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ABSTRACT

Repeated measures and time-series data are common in forestry. Because
such data tend to be serially correlated—that is, current measurements are
correlated with past measurements—they require special methods of anal-
ysis. This handbook is an introduction to two broad classes of methods
developed for this purpose: repeated-measures analysis of variance and
time-series analysis. Both types of analyses are described briefly and are
illustrated with forestry examples. Several procedures for the analysis of
repeated measures and time series are available in the SAS/STAT and
SAS/ETS libraries. Application of the REPEATED statement in PROC GLM
(and PROC ANOVA) and the time-series procedures PROC AUTOREG,
PROC ARIMA, and PROC FORECAST are discussed.
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1 INTRODUCTION

Forestry data are often collected over time or space.1 In trials to compare
several treatments, tree height and diameter are typically measured before
treatments are applied and on one or more occasions after application.
Sometimes data are collected more frequently or over extended periods.
Microclimatic conditions are generally monitored on a daily or hourly
basis, or at even shorter intervals, for periods of several weeks, months,
or years. Tree rings, growth and yield, timber prices, reforestation costs,
forest fire occurrence, insect infestations, animal populations, and water
quality are also observed at regular intervals so that trends or cyclic pat-
terns can be studied. These diverse examples have one common feature:
the same unit or process is measured on more than one occasion. Such
data tend to be serially correlated, or autocorrelated, which means that the
most recent measurements are dependent on, or to some extent predict-
able from, past observations. Because this violates the independence
assumption on which many standard statistical methods are based, alter-
native methods are required for their analysis. Two broad classes of meth-
ods have been developed for this purpose: repeated-measures analysis and
time-series analysis.

This handbook is a brief introduction to repeated-measures and time-
series analysis, with an emphasis on methods that are most likely to be
applicable to forestry data. The objective of the handbook is to help the
reader recognize when repeated-measures or time-series methods are
applicable, and to provide general guidance in their selection and use.
Most mathematical details have been omitted, but some familiarity with
analysis of variance and regression analysis, and an understanding of such
basic statistical concepts as the mean and variance of a random variable
and the correlation between two variables are required. Readers are also
assumed to have a working knowledge of SAS.2 The discussion begins
with three examples (Section 1.1), which are used to illustrate the ideas
and methods that are covered in subsequent sections. The examples are
followed by some definitions (Section 1.2). Repeated-measures analysis
of variance is discussed in Section 2 and general time-series methods
are described in Section 3. Elementary SAS programs for carrying out
repeated-measures analyses and some simple time-series analyses are
included in Section 4. Additional examples are given in Section 5. For
more information about a particular topic, the reader should consult the
list of references at the end of the handbook.

1.1 Examples Before proceeding with the definitions and a discussion of methods, it will
be helpful to describe some situations in which repeated-measures or time-
series data arise. The first example (Section 1.1.1) is a typical repeated-

1 The methods discussed in this handbook can be generalized to data collected over space (e.g.,
Rossi et al. 1992), or any other index by which measurements can be arranged in a logical
sequence or array.

2 SAS is a registered trademark of SAS Institute Inc., Cary, N.C.
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measures experiment. Repeated-measures designs are often used to assess
treatment effects on trees or vegetation, and to monitor growth and yield in
permanent sample plots. The second and third examples involve tree rings,
which is an important area of application of time-series methods in for-
estry. Section 1.1.2 illustrates how several tree-ring series from a single tree
can be used to reconstruct the growth history of a tree. In Section 1.1.3, the
correspondence between ring width and rainfall is examined.

1.1.1 Repeated measurement of seedling height To assess the effects
of three site-preparation treatments, four blocks comprising 12 rows of
25 seedlings were established at a single trial site in the Sub-Boreal Spruce
(SBS) dry warm subzone in the Cariboo Forest Region. Three site-prepa-
ration treatments (V = v-plow, S = 30 × 30 cm hand screef, and U = an
untreated control), two seedling species (FD = Douglas-fir and
PL = lodgepole pine), and two types of stock (B = bareroot and P = plug)
were randomly assigned to the rows, with one row for each of the 12
combinations. Seedling height, diameter, condition, and survival were
measured at the time of planting (1983) and annually for the next six
years (1984–1989). Figure 1 shows the average height of the seedlings that
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(c) lodgepole pine grown from bareroot stock, and (d) lodgepole pine grown from plugs.
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survived to 1989 (i.e., the average over seedlings in all rows and blocks)
plotted against year, for each of the three site-preparation treatments (the
data are in Appendix 1). The objective of the experiment is to determine
whether treatment or stock type affects the growth of either species of
seedling.

1.1.2 Missing tree rings Tree rings are a valuable source of information.
When cross-sectional disks are cut at several heights, the growth history of
a tree can be reconstructed by determining the year that the tree first
reached the height of each disk (i.e., the year when the innermost ring of
the disk was formed). For disks that have a complete complement of
rings, this is a simple matter of counting backwards from the outermost
ring (which is assumed to correspond to the year in which the tree was
cut) to the year of the innermost ring. Dating rings is more complicated
if, during the course of its growth, a tree experiences adverse growing
conditions and in response fails to produce a uniform sheath of xylem
each year. If this happens, one or more rings will be missing in at least
some disks (e.g., the sheath might not fully encircle a disk or it might not
extend down as far as the disk).

