5, but only the parallel lines and two radiating
lines models will be fit as examples. A program to do this is:

title ‘Root Collar Weevil Example’;
proc format; value y    0 =’0: Not Attacked’  1 = ‘1: Attacked’;

value trmt 0 = ‘Screefed’        1 = ‘Control (1)’;     run;
data weevil;
infile ‘weevil.dat’;
input trmt plot count weevil;
total = 16;
trmta = (trmt = 0) - (trmt = 1);  * <=== Creating a new treatment variable;
wvlcon = (trmt=0)* weevil;  wvltrt = (trmt=1)*weevil;

label trmt = ‘Treatment’  weevil = ‘Numbers of Weevils’
count= ‘Seedlings Attacked’ plot =’Plot Number’;

format trmt trmt.;
run;
proc logistic ;
model count/total = trmt weevil;
title2 ‘Model with parallel lines - with old treatment variable’;

proc logistic ;
model count/total = trmta weevil;
title2 ‘Model with parallel lines’;

proc logistic;
model count/total = wvlcon wvltrt;
title2 ‘Two Radiating Lines Model’;

run;



130

Some of the output from this program is shown below.

Root Collar Weevil Example

Model with parallel lines - with old treatment variable

The LOGISTIC Procedure

Data Set: WORK.WEEVIL

Response Variable (Events): COUNT     Seedlings Attacked

Response Variable (Trials): TOTAL

Number of Observations: 28

Link Function: Logit

Response Profile

Ordered  Binary

Value  Outcome      Count

1  EVENT           87

2  NO EVENT       361

Testing Global Null Hypothesis: BETA=0

Intercept

Intercept        and

Criterion       Only       Covariates    Chi-Square for Covariates

AIC             443.057       273.662         .

SC              447.162       285.976         .

-2 LOG L        441.057       267.662      173.395 with 2 DF (p=0.0001)

Score              .             .         131.989 with 2 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard    Wald       Pr >    Standardized     Odds 
Variable DF  Estimate   Error  Chi-Square Chi-Square   Estimate      Ratio 

INTERCPT 1    -7.5321   0.8411    80.1897     0.0001            .    0.00054

TRMT     1     3.4104   0.4388    60.4197     0.0001     0.941185   30.278 

WEEVIL   1     0.3086   0.0469    43.2031     0.0001     1.042599    1.361 
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Root Collar Weevil Example

Model with parallel lines

Testing Global Null Hypothesis: BETA=0

Intercept

Intercept        and

Criterion       Only       Covariates    Chi-Square for Covariates

AIC             443.057       273.662         .

SC              447.162       285.976         .

-2 LOG L        441.057       267.662      173.395 with 2 DF (p=0.0001)

Score              .             .         131.989 with 2 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard    Wald       Pr >    Standardized     Odds 
Variable DF  Estimate   Error  Chi-Square Chi-Square   Estimate      Ratio 

INTERCPT 1    -5.8269   0.7032    68.6579     0.0001            .    0.00295

TRMTA    1    -1.7052   0.2194    60.4197     0.0001    -0.941185    0.182

WEEVIL   1     0.3086   0.0469    43.2031     0.0001     1.042599    1.361 

Root Collar Weevil Example

Two Radiating Lines Model

Testing Global Null Hypothesis: BETA=0

Intercept

Intercept        and

Criterion       Only       Covariates    Chi-Square for Covariates

AIC             443.057       272.997         .

SC              447.162       285.311         .

-2 LOG L        441.057       266.997      174.060 with 2 DF (p=0.0001)

Score              .             .         171.359 with 2 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter   Standard      Wald        Pr >     Standardized    Odds
Variable   DF    Estimate     Error    Chi-Square  Chi-Square    Estimate      Ratio

INTERCPT   1      -4.8370     0.6360      57.8407      0.0001       .          0.0079

WVLCON     1       0.1358     0.0477       8.0946      0.0044      0.492369    1.145

WVLTRT     1       0.3635     0.0493      54.2879      0.0001      1.297800    1.438

The results for PROC LOGISTIC and PROC CATMOD (see section 5.6.3)
are identical. If the treatment variable (TRMTA) is defined in the same
way as PROC CATMOD sets up the indicator variable, then the parameter
estimates are also the same (see Table 25, page 60).
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7 OTHER METHODS FOR ANALYZING A ONE-WAY CLASSIFICATION

