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Abstract

The objective of ecological experiments is often to determine whether observed effects are large enough to be ecologically

important. Despite this, effect size measures and associated measures of precision are frequently missing in published ecological

research. In many cases, P-values are the only information available with which to assess the ecological importance of observed

effects, but they provide a poor means of assessment. It is argued that specifying an important effect size a priori and then

presenting observed effects with their associated confidence intervals is often a more informative way of presenting ecological

data. A hypothetical data set is analysed and interpreted using both P-values and confidence intervals and the results from these

two approaches compared. Effects interpreted using P-values were either statistically significant or not, while confidence

intervals provided information about statistical significance, the precision of the estimates, and produced a range within which

values for the true effects might plausibly lie. The results show that both statistically significant (<0.001) and non-significant

(0.100) P-values did not provide useful information about the importance of their associated effects. The capacity to use

confidence intervals for analysing complex ANOVA designs is discussed and the implications of different data analysis and

presentation techniques for forest management are considered.
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1. Introduction

Sokal and Rohlf (1995) define biometry as ‘the

application of statistical methods to the solution of

biological problems’. This is an appropriate definition

as it implies that, as ecologists, our primary focus is to

investigate patterns and processes occurring in nature.

The mechanics of statistical procedures is not (at least

for most of us) of primary interest; we simply use

statistics as a tool to help derive ecological meaning

from our data. This being the case, it is critical that

statistical outputs can be interpreted in the context of

the ecological questions and hypotheses under inves-

tigation. For example, statistical results should include

measures of effect and their uncertainties (Nelder,

1999) so that the ecological importance of effects

can be determined. Nevertheless, it is common within

ecology journals for experimental results to be repre-

sented by P-value alone without effect size estimates

or associated measures of precision (Anderson et al.,

2000; Fidler et al., in preparation). Although P-values

can be used to define statistical significance, they

convey little information about the ecological impor-

tance of observed treatment effects.

The majority of published ecological experiments

are conducted within the frequentist hypothesis testing

framework. Within this framework, observations of

the natural world lead to the development of theories,
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which in turn lead to the construction of research and

null hypotheses (see Underwood, 1990 for a detailed

description of this approach). In the vast majority of

cases, research hypotheses propose the occurrence of

an effect (or change or impact) while null hypotheses

specify that the effect does not exist, or, more pre-

cisely, equals zero. Data are collected and exposed to

formal statistical tests that, amongst other outputs,

produce statements (P-values) concerning the prob-

ability of the collected data (or data more extreme)

assuming that the null hypothesis is true. Correctly

interpreted, small P-values (conventionally �0.05)

indicate that observed treatment effects are (probably)

larger than zero while large P-values (>0.05) suggest

there is insufficient statistical evidence to reject the

null hypothesis.

Although P-values provide a means for determining

whether an effect exists they say little about the

magnitude of an effect (Jaccard and Guilamo-Ramos,

2002). What ecologists (and scientists in other fields)

generally want to know is whether a treatment effect is

large enough to be important in the context of the

ecological system under investigation. Thus for ecol-

ogists, it is important to differentiate between statisti-

cally significant and ecologically important treatment

effects (Yoccoz, 1991; Steidl et al., 1997; Fox, 2001),

an issue that is rarely discussed in published ecological

research (Anderson et al., 2000; Fidler et al., in pre-

paration). In many situations, differentiating between

statistical significance and ecological importance can

be achieved by calculating confidence intervals around

observed treatment effects.

The confidence interval approach to data analysis

advocated in this paper focuses on estimation of

treatment effects and their associated errors (Steidl

et al., 1997; Johnson, 1999) and on the specification of

an important effect size before the experiment begins.

To better understand the meaning of confidence inter-

vals, imagine that an experiment was conducted a

large number of times and a 95% confidence interval

for the treatment effect was constructed on each

occasion. On average, 95% of these intervals will

contain the true (population) treatment effect (Levine

and Ensom, 2001). A single 95% confidence interval

does not contain the true treatment effect with 95%

certainty, but can be interpreted as representing a

range within which the true effect may plausibly lie

(Hoenig and Heisey, 2001; Steidl and Thomas, 2001).

Confidence intervals provide an estimate of the true

size of treatment effects, and thus can be used to assess

the ecological importance of an observed effect based

on a single sample of data. In many situations,

confidence intervals are completely compatible with

traditional hypothesis testing procedure—if a 95%

confidence interval does not include the value speci-

fied by the null hypothesis (usually zero), the null

hypothesis can be rejected at the 5% level (Steidl and

Thomas, 2001).