Figure 2 shows two tree-ring series from a paper birch tree (the data
are in Appendix 2). Figure 2a is for a disk cut at a height of 1.3 m; Fig-
ure 2b shows the corresponding series for a disk taken at 2.0 m. Eleven
additional disks were sampled at heights ranging from 0.3 m to 20 m. In
Figure 2c, the height of each disk is plotted against the year of the inner-
most ring, with no adjustment for missing rings. Until it was felled in
1993, the tree in Figure 2 was growing in a mixed birch and conifer
stand. In the early stages of development of the stand, the birch trees were
taller than the conifers, but during the forty years before cutting they
were overtopped by the conifers. Because paper birch is a shade-intolerant
species, the trees were subject to increasing stress and therefore some of
the outermost rings are expected to be missing, especially in disks cut
near the base of the tree.

One method of adjusting for missing rings (Cameron 1993) is to align
the tree-ring series by comparing patterns of growth. If there are no miss-
ing rings, then the best match should be achieved by aligning the outer-
most ring of each series. Otherwise, each series is shifted by an amount
equal to the estimated number of missing rings and the growth curve is
adjusted accordingly (Figure 2d). The same approach is used to date trees
except that an undated ring series from one tree is aligned with a dated
series from a second tree, or with a standard chronology. For more infor-
mation about the time-series analysis of tree rings, refer to Monserud
(1986).

1.1.3 Correlation between ring index and rainfall The width of a tree
ring depends on the age of the tree. Typically, ring width increases rapidly
when the tree is young, decreases as the tree matures, and eventually levels
out. Ring width is also affected by climate and environmental conditions.
To reveal the less obvious effects of rainfall, air temperature, or pollution,
the dominant growth trend is removed from the ring-width series by a
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process called detrending  or ‘‘standardization’’ 3 (refer to Section 3.3). The
detrended ring width is called a ring index. Figure 3a shows a ring-index
series for a Douglas-fir tree on the Saanich Peninsula, while Figure 3b
gives the total rainfall during March, April, and May of the same years, as
recorded at the Dominion Astrophysical Observatory (corrected, adjusted,
and extended by comparison with stations at Gonzales Observatory and
Victoria Airport). Data for the two series are given in Appendix 3. In this
example, the investigator wants to determine whether annual spring rain-
fall has any effect on ring width.

1.2 Definitions Let y1 , y2 , . . . , yn be a sequence of measurements (average height of a
row of seedlings, ring width, annual rainfall, etc.) made at n  distinct
times. Such data are called repeated measures, if the measurements are

3 A set of computer programs for standardizing tree-ring chronologies is available from the
International Tree-Ring Data Bank (1993).
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made on relatively few occasions (e.g., n ≤ 10), or a time series, if the
number of observations is large (e.g., n ≥ 25). Thus the seedling measure-
ments (Figure 1) would normally be considered repeated measures, while
the tree-ring data and rainfall measurements (Figures 2a, 2b, 3a, and 3b)
are time series. Figures 1–3 illustrate another common distinction bet-
ween repeated measures and time series. Repeated-measures designs gener-
ally include experimental units (e.g., rows of trees) from two or more
study groups (e.g., site-preparation, species, and stock-type combina-
tions)—notice that each curve in Figure 1 represents a separate group of
seedlings. In contrast, time series often originate from a single population
or experimental unit (e.g., a single tree or weather station). This division,
which is based on the number of observation times and presence or
absence of experimental groups, is more or less arbitrary, but should help
the reader recognize when a repeated-measures analysis is warranted and
when the methods that are generally referred to as time-series analysis are
applicable.

Repeated-measures analysis  is a type of analysis of variance (ANOVA),
in which variation between experimental units (often called ‘‘between-sub-
jects’’ variation) and variation within units (called ‘‘within-subjects’’ varia-
tion) are examined. Between-units variation can be attributed to the
factors that differ across the study groups (e.g., treatment, species, and
stock type). Within-units variation is any change, such as an increase in
height, that is observed in an individual experimental unit. In Figure 1,
the between-units variation accounts for the separation of the curves,
while the within-units variation determines the shape of the curves (if
there were no within-units variation then the curves would be flat). The
objectives of a repeated-measures analysis are twofold: (1) to determine
how the experimental units change over time and (2) to compare the
changes across study groups.

Time-series analysis  encompasses a much wider collection of methods
than repeated-measures analysis. It includes descriptive methods, model-
fitting techniques, forecasting and regression-type methods, and spectral
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analysis. Time-series analysis is concerned with short- and long-term
changes, and the correlation or dependence between past and present
measurements.