This chapter23 describes alternative methods to analyze the data in the one-
way classification study of root rot and stand age (section 4.2.2). The purpose
is to show the similarity of logistic regression and contingency tables, and
how to do the calculations by hand for a simple design. Section 7.1 uses
simple contingency tables to calculate the necessary statistics and perform
most of the statistical tests that were done in section 4.2. While contingency
tables are easier to understand, logistic regression has the advantage of more
easily analyzing complicated models. Section 7.2 will go through the steps
necessary to perform the logistic regression by hand. This may help the
reader to understand the process behind logistic regression.

Recall that this one-way classification study was designed to study the effect
of stand age on the survival of trees in stands infected with similar levels of
root rot (see section 4.2). Nine stands were grouped into three age levels
(young-, middle-, and older-aged stands). The response variable was Y,
where ‘‘zero’’ represents that the tree died and ‘‘one’’ represents that it was still
alive when sampled. The number of trees in each category for each stand was
stored in a variable called ‘‘count’’.

7.1 Analysis Using
Simple Contingency

Tables

For this simple design, contingency table methods can arrive at similar
conclusions as the logistic regression analysis of section 4.2.2. This is done
by fitting various models to the data and then testing hypotheses about
parts of the models by comparing models. The hypotheses that we will
examine are:

• Hypothesis 1: The stands within each age group respond similarly. If
the stands within each age group have similar proportions of survival,
then this suggests that pooling the stands within each age group is
acceptable. This is similar to the homogeneity of variance assumption
within ANOVA.

• Hypothesis 2: The responses are similar for the three age groups. Com-
bined with an acceptance24 of Hypothesis 1, this would imply that no dif-
ferences between the nine stands exist. Rejecting this hypothesis provides
evidence that survival and stand age are correlated (but cause and effect
statements are not possible because this is an observational study).

If hypothesis 2 is rejected, then we will test for specific differences in
stand ages by:

• Hypothesis 3: The middle-aged response is similar to the old-aged
response.

23 This chapter is optional and is intended primarily to deepen your understanding of logistic
regression.

24 Strictly speaking, we cannot accept  a hypothesis, only fail to reject it. Nevertheless, we must
make decisions and choose a model for our data. Accordingly, we must accept some
hypotheses, although from a purely statistical point of view, we can never do so.
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• Hypothesis 4: The young-aged response is similar to the average of the
middle- and old-aged responses.

These hypotheses can be tested by calculating several tables that pool
stand data in various ways. Seven contingency tables must be calculated
for the data:

1. one table with all nine stands by Y ;
2. age by Y;
3. age reduced to two levels (young vs older) by Y ;
4. age by Y for the middle and old stands only; and
5. to 7. a separate stand by Y table for each age.

The data are presented in Table 30 (page 85) in a Y  by stand table. All of
the contingency tables represent various ways of pooling or removing
stands. The results for the seven contingency tables are summarized in
Table 35. All the necessary numbers are obtained from the SAS program
output shown below. The first contingency table, stand by Y, is the satu-
rated model, while the second contingency table is the three group model.
Essential SAS statements appear in boldface type.

title ‘Simple One-Way Classification Example’;
data one;  set one;
a2 = 1 + (stand ge 3);  ** Pooling Middle and Old into one level;

run;                      ** Could also have done this with Proc Format;
proc freq data = one;
weight count;
tables  stand*y        /*  Result #1 */

age*y          /*  Result #2 */
a2*y           /*  Result #3 */
/ nocol nopercent chisq;

title2 ‘Frequency Counts’;
run;
proc freq data=one;
weight count;  where age ge 2;
table  age*y           /*  Result #4 */

/ nocol nopercent chisq;
title2 ‘Testing Middle vs Old’;
run;
proc freq; by age;
weight count;
table  stand*y         /*  Result #5 */

/ nocol nopercent chisq;
run;
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 35 Results of contingency table analyses

Summary χ 2 statisticsResult Contingency Degrees of
no. table freedom Pearson’s p-value Likelihood p-valuea