If researchers can define an ecologically important

treatment effect a priori (an issue which is discussed in

more detail later), the information provided by con-

fidence intervals can lead to one of the five alternative

conclusions that differentiate between statistical sig-

nificance and ecological importance (Fig. 1). While

the use of confidence intervals has been advocated in a

number of research fields (e.g. wildlife biology, med-

ical science and psychology), discussion of this topic

and use of the techniques is all but absent in many

mainstream ecological journals. A survey of 45 papers

recently published in Forest Ecology and Management

(172 (2–3) to 173 (1–3) inclusive) found that although

the detection of differences or trends was important

in 42 papers, confidence intervals around effects was

only presented in five.

The objective of this paper is to introduce the con-

cepts associated with a confidence interval approach to

data analysis and to generate debate regarding its utility.

The discussion is conducted within a frequentist sta-

tistical framework; other data analysis approaches (e.g.

Bayesian or information theoretic, see Ellison, 1996;

Anderson et al., 2000 for an outline of these techniques)

are not considered. An example based on a frequently

used experimental design (two-way fixed factor

ANOVA) was employed to evaluate results based on

both P-values and confidence intervals. The capacity to

use confidence intervals to analyse more complex

ANOVA designs is discussed and the implications of

different data analysis and presentation methods for

forest management are considered.

2. Methods

The consumption of plantation seedlings by mam-

malian herbivores is problematic in many parts of the

world and a number of studies (e.g. Montague, 1993;
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Stange and Shea, 1998; Delisle, 1999; Dubois et al.,

2000) have tested the effectiveness of tree guards as

a browsing reduction strategy. Based on these studies,

a hypothetical data set was generated and analysed,

and results interpreted using both P-values and 95%

confidence intervals. Although the data were hypothe-

tical and structured to support particular arguments,

data of similar form are commonly observed in the

ecological literature.

The objectives of this hypothetical experiment were

to determine: (a) if browsing by mammalian herbi-

vores reduced the height of 1-year-old plantation

grown eucalypt seedlings to an important degree,

(b) if tree guards provided adequate protection against

browsing damage and (c) whether browsing damage or

the degree of protection afforded by the tree guards

varied in space. Three treatments (unprotected, short

tree guards and tall tree guards) and a control (fenced

seedlings) were established when seedlings were

planted and replicated three times at each of two sites.

Seedling height (the response variable) was recorded

after 1 year of growth. The data were analysed using a

two-way analysis of variance (ANOVA), where Factor

A (treatment) had four levels, Factor B (site) had two

levels and both factors are considered fixed. In this

example Factor B was considered fixed because in

many large-scale forestry experiments operational

constraints prevent sites from being chosen at random.

ANOVA was used as an example because this analysis

technique is common in the ecological literature—24

out of 45 papers published in volumes 172 (2–3) to 173

(1–3) of Forest Ecology and Management used

ANOVA or t-tests for data analysis. The analysis

was performed using Genstat 5 and the probability

of making a Type I error (a) was set at 0.05. Assump-

tions of normality and homogeneity of variance were

tested using normal plots of standardised residuals and

plots of standardised residuals versus fitted values,

respectively, and no transformations were deemed

necessary. Subsequent to the initial ANOVA proce-

dure, P-values and 95% confidence intervals were

calculated for a number of selected contrasts using

Genstat’s COMPARISON function.

Based on discussions with experienced researchers

(J. Bulinski and C. McArthur, personal communica-

tion), a reduction in seedling height of �30% relative

to control seedlings was chosen, a priori, as an impor-

tant treatment effect, as this degree of height loss

after one year was considered likely to have adverse

commercial implications. This effect size was also
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Fig. 1. Interpretation of results using confidence intervals. Black squares are observed treatment effects, error bars are 95% confidence

intervals around these effects and the dashed line represents an (arbitrarily defined) ecologically important effect. In Case 1, the observed

effect is both statistically significant and ecologically important. In Case 2, the effect is statistically significant, but the data are insufficient to

determine ecological importance. In Case 3, the effect is statistically significant but not ecologically important. In Case 4, the effect is not

statistically significant and the data are insufficient to determine ecological importance. In Case 5, the effect is neither statistically significant

nor ecologically important. After Fox (2001) and Steidl and Thomas (2001).
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used to specify an important interaction effect as it

would represent substantial differences in the effect of

treatments at each site. Because the height of control

seedlings was similar at both sites (81.3 and 78.0 cm,

see Fig. 2), the important degree of height loss

(�23.9 cm) was calculated using pooled data.