1.2.1 Trend, cyclic variation, and irregular variation Forestry
researchers are frequently interested in temporal variation. If repeated-
measures or time-series data are plotted against time, one or more of
three distinct types of variation will be evident (Figure 4). The simplest
type of variation is a trend (Figure 4a), which is a relatively slow shift in
the level of the data. Trends can be linear (Figure 4a) or nonlinear (Fig-
ures 2a and 2b), and can correspond to an increase or decrease in the
mean, or both. The growth in height of a tree or row of seedlings (e.g.,
Figure 1) is a familiar example of a trend.

Some data oscillate at more or less regular intervals as illustrated in
Figure 4b. This type of variation is called cyclic variation. Insect and ani-
mal populations sometimes display cyclic variation in their numbers. Sea-
sonal variation  is cyclic variation that is controlled by seasonal factors

a) b)

c) d)

 4 Temporal variation: (a) linear trend (and irregular variation), (b) seasonal (and irregular) variation,
(c) irregular variation, and (d) trend, seasonal, and irregular variation.
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and therefore completes exactly one cycle per year. Air temperatures typ-
ically exhibit a seasonal increase in the spring and summer, and a corre-
sponding decrease in the fall and winter. The distinction between trend
and cyclic variation can depend on the length of the observation period
and on the frequency of the measurements. If only part of a cycle is com-
pleted during the period of observation, then cyclic variation becomes
indistinguishable from trend. Identification of a cyclic component is also
impossible if sampling is too infrequent to cover the full range of vari-
ability (e.g., if the observation times happen to coincide with the maxi-
mum of each cycle, the data will show no apparent periodicity).

The third type of temporal variation is called residual  or irregular vari-
ation. It includes any noncyclic change that cannot be classified as a trend.
Figure 4c shows a typical example. Notice that there is no trend—the data
fluctuate irregularly about a constant mean (horizontal line)—and there
are no obvious cycles. Irregular variation is the result of isolated or ran-
dom events. Measurement error and sampling error are probably the most
common and best-known sources of irregular variation. There are, how-
ever, many other factors that produce irregular variation. The rainfall
series in Figure 3b is an example. It shows irregular variation resulting
from random changes in the meteorological conditions that produce rain.
The ring-index series (Figure 3a) also exhibits irregular variation, which
probably reflects changes in environmental conditions.

Trend, cyclic variation, and irregular variation can occur simultaneously
(as illustrated in Figure 4d) or in various combinations. One of the first
steps in an analysis is to identify the components of interest. Because
repeated-measures data comprise relatively few observation times,
repeated-measures analysis is concerned mainly with trends. Time series
are often sufficiently long and detailed that both trend and cyclic varia-
tion are potentially of interest. An irregular component is invariably pre-
sent in both repeated measures and time series. In many applications,
irregular variation is attributed entirely to error. Although this variation
must be considered in the selection of a suitable probability model, it is
not the focus of the study. In other studies, such as the ring-index and
rainfall example, irregular variation is the main component under
investigation.

1.2.2 Stationarity A time series is stationary  if its statistical properties
are invariant over time. This implies that the mean and variance are the
same for all epochs (e.g., the mean and variance for the first 20 years are
the same as those for the last 20 years). The series shown in Figure 4c is
stationary. Notice that the data fluctuate about a fixed value and the
amplitude of the fluctuations remains constant. Data that exhibit a trend
(Figure 4a and 4d) or cyclic variation (Figures 4b and 4d) are nonstation-
ary because the mean changes with time. A time-dependent variance is
another common form of nonstationarity. In some cases, both the mean
and variance vary. The daily photosynthetically active radiation (PAR)
measurements plotted in Figure 5 display the latter behaviour. Notice that
as the average light level falls off, the variability of the measurements also
tends to decrease.
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 5 Daily photosynthetically active radiation (PAR).

Stationarity is a simplifying assumption that underlies many time-series
methods. If a series is nonstationary, then the nonstationary components
(e.g., trend) must be removed or the series transformed (e.g., to stabilize
a nonstationary variance) before the methods can be applied. Nonstation-
arity must also be considered when computing summary statistics. For
instance, the sample mean is not particularly informative if the data are
seasonal, and should be replaced with a more descriptive set of statistics,
such as monthly averages.

1.2.3 Autocorrelation and cross-correlation Repeated measures and
time series usually exhibit some degree of autocorrelation. Autocorrelation,
also known as serial correlation, is the correlation between any two mea-
surements ys and yt in a sequence of measurements y1 , y2 , . . . , yn (i.e.,
correlation between a series and itself, hence the prefix ‘‘auto’’). Seedling
heights and tree-ring widths are expected to be serially correlated because
unusually vigorous or poor growth in one year tends to carry over to the
next year. Serially correlated data violate the assumption of independence
on which many ANOVA and regression methods are based. Therefore,
the underlying models must be revised before they can be applied to
such data.