1 Stand 8 χ 2 = 6.17 0.63 χ 2 = 6.356 0.61
2 Age: young, middle and old 2 χ 2 = 5.037 0.081 χ 2 = 5.128 0.077
3 Age: young vs. middle and old 1 χ 2 = 4.342 0.037 χ 2 = 4.458 0.035
4 Age: middle vs. old 1 χ 2 = 0.668 0.41 χ 2 = 0.670 0.41
5 By age:

Age = young 1 χ 2 = 0.740 0.39 χ 2 = 0.746 0.39
Age = middle 2 χ 2 = 0.162 0.92 χ 2 = 0.162 0.92
Age = old 3 χ 2 = 0.318 0.96 χ 2 = 0.320 0.96

6 Sum: 6 χ 2 = 1.220 0.98 χ 2 = 1.228 0.98

a Probability values not available from printouts have been calculated using Biometrics Information Pamphlet #15.

Table 35 shows the Pearson’s Chi-square and the Likelihood
Ratio Chi-square values for each contingency table. Results 1 to 4
correspond to the first four contingency tables, respectively. Result 5 lists
the results for tables 5, 6, and 7, while their sum is called Result #6. These
results are used to test the hypotheses. Several of the hypotheses can be
tested in different ways:

• Hypothesis 1: H0: The stands within each age group respond similarly.

Test: 1. Each test in the By Age section (Result #5) of Table 35 is a test of
this hypothesis. This hypothesis is not rejected for any of the ages.

2. The individual tests can be pooled for an overall test. This is
presented as Result #6 in Table 35. Since both χ 2-values are less
than their respective degrees of freedom, this test also does not
reject the null hypothesis.

3. An overall test is calculated as shown in Table 36. This test
compares the saturated model with the three group model.
Since the three group model constrains the stands within each
group to have the same predicted probability of survival, the
null hypothesis is that the stands within each group have the
same response. The observed χ2 for the difference between the
two models is small (1.133 and 1.22) showing little evidence
against the null hypothesis.

Conclusion: It is reasonable to treat the stands within each group as
similar so that stands within ages may be pooled.

 36 Calculations required to test the similarity of the stands within each age group

Summary statisticsResult Contingency Degrees of
no. table freedom Pearson’s p-value Likelihood p-value

1 Stand 8 χ 2 = 6.17 0.63 χ 2 = 6.356 0.61
2 Age (3 levels) 2 χ 2 = 5.037 0.081 χ 2 = 5.128 0.077

Difference 6 χ 2 = 1.133 0.98 χ 2 = 1.228 0.98
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• Hypothesis 2: H0: The responses are similar for all ages.

Test: This is tested by Result #2 in Table 35.

Conclusion: Both χ 2-values show little evidence against the null
hypothesis (p-value = 0.081 and p-value = 0.077). To understand the
age effect better, look at the values in the Age by Y table (Table 37).

 37 The numbers of trees that are alive or dead for each age and corresponding
percentages

------------------------------------------------------
TABLE OF AGE BY Y

age(Age)     Y(Survive?)

Frequency 
Row Pct   0..Dead 1..Alive  Total
----------+--------+--------+
1..Young       21      55      76

  27.63   72.37 
----------+--------+--------+
2..Middle      31      50      81

  38.27   61.73 
----------+--------+--------+
3..Old         40      50      90

  44.44   55.56 
----------+--------+--------+
Total           92      155      247

------------------------------------------------------

Evidence from this table and the previous tests suggests that the young
stands may differ from the middle and old stands, while the middle and
old stands may not. A linear trend in response may also exist, but other
methods are required to test that hypothesis (see section 4.2).

• Hypothesis 3: H0: Response to the middle age level is similar to that of
the old age.

Test: 1. This is tested by Result #4 in Table 35.
2. This can also be tested by comparing Results #2 and #3. Since

Result #3 is for a model with only two age levels (young vs
middle and old) and Result #2 does not constrain the
responses for the three age levels, the difference between them
is a test for a similar response between middle-aged stands and
old stands as shown in Table 38.