Although other effect size measures can be calculated

(e.g. Fidler and Thompson, 2001) raw mean differ-

ences were used as the effect size in this paper because

they are easier to interpret than other indices.

3. Results and discussion

The data are presented graphically in Fig. 2 and

results of the original ANOVA are displayed in Table 1.

Selected contrasts exploring the interaction term and

treatment effects at sites 1 and 2 are shown in Table 2.

The first three lines of Table 2 represent interaction

contrasts that compare the difference between the

heights of the control and treatment seedlings at

site 1 with the corresponding differences at site 2.

For example, the control–unprotected � site contrast

compares the difference between the mean height

of control and unprotected seedlings at site 1

(81:3 � 16:3 ¼ 65 cm) with the corresponding differ-

ence at site 2 (78:0 � 26:7 ¼ 51:3 cm). The difference

between the two (65 � 51:3 ¼ 13:7 cm) is the effect

listed in Table 2. The non-significant P-value asso-

ciated with this effect indicates that the null hypothesis

(browsing reduces seedling height by the same amount

at both sites) cannot be rejected. The remainder of

Table 2 lists contrasts exploring control–treatment

differences at each site. The corresponding effect sizes

represent seedling height loss for each treatment

relative to the controls. Smaller numbers indicate

more effective treatments. The results are described

and discussed in terms of conventional statistical

interpretation and how they would be interpreted using

confidence intervals.

3.1. Conventional statistical interpretation

The initial analysis (Table 1) showed statistically

significant treatment, site and interaction effects. The

interaction contrasts (Table 2) indicated that the degree
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Fig. 2. Treatment means (þS.E.) for all treatments at each site Tg ¼ tree guard.

Table 1

ANOVA table describing the original analysis

Source d.f. SS MS F P-value

Site 1 937.5 937.5 13.3 0.002

Treatment 3 12666.8 4222.3 59.7 <0.001

Site � treatment 3 780.2 260.1 3.7 0.035

Residual 16 1132.0 70.8

Total 23 15516.5
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to which short tree guards reduced browsing damage

relative to the controls differed between sites. Because

of the problems associated with interpreting main

effects when the interaction is statistically significant

(Underwood, 1997), treatment effects were explored

separately at each site using the mean square residual

from the original data set (Table 1) to calculate F-ratios

and P-values (Quinn and Keough, 2002). The indivi-

dual site contrasts (Table 2) indicated that all treatments

except for tall tree guards at site 2 resulted in statisti-

cally significant reductions in seedling height relative to

the controls. In other words, mammalian browsing

caused a statistically significant reduction in seedling

height at both sites while the only tree guard treatment

that prevented a statistically significant reduction in

seedling height were tall tree guards at site 2.

3.2. Statistical interpretation using confidence

intervals

The 95% confidence intervals around all effects are

presented in Table 2. In general the intervals are wide

indicating that the effect size estimates are imprecise.

For the interaction contrasts all the confidence inter-

vals contain the predetermined important effect

(23.9 cm) which suggests that the true (population)

effects estimated by these contrasts may or may not be

important. Even without this predetermined important

effect size the extremes of the intervals indicate that

the true interaction effect may be either insubstantial

or large. If information about the interaction were of

primary importance (as it is in many ecological

experiments) more data would be needed so interac-

tion effects could be estimated with greater precision.

The analysis of treatment effects at each site

(Table 2) showed that the pre-defined important effect

(23.9 cm) is less than the lower 95% confidence bound

for the control–unprotected contrasts at both sites.

This indicates that browsing reduces the height of

seedlings by more than the critical 30% margin. The

result is the same for the control–short tree guard

contrast at site 1 where the conclusion is that short tree

guards are an ineffective browsing reduction strategy.

The results for all the other individual site contrasts

(control–tall tree guards at both sites and control–short

tree guards at site 2) are unclear. In these cases the pre-

defined important effect lies within the confidence

intervals thus it is plausible that true height reductions

could be either greater or less than the critical 30%

figure. Consequently, the results are inconclusive and

more data are required before the impact of these

treatments can be determined.