The autocorrelation between ys and yt can be positive or negative, and
the magnitude of the correlation can be constant, or decrease more or less
quickly, as the time interval between the observations increases. The auto-
correlation function  (ACF) is a convenient way of summarizing the depen-
dence between observations in a stationary time series. If the observations
y1 , y2 , . . . , yn are made at n  equally spaced times and yt is the observa-
tion at time t, let yt +1 be the next observation (i.e., the measurement
made one step ahead), let yt +2 be the measurement made two steps
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ahead and, in general, let yt +k  be the observation made k  steps ahead. The
time interval, or delay, between yt and yt +k  is called the lag  (i.e., yt  lags
yt +k by k  time steps) and the autocorrelation function evaluated at lag k  is

 ACF(k) = Cov(yt , yt +k )
Var(yt )

The numerator of the function is the covariance between yt  and yt +k and
the denominator is the variance of yt , which is the same as the variance
of yt +k , since the series is assumed to be stationary. Notice that, by defini-
tion, ACF(0) = 1 and ACF(k ) = ACF(−k ). The latter symmetry property
implies that the autocorrelation function need only be evaluated for k ≥ 0
(or k ≤ 0).

The ACF can be extended to two stationary series x1 , x2 , . . . , xn and
y1 , y2 , . . . , yn  (e.g., the ring index and rainfall series of Section 1.1.3) by
defining the cross-correlation function (CCF). At lag k, this function is the
correlation between xt and yt + k :

CCF(k) =
Cov(xt , yt +k )

√Var(xt )Var(yt )

Notice that, unlike the autocorrelation function, the cross-correlation
function is not necessarily one at lag 0 (because the correlation between xt

and yt is not necessarily one) and CCF(k ) is not necessarily equal to
CCF(−k ) (i.e., the CCF is not necessarily symmetric). Therefore, the
cross-correlation function must be evaluated at k = 0, ±1, ±2, etc.

The auto- and cross-correlation functions play key roles in time-series
analysis. They are used extensively for data summary, model identification,
and verification.

2 REPEATED-MEASURES ANALYSIS

For simplicity, the discussion of repeated measures is restricted to a single
repeated factor, as illustrated by the seedling example in Section 1.1.1. In
this and in many other forestry applications, year, or more generally time,
is the only repeated factor. If the heights of the seedlings were measured
in the spring and fall of each year, or for several years before and after a
fertilizer is applied, the design would include two repeated factors—season
and year, or fertilizer and year. Designs with two or more repeated factors
lead to more complicated analyses than the one-factor case considered
here, but the overall approach (i.e., the breakdown of the analysis into a
within- and between-units analysis) is the same.

2.1 Objectives There are three types of hypotheses to be tested in a repeated-measures
analysis:



10

H01: the growth curves or trends are parallel for all groups (i.e., there are no
interactions involving time),

H02: there are no trends (i.e., there are no time effects), and
H03: there are no overall differences between groups (i.e., the between-units

factors have no effect).
The three hypotheses are illustrated in Figure 6 with the simple case of

one between-units factor. This figure shows the expected average height of
a row of lodgepole pine seedlings (Section 1.1.1), grown from plugs, plot-
ted against year. Each curve corresponds to a different site-preparation
treatment, which is the between-units factor. Hypotheses H01 and H02 con-
cern changes over time, which are examined as part of the within-units
analysis. Hypothesis H01 (Figure 6a) implies that site-preparation treat-
ment has no effect on the rate of growth of the seedlings. If this hypoth-
esis is retained, it is often appropriate to test whether the growth curves
are flat (H02, Figure 6b). Acceptance of H02 implies that there is no
change over time. In this example, H02 is not very interesting because the
seedlings are expected to show some growth over the seven-year period of
the study. The last hypothesis concerns the separation of the three growth
curves and is tested as part of the between-units analysis. If the groups
show parallel trends (i.e., H01 is true) then, H03 implies that growth pat-
terns are identical for the three groups (Figure 6c). Otherwise, H03 implies
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 6 Null hypotheses for repeated-measures analysis: (a) parallel trends, (b) no trends, (c) no difference between
groups, and (d) differences between groups cancel over time.
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that there is no difference between the groups when the effects of the site-
preparation treatments are averaged over time. Relative gains and losses
are cancelled over time, as illustrated in Figure 6d.

Rejection of H01 implies that the trends are not parallel for at least two
groups. When this occurs, additional hypotheses can be tested to deter-
mine the nature of the divergence (just as multiple comparisons are used
to pinpoint group differences in a factorial ANOVA). One approach is to
compare the groups at each time, as suggested by Looney and Stanley
(1989). Alternatively, one of the following can be tested:

H04: the expected difference between two consecutive values, yt − yt − 1, is the
same for all groups,

H05: the expected difference between an observation at time t  and its initial
value, yt − y1, is the same for all groups, or

H06: the expected value of the k th-order polynomial contrast
a 1k y1 + a 2k y2 + . . . + ank yn is the same for all groups.