Conclusion: Both χ 2-values show little evidence for a difference in
response between the middle and old age levels (p-value = 0.41).
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 38 Calculations required to test whether the middle- and old-aged stands are different

Summary statisticsResult Contingency Degrees of
no. table freedom Pearson’s p-value Likelihood p-value

2 Age: young, middle and old 2 χ 2 = 5.037 0.081 χ 2 = 5.128 0.077
3 Age: young vs. middle and old 1 χ 2 = 4.342 0.037 χ 2 = 4.458 0.035

Difference 1 χ 2 = 0.695 0.40 χ 2 = 0.670 0.41

• Hypothesis 4: H0: The response in young stands is similar to that of
both middle- and old-aged stands.

Test: This is directly tested by Result #3 in Table 35.

Conclusion: Both χ2-values show strong evidence for a difference bet-
ween the response of young stands and that of middle and old stands
(p-value = 0.035 and p-value = 0.037). This suggests that most of the
age effect occurs in higher survival rates for trees in young stands
rather than middle- or old-aged stands.

7.2 Analysis Using
Hand Calculations

This section is quite mathematical, but is useful to study if greater under-
standing of the maximum likelihood method is desired. The saturated,
three group, and one group models are compared by determining their
log-likelihood equations and calculating the values by hand. The maximiz-
ation process described here will be familiar to those who remember some
first year calculus.

Recall that in this one-way classification study we assume each stand’s
response to stand age will follow a binomial distribution with parameters
π ij and mij. The parameter π ij is the probability of survival for each tree
within an infected stand and may be different for each level of age i
(i = 1, 2, and 3) and each stand j (j = 1, 2, . . . , 9). The number of trees
within each stand is mij and is assumed fixed (although this may be
unlikely for this example). The probability of observing yij trees survive is
given by the binomial distribution:

P(observing yij given π ij and mij ) = [mij]π ij
yij (1 − π ij )

(mij − yij ).yij

The given  in the above equation indicates that we assume we know all the
π ij’s and mij’s and is often represented by the symbol ‘‘’’.

If each stand’s response is independent of any other stand’s response,
then the probability for the complete set of responses y 11, y 12, y 23, . . . y 38,
y 39 is obtained by multiplying together all the individual stand’s proba-
bilities. This can be written as:

P(y11, . . . , y39p11, . . . , p39 and m11, . . . , m39)

= ∏∏[mij]π ij
yij (1 − π ij )

(mij − yij ) ,
i =1 j yij

3

where the product symbol means that the following terms are to be mul-
tiplied, just as a summation symbol means to add the following terms.
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This probability function can predict the values of yij that would be
expected if π ij and mij were known. However, when faced with a set of
data, the yij, and not π ij, are known! In this situation, we can look at the
probability differently. Instead of viewing the above equation as ‘‘the prob-
ability of observing various yij values, given π ij ’s and mij ’s,’’ we can con-
sider it as a function of the unknown π ij and say: ‘‘Given that we know all
the yij ’s and mij ’s, what values of the π ij ’s would maximize the above
function?’’ The values of π ij that maximize this function also maximize
the probability of observing the yij ’s which were observed. These values
are called the maximum likelihood estimates because they maximize the
associated likelihood of the particular sample that has been observed.
When the probability function is interpreted in this way, it is called the
likelihood function and labelled L(π ijyij and mij ):

L(π ijyij , mij ) = ∏∏[mij]π ij
yij (1 − π ij )

(mij − yij ).
i =1 j

yij

3

The log-likelihood function:

l (π ijyij , mij ) = ∑∑{(yij log π ij + (mij − yij ) log(1 − π ij )},
i j

3

is generally used for calculations, instead of the likelihood, because the
maximization process uses simpler summation, but yields the same
answer. The log-likelihood function given above is missing the term

∑∑ log [mij ]. This term is constant if mij is fixed and known. It is not
i j

yij

necessary in the calculations because it does not depend on π i and there-
fore does not affect the result of the maximization process. The notation
for the likelihood, L(π ijyij, mij ), is often shortened further to L(π ij ). Sim-
ilarly, the notation for the log-likelihood, l(π ijyij , mij ) is shortened to
l(π ij ).