A summary of conclusions corresponding to the

analysis of individual site contrasts is presented in

Table 3. This comparison shows that P-values cannot

be used to indicate whether treatment effects are

Table 2

Selected contrasts exploring the interaction term from the original ANOVA and treatment effects at sites 1 and 2a

Contrast Effect size (cm) 95% CI S.E. F P-value

Interaction contrasts

Control–unprotected � site 13.7 �15.4 to 42.8 13.74 2.0 0.179

Control–short tree guard � site 32.0 2.9 to 61.1 13.74 10.9 0.005

Control–tall tree guard � site 17.6 �11.5 to 46.7 13.74 3.3 0.088

Relevant contrasts at site 1b

Control–unprotected 65.0 50.4 to 79.6 6.87 89.6 <0.001

Control–short tree guard 64.7 50.1 to 79.3 6.87 88.7 <0.001

Control–tall tree guard 29.7 15.1 to 44.3 6.87 18.7 <0.001

Relevant contrasts at site 2b

Control–unprotected 51.3 36.7 to 65.9 6.87 55.9 <0.001

Control–short tree guard 32.7 18.1 to 47.3 6.87 22.6 <0.001

Control–tall tree guard 12.0 �2.6 to 26.6 6.87 3.1 0.100

a Effect sizes for the interaction contrasts represent the consistency of the control–treatment differences between sites. Effect sizes for the

individual site contrasts represent height loss relative to the controls. The predetermined important effect size is 23.9 cm.
b F-ratios, standard errors and P-values for the individual site contrasts are based on the mean square residual and associated degrees of

freedom from the original data set (Quinn and Keough, 2002).
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important. Although the P-values associated with the

control–tall tree guard contrast at site 1 and the

control–short tree guard contrast at site 2 are small

(both <0.001), confidence interval analysis showed

that these treatments may or may not have reduced

browsing damage by an important degree. This cor-

responds to Case 2 in Fig. 1 where the effect is

statistically significant, but may or may not be impor-

tant in the context of the experimental objectives. The

importance of the treatment effect associated with the

control–tall tree guard contrast at site 2 is similarly

unclear, even though the P-value associated with this

effect is relatively large (0.100). This corresponds to

Case 4 in Fig. 1 where the effect is not statistically

significant but may or may not be important. In all

three cases, the data were inadequate to estimate the

treatment effects with sufficient precision to deter-

mine whether they were important or not.

The inability to detect effects with sufficient pre-

cision results from low power statistical tests, an

occurrence that is common in the scientific literature

(Sedlmeier and Gigerenzer, 1989; Peterman, 1990;

Fairweather, 1991). In the case of the present example

the conclusion that the statistical tests lacked power is

not surprising as each treatment was only replicated

three times at each site. Retrospective power analysis

can also be used to assess statistical power after an

experiment has been conducted (Fairweather, 1991;

Quinn and Keough, 2002) but recent criticism of this

procedure (Goodman and Berlin, 1994; Steidl et al.,

1997; Gerard et al., 1998; Hoenig and Heisey, 2001;

Lenth, 2001) has led some authors to recommend

using confidence intervals in lieu of retrospective

power analysis (Levine and Ensom, 2001; Steidl

and Thomas, 2001; Hoenig and Heisey, 2001)

although conclusions stemming from both techniques

may often be similar (Thomas, 1997). In many situa-

tions, problems of low power in ecological field

experiments can be avoided (or at least revealed) by

conducting a priori power analysis. The utility of this

procedure has been discussed in a number of recent

publications (Fairweather, 1991; Keough and Map-

stone, 1997; Di Stefano, 2001; Foster, 2001; Downes

et al., 2002; Quinn and Keough, 2002), and it is clear

that incorporating power analysis into the planning

stage of ecological experiments will facilitate the

generation of more useful statistical results.