Each hypothesis comprises a series of n − 1 hypotheses about the within-
row effects. In the first two cases (H04 and H05), the n − 1 increments
y2 − y1, y3 − y2 , . . . , yn − yn − 1 , or cumulative increments
y2 − y1 , y3 − y1 , . . . , yn − y1 , are tested for significant group differences by
carrying n − 1 separate analyses of variance. If the trends are expected to
be parallel for at least part of the observation period, then H04 is often of
interest. Alternatively, the trends might be expected to diverge initially and
then converge, in which case H05 might be more relevant. The last hypoth-
esis (H06) is of interest when the trends are adequately described by a poly-
nomial of order k  (i.e., β0 + β1t + . . . + βkt

k ). In this case, a set of
coefficients a1k , a2k , . . . , ank (see Bergerud 1988 for details) can be chosen
so that the expected value of linear combination a1k y1 + a2k y2 + . . . + ank yn

depends only on βk . Thus an ANOVA of the transformed values
a1k y1 + a2k y2 + . . . + ank yn is equivalent to assessing the effects of the bet-
ween-units factors on βk . If the order of the polynomial is unknown,
ANOVA tests can be performed sequentially, starting with polynomials of
order n − 1 (which is the highest-order polynomial that can be tested when
there are n  observation times) and ending with a comparison of linear
components. Refer to Littell (1989), Bergerud (1991), Meredith and Steh-
man (1991), Sit (1992a), and Gumpertz and Brownie (1993) for a discus-
sion of the comparison of polynomial and other nonlinear trends.

2.2 Univariate Analysis
of Repeated Measures

Univariate repeated-measures analysis is based on a split-plot ANOVA
model in which time is the split-plot factor (refer to Keppel 1973; Moser
et al. 1990; or Milliken and Johnson 1992 for details). As an illustration,
consider the average row heights for the seedling data (Section 1.1.1).
The split-plot ANOVA (with an additive block effect) is summarized in
Table 1. The top part of the table summarizes the between-rows analysis.
It is equivalent to an ANOVA of the time-averaged responses
(y1 + y2 + . . . + yn )/n  and has the same sources of variation, degrees of
freedom, sums of squares, expected mean squares, and F-tests as a facto-
rial (SPP × STK × TRT) randomized block design with no repeated fac-
tors. The bottom part of the table summarizes the within-rows analysis.
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 1 Split-plot ANOVA model for seedling experiment (Section 1.1.1)

Source of Degrees of Error term for
variation freedom testing effect

Between rows
Block, BLK 3
Species, SPP 1 Error – row
Stock type, STK 1 Error – row
Site-preparation treatment, TRT 2 Error – row
SPP × STK 1 Error – row
SPP × TRT 2 Error – row
STK × TRT 2 Error – row
SPP × STK × TRT 2 Error – row
Error – row 33

Within rows
Time, YEAR 6 YEAR × BLK
YEAR × BLK 18
YEAR × SPP 6 Error – row × year
YEAR × STK 6 Error – row × year
YEAR × TRT 12 Error – row × year
YEAR × SPP × STK 6 Error – row × year
YEAR × SPP × TRT 12 Error – row × year
YEAR × STK × TRT 12 Error – row × year
YEAR × SPP × STK × TRT 12 Error – row × year
Error – row × year 198

Total 335

It includes the main effect of time (YEAR) and all other time-related
sources of variation (YEAR × SPP, YEAR × STK, YEAR × TRT, etc.),
which are readily identified by forming time interactions with the factors
listed in the top part of the table. If all the interactions involving time are
significant, each of the 12 groups (2 species × 2 stock types × 3 site-prep-
aration treatments) will have had a different pattern of growth. The
absence of one or more interactions can simplify the comparison of
growth curves. For example, if there are no interactions involving treat-
ment and year (i.e., the terms YEAR × TRT, YEAR × SPP × TRT,
YEAR × STK × TRT, and YEAR × SPP × STK × TRT are absent from the
model), then the three growth curves corresponding to the three site-
preparation treatments are parallel for each species and stock type.

The univariate model allows for correlation between repeated meas-
urements of the same experimental unit (e.g., successive height measure-
ments of the same row of seedlings). This correlation is assumed to be the
same for all times and all experimental units.4 The univariate model, like
any randomized block design, also allows for within-block correlation—that
is, correlation between measurements made on different experimental units
in the same block (e.g., the heights of two rows of seedlings in the same

4 This condition can be replaced with the less restrictive ‘‘Huynh-Feldt condition,’’ which is
described in Chapter 26 of Milliken and Johnson (1992).
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block). In the repeated-measures model, inclusion of a year-by-block inter-
action (YEAR × BLK) implies that the within-block correlation depends on
whether measurements are made on different experimental units in the
same block (e.g., the heights of two rows of seedlings in the same block).
Measurements made in the same year (and in the same block) are assumed
to be more strongly correlated than those made in different years. However,
in both cases, the correlation is assumed to be the same for all blocks and
experimental units. All other measurements (e.g., the heights of two rows in
different blocks) are assumed to be independent. In addition, all measure-
ments are assumed to have the same variance.