Maximum likelihood estimates (p̂ ij ) for the probabilities (π ij ) are
obtained by differentiating the log-likelihood with respect to the para-
meters26 and setting the resulting derivatives to zero. Different estimators
will be obtained depending on the restrictions that are placed on the πij .
The three models described earlier restrict the possible values for the
parameters in the following way:

Model Restrictions

1. Saturated No restrictions
2. Three groups π 1 = π 11 = π 12

π 2 = π 23 = π 24 = π 25

π 3 = π 36 = π 37 = π 38 = π 39

3. One group π = π 11 = π 12 = π 23 = . . . = π 39

26 The parameters are the π ij only, since the mij are assumed to be fixed and known.
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The corresponding log-likelihoods are:

Model Log-likelihood formulae

1. Saturated l (π ij ) = ∑∑{yij log π ij + (mij − yij ) log(1 − π ij )}
3

i = 1 j

2. Three groups l (π i ) = ∑{(Σyij )log π i + [Σ(mij − yij )] log(1 − π i )}
3

i = 1 j j

3. One group l (π) = (ΣΣyij )log π + [ΣΣ(mij − yij )] log(1 − π )
i j i j

The derivatives and estimators are:

Model Derivatives Estimators

1. Saturated
∂[1(π ij )]

=
yij −

(mij − yij ) = 0 if p̂ ij = yij /mij∂π ij π ij (1 − π ij )

2. Three Groups
∂[1(π i )]

=
Σyij

−
Σ(mij − yij )

= 0 if p̂ i = Σyij /Σmij

j j

∂π i π ij (1 − π ij ) j j

3. One Group
∂[1(π )]

=
ΣΣyij

−
ΣΣ(mij − yij )

= 0 if p̂ = ΣΣyij /ΣΣmij

i j i j

i j i j∂π π ij (1 − π ij)

The reader can confirm that these estimates are the maximum and not
the minimum by checking that the second derivatives are negative.

These equations are used to calculate the various estimates of the mor-
tality probability (p̂, p̂ i , and p̂ ij ) by using the data in Table 10 (page 31).
For instance, p̂ = ΣΣyij /ΣΣmij = 92/247 = 0.372, p̂ 1 = Σ y 1j /Σn1j =i j i j j j

(13 + 8)/(41 + 35) = 21/76 = 0.276, p̂11 = y 11/n 11 = 13/41 = 0.317, and
p̂36 = y36 /n36 = 7/16 = 0.4375. The log-likelihood for p̂ is l (p̂ ) = (ΣΣyij )log

i j

p̂ + (ΣΣ(mij − yij )) log (1 − p̂ ) = 92*log(92/247) + 155*log(1 −
i j

92/247) = −90.8592 + −72.2243 = −163.0835. All the other calculations
are done similarly. The results are:

Number of Log-
Model Estimates parameters likelihood −2LogL

1. Saturated Young: 0.32, 0.23
Middle: 0.36, 0.41, 0.38
Old: 0.44, 0.39, 0.46, 0.47 9 −159.9054 319.8108

2. Three groups Young: 0.28
Middle: 0.38
Old: 0.44 3 −160.5196 321.0392

3. One group 0.37 1 −163.0835 326.1670
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The following tests can be conducted:

Models
Test used Deviancea df p-values

Goodness of fit for one group 1 and 3 6.356 8 0.61
Goodness of fit for three groups 1 and 2 1.228 6 0.98
Group differences 2 and 3 5.128 2 0.077

a Notice that these deviances have the same value as the L.R. χ 2 statistic in the
contingency tables, Results #1, #6, and #2 respectively in Table 35.

What we can conclude from these tests is that both the three group and
one group models adequately fit the data, although there is weak evidence
(p-value = 0.08) for group differences. Linear and quadratic trends for
the groups assume it is possible to estimate numeric values for their ages,
but the calculations are more difficult (see section 4.2 for the results and
discussion).

7.3 Comparing Hand
Calculations with

Computer-generated
Results

The log-likelihood values and the final parameter estimates determined
above can be obtained from the PROC CATMOD output by examining the
last line of the iteration history. These histories are presented in Table 39
(SAS programs were given in section 5.3). The column titled −2 Log
Likelihood is the log-likelihood multiplied by −2. This function, −2log-
likelihood, has an approximate chi-square distribution.