3.3. Specification of important treatment effects

Interpretation of results using confidence intervals

is facilitated by the a priori specification of important

Table 3

Summary of conclusions based on P-values and 95% confidence intervals for the analysis of individual site contrasts

Individual site contrasts P-values 95% CI

Site 1

Control–unprotected Unprotected (browsed) seedlings experienced

statistically significant (>0) height losses

The height of unprotected (browsed) seedlings

was reduced to an important degree

Control–short tree guards Seedlings protected by short tree guards experienced

statistically significant (>0) height losses

Short tree guards did not prevent browsing damage:

seedling height losses were important

Control–tall tree guards Seedlings protected by tall tree guards experienced

statistically significant (>0) height losses

Uncertain if tall tree guards prevented browsing

damage: seedling height losses may or may not

have been important

Site 2

Control–unprotected Unprotected (browsed) seedlings experienced

statistically significant (>0) height losses

The height of unprotected (browsed) seedlings was

reduced to an important degree

Control–short tree guards Seedlings protected by short tree guards experienced

statistically significant (>0) height losses

Uncertain if short tree guards prevented browsing

damage: seedling height losses may or may not

have been important

Control–tall tree guards Height losses for seedlings protected by tall tree

guards were not statistically significant. Insufficient

evidence to reject the null hypothesis

(H0: height difference ¼ 0)

Uncertain if tall tree guards prevented browsing

damage: seedling height losses may or may not

have been important
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treatment and interaction effects. Determination of an

important effect is often difficult (particularly for

interactions) and may, at times, be arbitrary and sub-

jective (Rotenberry and Wiens, 1985). Nevertheless,

attempting to specify important effect sizes is critical

as it is often meaningless to view effects as important

simply because they are larger than zero. The key is to

consider the system under investigation and, as best as

possible, define an effect size that has important

consequences (Keough and Mapstone, 1997; Downes

et al., 2002).

One factor that complicates the specification of

important effects is the number of different effect size

measures—overall more than 60 have been specified

in the statistical literature (Jaccard and Guilamo-

Ramos, 2002). For example, the effect attributable

to a main factor in a two-way ANOVA can be

described in terms of a raw effect (e.g. mean differ-

ence) or standardised effect sizes such as Cohen’s f

and proportion of explained variance (PEV) measures

including eta squared (Z2) and omega squared (o2)

(Fidler and Thompson, 2001). When possible, raw

effect sizes should be used as they are in the units of

the response variable and thus much easier to interpret.

A number of additional arguments against the use of

standardised effect size measures are outlined by

Lenth (2001) and Jaccard and Guilamo-Ramos (2002).

For interactions, however, even raw effect sizes are

difficult to interpret. Raw effect sizes for the overall

interaction effect can be calculated (Carey, 2002) but

the output is generally not helpful. For the example

used in this paper, the overall interaction effect is

31.8 cm and is influenced by the degree to which all

treatments have differing effects at each site. The

approach used in this study was to consider selected

aspects of the overall interaction by using interaction

contrasts. Even so, the effect sizes are difficult to

interpret and this difficulty would increase for more

complex examples. A useful alternative to raw effects

sizes for specifying overall or other complex interac-

tion effects is one of the PEV indices. Using these

indices an interaction effect can be expressed as the

proportion of variance it explains. Nevertheless,

PEV indices do not always reflect the true magnitude

of an effect and some are influenced by arbitrary

design decisions (Jaccard and Guilamo-Ramos,

2002). In addition, it is difficult (although possible)

to calculate confidence intervals around PEV indices

for unbalanced designs (Burdick and Graybill, 1992),

a situation that frequently occurs in ecological

research. There are no simple solutions to this pro-

blem—finding meaningful effect size measures and

specifying important effects for interaction terms is a

difficult matter.

Although generally not considered in ecological

studies, the need to define important effects has occa-

sionally been highlighted (e.g. Keough and Mapstone,

1995, 1997; Downes et al., 2002; Whittier et al.,

2002). Whittier et al. (2002) acknowledge that the

specification of an important effect is always subject

to some degree of judgement, and thus present results

in the context of both a smaller and larger effect.

Extending this concept, some of the difficulties asso-

ciated with specifying an important treatment effect

might be overcome by specifying an important effect

range. Although it is often difficult to define an

important effect precisely, a range of values (bounded

on one side by an effect that is obviously unimportant

and on the other by one that is obviously important)

may be much more satisfactory. Researchers can then

use the limits of this range to determine the true

importance of effects, and values within it to specify

uncertainty. This method is still subjective, but may be

more appealing to researchers who are reluctant to

specify the exact magnitude of an important effect.