2.3 Multivariate
Analysis of Repeated

Measures

In a univariate analysis, repeated measurements are treated as separate
observations and time is included as a factor in the ANOVA model. In the
multivariate approach, repeated measurements are considered elements of
a single multivariate observation and the univariate within-units ANOVA
is replaced with a multivariate ANOVA, or MANOVA. The main advan-
tage of the multivariate analysis is a less restrictive set of assumptions.
Unlike the univariate ANOVA model, the MANOVA model does not
require the variance of the repeated measures, or the correlation between
pairs of repeated measures, to remain constant over time (e.g., the vari-
ance of the average height of a row of seedlings might increase with time,
and the correlation between two measurements of the same row might
decrease as the time interval between the measurements increases). Both
models do, however, require the variances and correlations to be homoge-
neous across units (e.g., for any given year, the variance of the average
height of a row of seedlings is the same for all rows, as are the inter-year
correlations of row heights). The greater applicability of the multivariate
model is not without cost. Because the model is more general than the
univariate model, more parameters (i.e., more variances and correlations)
need to be estimated and therefore there are fewer degrees of freedom for
a fixed sample size. Thus, for reliable results, multivariate analyses typ-
ically require larger sample sizes than univariate analyses.

The multivariate analysis of the between-units variation is equivalent to
the corresponding univariate analysis. However, differences in the under-
lying models lead to different within-units analyses. Several multivariate
test statistics can be used to test H01 and H02 in a multivariate repeated-
measures analysis: Wilks’ Lambda, Pillai’s trace, Hotelling-Lawley trace,
and Roy’s greatest root. To assess the statistical significance of an effect,
each statistic is referred to an F-distribution with the appropriate degrees
of freedom. If the effect has one degree of freedom, then the tests based
on the four statistics are equivalent. Otherwise the tests differ, although in
many cases they lead to similar conclusions. In some situations, the tests
lead to substantially different conclusions so the analyst must consider
other factors, such as the relative power of the tests (i.e., the probability
that departures from the null hypothesis will be detected), before arriving
at a conclusion. For a more detailed discussion of multivariate repeated-
measures analysis, refer to Morrison (1976), Hand and Taylor (1987), and
Tabachnick and Fidell (1989), who discuss the pros and cons of the four
MANOVA test statistics; Moser et al. (1990), who compare the multi-
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variate and univariate approaches to the analysis of repeated measures;
and Gumpertz and Brownie (1993), who provide a clear and detailed
exposition of the multivariate analysis of repeated measures in randomized
block and split-plot experiments.

3 TIME-SERIES ANALYSIS

Time series can be considered from two perspectives: the time domain
and the frequency domain. Analysis in the time domain relies on the auto-
correlation and cross-correlation functions (defined in Section 1.2.3) to
describe and explain the variability in a time series. In the frequency
domain, temporal variation is represented as a sum of sinusoidal compo-
nents, and the ACF and CCF are replaced by the corresponding Fourier
transforms, which are known as the spectral and cross-spectral density
functions. Analysis in the frequency domain, or spectral analysis  as it is
more commonly called, is useful for detecting hidden periodicities (e.g.,
cycles in animal populations), but is generally inappropriate for analyzing
trends and other nonstationary behaviour. Because the results of a spectral
analysis tend to be more difficult to interpret than those of a time-domain
analysis, the following discussion is limited to the time domain. For a
comprehensive introduction to time-series analysis in both the time and
frequency domains, the reader should refer to Kendall and Ord (1990);
Diggle (1991), who includes a discussion (Section 4.10, Chapter 4) of the
strengths and weaknesses of spectral analysis; or Chatfield (1992). For
more information about spectral analysis, the reader should consult
Jenkins and Watts (1968) or Bloomfield (1976).

3.1 Objectives The objectives of a time-series analysis range from simple description to
model development. In some applications, the trend or cyclic components
of a series are of special interest, and in others, the irregular component is
more important. In either case, the objectives usually include one or more
of the following:
• data summary and description
• detection, description, or removal of trend and cyclic components
• model development and parameter estimation
• prediction of a future value (i.e., forecasting)

Many time-series methods assume that the data are equally spaced in
time. Therefore, the following discussion is limited to equally spaced
series (i.e., the measurements y1 , y2 , . . . , yn are made at times t0 + d,
t0 + 2d , . . . , t0 + nd  where d  is the fixed interval between observations).
This is usually not a serious restriction because in many applications,
observations occur naturally at regular intervals (e.g., annual tree rings)
or they can be made at equally spaced times by design.

3.2 Descriptive
Methods

Describing a time series is similar to describing any other data set. Stan-
dard devices include graphs and, if the series is stationary, such familiar
summary statistics as the sample mean and variance. The correlogram and
cross-correlogram, which are plots of the sample auto- and cross-
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correlation functions, are powerful tools. They are unique to time-series
analysis and offer a simple way of displaying the correlation within or
between time series.

3.2.1 Time plot All time series should be plotted before attempting an
analysis. A time plot—that is, a plot of the response variable yt versus
time t—is the easiest and most obvious way to describe a time series.
Trends (Figure 4a), cyclic behaviour (Figure 4b), nonstationarity (Figures
2a, 2b, 5), outliers, and other prominent features of the data are often
most readily detected with a time plot. Because the appearance of a time
plot is affected by the choice of symbols and scales, it is always advisable
to experiment with different types of plots. Figure 7 illustrates how the
look of a series (Figure 7a) changes when the connecting lines are omit-
ted (Figure 7b) and when the data are plotted on a logarithmic scale
(Figure 7c). Notice that the asymmetric (peaks in one direction) appear-
ance of the series (Figures 7a and 7b) is eliminated by a log transforma-
tion (Figure 7c). If the number of points is very large, time plots are
sometimes enhanced by decimating (i.e., retaining one out of every ten
points) or aggregating the data (e.g., replacing the points in an interval
with their sum or average).