Note that the last value of the −2 Log Likelihood for the three
group model is 321.03921 which is −160.5196 when divided by −2. This
is the value computed previously. The other calculations for the log-
likelihood can be checked by examining the other iteration histories.

The parameter estimates can be checked by first adding together the
appropriate parameter estimates. The inverse logit function (equation 2) is
then used to obtain the probabilities. The calculations for the three group
model are:

Young: logit = −0.5547 − 0.4081 = −0.9628;
prob = exp(−0.9628)/[1 + exp(−0.9628)] = 0.2763.

Middle: logit = −0.5547 + 0.0766 = −0.4781;
prob = exp(−0.4781)/[1 + exp(−0.4781)] = 0.3827.

Old: logit = −0.5547 + 0.4081 − 0.0766 = −0.2232;
prob = exp(−0.2232)/[1 + exp(−0.2232)] = 0.4444.
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 39 Iteration histories for the three models

--------------------------------------------------------------------------
Simple One-Way Classification Example 

Saturated Model 

MAXIMUM LIKELIHOOD ANALYSIS

Sub       -2 Log    Convergence     parameter Estimates
Iteration  Iteration  Likelihood   Criterion      1        2         3
------------------------------------------------------------------------

0          0      342.41471      1.0000         0        0        0
1          0      319.93263      0.0657   -0.4713  -0.2604  -0.6145
2          0        319.811    0.000380   -0.4938  -0.2732  -0.7183
3          0      319.81088   3.5348E-7   -0.4943  -0.2730  -0.7221
4          0      319.81088   4.699E-13   -0.4943  -0.2730  -0.7221

parameter Estimates
Iteration      4         5         6         7         8         9
---------------------------------------------------------------------

0            0         0         0         0         0         0
1      -0.1002    0.0929   -0.0287    0.2213    0.0268    0.3249
2      -0.0940    0.1108   -0.0170    0.2425    0.0418    0.3472
3      -0.0935    0.1113   -0.0165    0.2430    0.0423    0.3477
4      -0.0935    0.1113   -0.0165    0.2430    0.0423    0.3477

Three Group Analysis

MAXIMUM-LIKELIHOOD ANALYSIS

Sub      -2 Log   Convergence      parameter Estimates
Iteration Iteration Likelihood  Criterion       1         2         3
------------------------------------------------------------------------

0         0     342.41471     1.0000          0         0         0
1         0     321.11188     0.0622    -0.5287   -0.3660    0.0596
2         0     321.03923   0.000226    -0.5543   -0.4075    0.0763
3         0     321.03921  4.5882E-8    -0.5547   -0.4081    0.0766
4         0     321.03921  2.125E-15    -0.5547   -0.4081    0.0766

Model with no structure -- one group only

MAXIMUM-LIKELIHOOD ANALYSIS

parameter
Sub        -2 Log     Convergence   Estimates

Iteration   Iteration   Likelihood    Criterion         1
------------------------------------------------------------

0           0       342.41471       1.0000            0
1           0       326.17462       0.0474      -0.5101
2           0       326.16695    0.0000235      -0.5216
3           0       326.16695     4.91E-11      -0.5216

--------------------------------------------------------------------------
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8 CONCLUSIONS

Logistic regression is a data analysis method that can be of great use in for-
estry research problems. Many of the concepts associated with the general
linear models of ANOVA, regression, and ANCOVA are already familiar and
can be readily translated for use with logistic regression. This handbook has
used simple design examples to show the differences and similarities
between this new method of logistic regression and the better-known tradi-
tional data analysis methods. I hope that it will encourage readers to use
logistic regression, where appropriate, in their data analysis and to study the
technique more deeply by reading such texts as Agresti (1996).
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APPENDIX 1 Example Failure of Wald’s Test

While running a series of logistic regression analyses, a scientist (Les
Peterson, B.C. Ministry of Forests, pers. comm., 1988) noted a curious
inconsistency with his results.  The following two sets of data illustrate the
problem:

Set 1 Set 2

Number of Overall Number of Overall
successes percent successes percent
per e.u. success per e.u. success

Group 1 4 3 3 33 4 3 3 33
Group 2 9 10 10 97 10 10 10 100
Sample size: 10 per e.u. 10 per e.u.