Although the detection of ecologically important

treatment effects is likely to be the objective of pure

ecological research, the specification of important

effects for applied studies may be influenced by

economic, social or legal considerations (Keough

and Mapstone, 1995; Mapstone, 1995; Downes

et al., 2002). This is exemplified in the present paper

where the important treatment effect had an economic

basis. In studies with both ecological and human

dimensions (for example, an investigation into the

quantity and type of trees that should remain after

native forest timber harvesting) the specified impor-

tant treatment effect is likely to be influenced by both

ecological and social criteria. In cases like this, the

definition of an important treatment effect should be

made by researchers in consultation with relevant

stakeholders, and the final figure is likely to be a

compromise between a number of competing inter-

ests. A detailed discussion of the complexities invol-

ved with defining an important treatment effect is

presented in Downes et al. (2002).
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3.4. Confidence interval construction and effect

size estimation for complex ANOVA designs:

applicability, problems and issues

In most situations confidence intervals can be used

to report results for more complex ANOVA designs

(Fidler and Thompson, 2001; Bird, 2002; Jaccard and

Guilamo-Ramos, 2002). Bird (2002) used confidence

intervals around raw and standardised effects of

planned contrasts for designs including multi-way

fixed factor, random factor, mixed model, nested and

repeated measures. Fidler and Thompson (2001)

focused on the use of PEV effect size measures and

described the use of non-central distributions in con-

fidence interval calculation. Although not the focus of

this paper, confidence intervals can be constructed

around effect size measures for a range of regression

analyses as well.

There are, however, a number of problems asso-

ciated with confidence interval calculation for

ANOVA designs. Although the calculation of confi-

dence intervals around raw effect size measures asso-

ciated with individual contrasts is straightforward

(Jaccard and Guilamo-Ramos, 2002), badly unba-

lanced designs cause problems (El-Bassiouni and

Abdelhafez, 2000) particularly for PEV indices (dis-

cussed above). Verrill (1999) also identified problems

(as well as a solution) for confidence interval calcula-

tion where a blocking factor is used.

Confidence intervals are difficult to interpret when

effect size measures are in an unfamiliar scale (Bird,

2002). This often occurs when data are transformed

(Stewart-Oaten et al., 1992), but the need for trans-

formations can probably be minimised if randomisa-

tion techniques are used. A further criticism (often

made in relation to a) is that the level of precision

tends to be an arbitrary choice (Robinson and Wainer,

2002). 95% confidence intervals are often used by

convention, but other levels of precision may be more

appropriate. Yet another issue raised by Wilcox (2002)

is that confidence intervals based on parametric sta-

tistical techniques can be markedly inaccurate. This

criticism, however, is of parametric statistics and not

of confidence intervals per se. Wilcox (2002) sug-

gested that a variety of ‘modern’ methods including

the use of trimmed means and bootstrapping techni-

ques can be used to generate more reliable estimates of

effect sizes and their precision.

Another serious issue is the difficulty involved in

specifying ecologically important effect sizes, a task

that involves linking an effect size measure to impor-

tant change in the real world (Jaccard and Guilamo-

Ramos, 2002). Although approximating the size of

important effects based on imprecise information is

appropriate, guessing an important effect size in the

absence of data may result in misleading conclusions.

In all branches of ecology there is a need for more

research into what constitutes ecologically important

change and how this can be represented using biolo-

gically interpretable effect size measures.

Finally, most commercially available statistical

packages focus on statistical null hypothesis testing

and routines that generate confidence intervals are not

always readily available. For example, MINITAB 13.31

calculates confidence intervals for fixed factor ANOVA

but does not do so for the random factor version of the

analysis. Bird (2002) notes that none of the popular

statistical packages carry out all of the confidence inter-

val based analysis he discusses. Although modern tech-

nology makes thecalculationofeffect sizemeasuresand

associated confidence intervals possible, the non-stan-

dard nature of these procedures means that some con-

fidence interval based outputs are difficult to produce.

3.5. The value of P

The primary argument in this paper has been that

calculating confidence intervals around observed

effects provides useful information while P-values

do not. In many cases reporting effect size measures

and confidence intervals render P-values unnecessary

and in these instances they need not be reported

(Robinson and Wainer, 2002). However, there are

times when effect size measures and associated con-

fidence intervals provide no useful insight and in these

situations the use of P-values is appropriate. How, for

instance, can the difference between groups in an

ordination plot be described in such a way as to convey

ecological meaning? What do effect size measures and

confidence intervals mean when assessing whether

interaction terms should be included or excluded from

a complex regression model, or when interpreting a

complex interaction in an ANOVA? In such situations

P-values can be used to assess the statistical signifi-

cance of effects and acknowledgement made that a

meaningful estimation of effect size is difficult.
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Correctly interpreted P-values are an often unin-