3.2.2 Correlogram and cross-correlogram The correlogram, or sample
autocorrelation function, is obtained by replacing Cov(yt , yt − k ) and
Var(yt ) in the true autocorrelation function (Section 1.2.3) with the cor-
responding sample covariance and variance:

ACF (k) =
∧

∑(yt − y-) (yt +k − y-)
n −k

t =1 = rk

∑ (yt − y-)2

n

t =1

and plotting autocorrelation coefficient rk against k. For reliable estimates,
the sample size n  should be large relative to k  (e.g., n > 4k  and n > 50)
and, because the autocorrelation coefficients are sensitive to extreme
points, the data should be free of outliers.

The correlogram contains a lot of information. The sample ACF for a
purely random or ‘‘white noise’’  series (i.e., a series of independent, iden-
tically distributed observations) is expected to be approximately zero for
all non-zero lags (Figure 8). If a time series has a trend, then the ACF
falls off slowly (e.g., linearly) with increasing lags. This behaviour is illus-
trated in Figure 9b, which shows the correlogram for the nonstationary
series of average daily soil temperatures displayed in Figure 9a. If a time
series contains a seasonal or cyclic component, the correlogram also
exhibits oscillatory behaviour. The correlogram for a seasonal series with
monthly intervals (e.g., total monthly rainfall) might, for example, have
large negative values at lags 6, 18, etc. (because measurements made in
the summer and winter are negatively correlated) and large positive values
at lags 12, 24, etc. (because measurements made in the same season are
positively correlated).
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 7 Time plots of annual snowfall for Victoria, B.C.: (a) with connecting lines,
(b) without connecting lines, and (c) natural logarithmic scale.

Since the theoretical ACF is defined for stationary time series, further
interpretation of the correlogram is possible only after trend and seasonal
components are eliminated. Trend can often be removed by calculating
the first difference  between successive observations (i.e., yt − yt −1). Figure
9c shows the first difference of the soil temperature series and Figure 9d is
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 8 White noise: (a) time plot and (b) correlogram.

the corresponding correlogram. Notice that the trend that was evident in
the original series (Figures 9a and 9b) is absent in the transformed series.
The first difference is usually sufficient to remove simple (e.g., linear)
trends. If more complicated (e.g., polynomial) trends are present, the dif-
ference operator can be applied repeatedly—that is, the second difference
[(yt − yt −1) − (yt −1 − yt −2) = yt − 2yt −1 + yt −2], etc. can be applied to the
series. Seasonal components can be eliminated by calculating an appropri-
ate seasonal difference (e.g., yt − yt −12 for a monthly series or yt − yt −4 for
a quarterly series).
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Correlograms of stationary time series approach zero more quickly
than processes with a nonstationary mean. The correlograms for the ring-
index (Figure 3a) and rainfall (Figure 3b) series, both of which appear to
be stationary, are shown in Figure 10. For some series, the ACF tails off
(i.e., falls off exponentially, or consists of a mixture of damped exponen-
tials and damped sine waves) and for others, it cuts off abruptly. The for-
mer behaviour is characteristic of autoregressions and mixed autoregressive-
moving average processes, while the latter is typical of a moving average
(refer to Section 3.5 for more information about these processes).

The cross-correlogram, or sample CCF of two series x1 , x2 , . . . , xn and
y1 , y2 , . . . , yn , is:

CCF (k) =
∧

∑ (xt − x-) (yt +k − y-)
n −k

t =1

√ ∑ (xt − x-)2 ∑ (yt − y-)2

n n

t =1 t =1
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 10 Correlograms for ring-index and rainfall series: (a) correlogram for ring-
index series shown in Figure 3a and (b) correlogram for rainfall series
shown in Figure 3b.

A cross-correlogram can be more difficult to interpret than a correlogram
because its statistical properties depend on the autocorrelation of the indi-
vidual series, as well as on the cross-correlation between the series. A
cross-correlogram might, for example, suggest that two series are cross-
correlated when they are not, simply because one or both series is auto-
correlated. Trends can also affect interpretation of the cross-correlogram
because they dominate the cross-correlogram in much the same way as
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they dominate the correlogram. To overcome these problems, time series
are usually detrended and prewhitened prior to computing the sample
CCF. Detrending is the removal of trend from a time series, which can be
achieved by the methods described in Section 3.3. Prewhitening is the
elimination of autocorrelation (and cyclic components). Time series are
prewhitened by fitting a suitable model that describes the autocorrelation
(e.g., one of the models described in Section 3.5.1) and then subtracting
the fitted values. The resultant series of residuals is said to be prewhitened
because it is relatively free of autocorrelation and therefore resembles
white noise. More information about the cross-correlogram, and detrend-
ing and prewhitening can be obtained in Chapter 8 of Diggle (1991) or
Chapter 8 of Chatfield (1992).