The results from PROC CATMOD are:

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Set 1                            Set 2  

-------------------------      -------------------------

Source               DF   Chi-Square      Prob      DF   Chi-Square      Prob

-----------------------------------------------------------------------------

INTERCEPT             1         6.04    0.0140      1       188.23    0.0000

GROUP                 1        13.92    0.0002      0*         .       .

LIKELIHOOD RATIO      4         2.56    0.6340      5         0.30    0.9977

with the second set obtaining this warning:

NOTE: Effects marked with ‘*’ contain one or more
 redundant or restricted parameters.

The parameter estimates are:

ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES

Set 1                               Set 2  

-----------------------------    ----------------------------------

Standard  Chi-                    Standard    Chi-

Effect  Parameter Estimate  Error  Square  Prob    Estimate    Error    Square   Prob

-------------------------------------------------------------------------------------

INTERCEPT       1   1.3370  0.5441   6.04 0.0140    5.3134    0.3873   188.23  0.0000

GROUP           2  -2.0301  0.5441  13.92 0.0002   -6.0066 #       .      .     .
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with the second set obtaining this note:

NOTE: Parameters marked with ‘#’ are regarded to be
infinite.

Significant differences between the two groups were found for data set
1, but no results were obtained for set 2, although the differences between
the overall percent success was greater.  This occurs because chi-square
tests for group differences and the intercept are the approximate Wald’s
tests.  These are unreliable when complete failure or success occurs in one
or more treatment groups.  As discussed in section 3.5, these tests should
be checked with the more reliable deviance statistics.  For this example,
the deviance is calculated as twice the difference between the log-
likelihood of a model with two groups and that of a model with one
group.  As described in section  7.2 and 7.3, this can be calculated by
hand or the necessary −2LogL values obtained from the iteration history
output by PROC CATMOD.  The hand calculations are as shown below:

Log-likelihood for one group model:†

Set 1: 39* ln(39/60) + (60 − 39)* ln[(60 − 39)/60] = −38.8468
Set 2: 40* ln(40/60) + (60 − 40)* ln[(60 − 40)/60] = −38.1909

Log-likelihood for two group model:

Set 1: 10* ln(10/30) + (30 − 10)* ln[(30 − 10)/30]
+ 29*ln(29/30) + (30 − 29)* ln[(30 − 29)/30]
= −19.0954 + −4.3843 = −23.4798

Set 2: 10* ln(10/30) + (30 − 10)* ln[(30 − 10)/30] + 0 = −19.0954

The deviance for each set is calculated by:

Set 1: Deviance = 2*(−23.4798 − −38.8468) = 30.7
Set 2: Deviance = 2*(−19.0954 − −38.1909) = 38.2

The degrees of freedom for the χ 2-statistics is one (number of treat-
ments minus one) and the critical value at the 95% confidence level (i.e.,
α = 0.05) is 3.84.  Hence, there is very strong evidence for group differ-
ences in both sets of data, and it is stronger for the second set.

For this simple example, contingency tables as output by PROC FREQ
with the CHISQ option will produce correct likelihood ratio tests. Another
suggestion is to run PROC LOGISTIC after all zero values are changed to
a small value.  This produces the correct deviance tests as standard out-
put.  An example program is as follows:

† The methods for these hand calculations are described in Section 7.2.



144

Title ‘Example failure of Wald’’s test’;

data waldlog;
do set = 1 to 2;
do group = 1 to 2;
do rep = 1 to 3;
input ct @@;
if ct = 0  then ct =      1E-4;
if ct = 10 then ct = 10 - 1E-4;
eu + 1; ten = 10;

output; end; end; end;
datalines;
4 3 3 9 10 10 4 3 3 10 10 10
;
proc logistic data=waldlog; by set;
model ct/ten = group;

title2 ‘Logistic Regression Approach’;
run;

The relevant parts of the output are:

Testing Global Null Hypothesis: BETA=0

Set 1                                 Set 2  

-------------------------------------  -------------------------------------

Intercept                             Intercept

Intercept      and     Chi-Square      Intercept      and      Chi-Square 

Criterion    Only     Covariates  for Covariates     Only    Covariates  for Covariates 

AIC           79.694      50.961       .            78.382        42.198         .