formative, occasionally useful and largely innocuous

number. P-values, however, are often misinterpreted

and this may have serious implications for scientific

conclusions or management decisions based on eco-

logical data. Common mistakes include using the size

of the P-value to draw conclusions about the impor-

tance of an effect (Cohen, 1990; Johnson, 2002) and

the belief that P is the probability that the null

hypothesis is true (Johnson, 1999). These (and other)

misinterpretations lead to incorrect or at the very least

unfounded conclusions and do not help ecologists

derive meaning from their data. Many ecologists

(Fidler et al., in preparation; Johnson, 2002) as well

as scientists in other fields (e.g. Jaccard and Guilamo-

Ramos, 2002) make interpretative mistakes of this

kind. When P-values are used care should be taken to

interpret them correctly.

3.6. Implications for forest management and

conservation

Environmental management decisions should be

based, whenever possible, on relevant ecological

data (Murphy and Noon, 1991). The way that ecol-

ogists analyse data and present results, however, can

influence data interpretation and use by environ-

mental managers. In forestry, the detection of

important effects by experiments and monitoring

programs often precipitate management action. In

the context of the example used in this paper, the

decision to employ tree guards as a browsing reduc-

tion strategy should only be made if they could

prevent seedling height loss from exceeding an

ecologically or economically important margin. To

this end, an estimate of effect size, the precision of

this estimate and some consideration about what

constitutes an important effect is required to make

an informed management decision.

The heavy reliance on P-values in all fields of

science (Nelder, 1999) means that managers are often

presented with sub-optimal information. As stated

earlier, P-values simply provide a statistical assess-

ment of results, and thus do not help managers relate

experimental outcomes to the real world. In addition,

resource managers may be more likely to misinterpret

P-values than practising scientists. Peterman (1990)

suggests that interpreting large P-values as ‘no effect’

is an error that resource managers (and scientists)

often make. If effect size measures and confidence

intervals are presented, misinterpretation of results is

much more difficult.

Management action or non-action is often based

on the results of many studies over a long period of

time so untangling the consequences of poor statis-

tical reporting practices may often be impossible.

Nevertheless, it is likely that inadequate presentation

of research results has lead to sub-optimal and ill-

informed forest management decisions, or the

absence of decisions when they were warranted.

Peterman (1990) provides examples from fisheries

ecology demonstrating how the interpretation of

statistically non-significant results as ‘no effect’

led to management inaction and a subsequent decline

in fish stocks. This example is exactly analogous to

experiments designed to test the sustainability of

various forestry practices where statistically non-

significant results are taken to mean that the prac-

tices examined have no effect on the measured

variables and thus should remain unaltered. For

example, Simon et al. (2002) examined the effect

of clear cutting on the abundance of small mammals

and found no statistically significant reductions in

abundance on clear-cut relative to burnt sites. Based

on these data Simon et al. (2002) concluded that

small mammal communities can be maintained at

clear-cut sites. Although raw effect sizes can be

calculated from the data, no estimates of effect size

precision are reported. Consequently, it is impossible

to tell how large the treatment effects may plausibly

have been given the variance in the data. In addition,

there is no discussion about what constituted an

important change in mammal abundance, an aspect

of the study that had clear implications for forest

management. Studies like the one conducted by

Simon et al. (2002) are important as they provide

forest managers with information about the effect

of harvesting on various aspects of forest biodiver-

sity. However, presenting results without clear

measures of effect, estimates of precision or discus-

sion regarding ecologically important effect sizes

makes it difficult to interpret and use the data in a

management context. Presenting results along the

lines suggested in this paper would assist the appro-

priate application of ecological data to management

decisions.
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4. Conclusion

Relative to P-values, the construction of confidence

intervals around observed effects often enables a more

informed appraisal of ecological data. If an important

treatment effect is specified a priori, confidence inter-

vals can be used to differentiate between statistical

significance and ecological (economic, social, etc.)

importance. Using this technique, researchers are able

to estimate a plausible range for observed effects and

thus ascertain whether their data provide insight into

natural patterns and processes. Presenting effect size

estimates and associated confidence intervals, how-

ever, is not a data analysis panacea—problems with

these techniques do exist and ‘naked’ P-values are still

useful in some situations. Nevertheless, there seems

little reason to use P-values alone for applications

where meaningful effect size measures and associated

confidence intervals are available.
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