SC            81.788      55.150       .            80.476        46.387         .

-2 LOG L      77.694      46.961     30.733         76.382        38.198       38.184 

Score           .           .        26.446           .             .          29.999 

Both −2LogL values have one degree of freedom with p-value = 0.0001.



APPENDIX 2 Example Data Sets

Caribou calf data: Aspen data:

1 9 14 15 11.0 2. 100. 1. 17.0 5. 100. 1.
2 10 7 7 11.0 2. 100. 1. 17.0 5. 100. 1.
3 12 3 4 12.0 2. 100. 1. 19.0 5. 100. 1.
4 13 5 5 10.5 3. 100. 1. 19.0 5. 100. 1.
5 15 9 10 11.5 3. 100. 1. 20.0 5. 100. 1.
6 23 9 10 12.0 3. 100. 1. 20.5 5. 100. 1.
7 31 9 15 12.0 3. 100. 1. 21.0 5. 100. 1.
8 34 4 13 13.0 3. 100. 1. 22.5 5. 90. 0.
9 38 1 13 13.0 3. 100. 1. 23.0 5. 75. 0.

13.0 3. 100. 1. 23.0 5. 85. 0.
13.5 3. 100. 1. 24.0 5. 80. 0.Weevil data:
14.5 3. 100. 1. 26.0 5. 60. 0.

0 1 0 10 15.0 3. 100. 1. 27.0 5. 70. 0.
0 2 1 13 15.5 3. 100. 1. 27.0 5. 10. 0.
0 3 0 11 16.0 3. 70. 0. 27.0 5. 20. 0.
0 4 2 16 16.5 3. 100. 1. 27.0 5. 90. 0.
0 5 1 16 16.5 3. 100. 1. 28.0 5. 10. 0.
0 6 1 9 16.5 3. 65. 0. 29.5 5. 5. 0.
0 7 0 6 21.5 3. 90. 0. 31.0 5. 20. 0.
0 8 1 14 12.0 4. 100. 1. 19.5 6. 100. 1.
0 9 1 17 12.0 4. 100. 1. 22.0 6. 100. 1.
0 10 1 19 14.0 4. 100. 1. 23.0 6. 40. 0.
0 11 0 0 14.0 4. 100. 1. 23.0 6. 100. 1.
0 12 0 3 14.5 4. 100. 1. 25.0 6. 95. 1.
0 13 0 2 15.0 4. 100. 1. 25.5 6. 30. 0.
0 14 0 1 15.0 4. 100. 1. 26.5 6. 15. 0.
1 1 6 12 16.0 4. 100. 1. 26.5 6. 10. 0.
1 2 6 12 16.5 4. 95. 1. 27.0 6. 35. 0.
1 3 12 17 17.5 4. 100. 1. 27.0 6. 35. 0.
1 4 7 12 18.0 4. 95. 1. 27.0 6. 5. 0.
1 5 9 14 18.0 4. 100. 1. 29.5 6. 5. 0.
1 6 7 12 18.0 4. 100. 1. 30.5 6. 5. 0.
1 7 7 12 20.0 4. 90. 0. 32.0 6. 5. 0.
1 8 3 8 20.0 4. 100. 1. 24.0 7. 90. 0.
1 9 9 14 20.0 4. 65. 0. 28.0 7. 100. 1.
1 10 13 19 20.5 4. 10. 0. 28.0 7. 15. 0.
1 11 0 2 20.5 4. 40. 0. 30.0 7. 5. 0.
1 12 0 1 21.0 4. 60. 0. 30.5 7. 25. 0.
1 13 0 0 21.0 4. 100. 1. 31.0 7. 10. 0.
1 14 0 1 31.0 7. 10. 0.21.0 4. 100. 1.

33.0 7. 20. 0.23.0 4. 35. 0.
33.0 7. 10. 0.23.0 4. 90. 0.
34.5 7. 5. 0.25.5 4. 70. 0.
24.5 8. 100. 1.26.0 4. 70. 0.
32.5 8. 20. 0.27.5 4. 50. 0.
42.0 8. 0. 0.33.0 4. 5. 0.

145
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