Figure 11 shows the cross-correlogram for the ring-index and rainfall
series of Section 1.1.3 (Figure 3). Both series have been prewhitened
(refer to Section 4.2.2 for details) to reduce the autocorrelation that is
evident from the correlograms (Figure 10). Detrending is not required
because the trend has already been removed from the ring index and the
rainfall series shows no obvious trend. Notice that the cross-correlogram
has an irregular pattern with one small but statistically significant spike at
lag zero. There is no significant cross-correlation at any of the other lags.
This suggests that ring width is weakly correlated with the amount of
rainfall in the spring of the same year, but the effect does not carry over
to subsequent years.
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 11 Cross-correlogram for prewhitened ring-index and rainfall series.

3.2.3 Tests of randomness Autocorrelation can often be detected by
inspecting the time plot or correlogram of a series. However, some series
are not easily distinguished from white noise. In such cases, it is useful to
have a formal test of randomness.
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There are several ways to test the null hypothesis that a stationary time
series is random. If the mean of the series is zero, then the Durbin-Watson
test  can be used to test the null hypothesis that there is no first-order
autocorrelation (i.e., ACF(1) = 0). The Durbin-Watson statistic is

D − W =
∑(yt + 1 − yt)2

n −1

t =1

∑ y t
2

n

t =1

which is expected to be approximately equal to two, if the series {yt } is
random. Otherwise it will tend to be near zero if the series is positively
correlated, or near four if the series is negatively correlated. To calculate a
p-value, D − W  must be referred to a special table, such as that given in
Durbin and Watson (1951).

Other tests of randomness use one or more of the autocorrelation coef-
ficients rk . If a time series is random, then rk is expected to be zero for all
k ≠ 0. This assumption can be verified by determining the standard error
of rk under the null hypothesis (assuming the observations have the same
normal distribution) and carrying out an appropriate test of significance.
Alternatively, a ‘‘portmanteau’’ chi-squared test can be derived to test the
hypothesis that autocorrelations for the first k  lags are simultaneously zero
(refer to Chapter 48 of Kendall et al. [1983], and Chapters 2 and 8 of
Box and Jenkins [1976] for details). For information on additional tests
of randomness, refer to Chapter 45 of Kendall et al. (1983).

3.3 Trend There are two main ways to estimate trend: (1) by fitting a function of
time (e.g., a polynomial or logistic growth curve) or (2) by smoothing
the series to eliminate cyclic and irregular variation. The first method is
applicable when the trend can be described by a fixed or deterministic
function of time (i.e., a function that depends only on the initial condi-
tions, such as the linear trend shown in Figure 4a). Once the function has
been identified, the associated parameters (e.g., polynomial coefficients)
can be estimated by standard regression methods, such as least squares or
maximum likelihood estimation.

The second method requires no specific knowledge of the trend and is
useful for describing stochastic trends (i.e., trends that vary randomly over
time, such as the trend in soil temperatures shown in Figure 9a). Smooth-
ing can be accomplished in a number of ways. An obvious method is to
draw a curve by eye. A more objective estimate is obtained by calculating
a weighted average of the observations surrounding each point, as well as
the point itself; that is,

mt = ∑ wk yt + k

p

k = −q
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where mt is the smoothed value at time t  and {wk } are weights. The sim-
plest example is an ordinary moving average 5

∑ yt + k

p

k = −q

1 + p + q

which is the arithmetic average of the points yt −q , . . . , yt −1 , yt ,
yt +1 , . . . , yt +p . This smooths the data to a greater or lesser degree as the
number of points included in the average is increased or decreased. This
is illustrated in Figure 12, which compares the results of applying a 11-
point (Figure 12a) and 21-point (Figure 12b) moving average to the daily
soil temperatures in Figure 9a.

Moving averages attach equal weight to each of the p + q + 1 points
yt −q , . . . , yt −1 , yt , yt +1 , . . . ,yt +p . Better estimates of trend are sometimes
obtained when less weight is given to the observations that are farthest
from yt. Exponential smoothing uses weights that fall off exponentially.
Many other methods of smoothing are available, including methods that
are less sensitive to extreme points than moving averages (e.g., moving
medians or trimmed means).

After the trend has been estimated, it can be removed by subtraction if
the trend is additive, or by division if it is multiplicative. The process of
removing a trend is called detrending and the resultant series is called a
detrended series. Detrended series typically contain cyclic and irregular
components, which more or less reflect the corresponding components of
the original series. However, detrended series should be interpreted with
caution because some methods of detrending can introduce spurious peri-
odicity or otherwise alter the statistical properties of a time series (refer to
Section 46.14 of Kendall et al. [1983] for details).

3.4 Seasonal and
Cyclic Components

After a series has been detrended, seasonal or cyclic components (with
known periods) can be estimated by regression methods or by calculating
a weighted average. The first approach is applicable if the component is
adequately represented by a periodic (e.g., sinusoidal) function. The sec-
ond approach is similar to the methods described in the previous section
except that the averaging must take into account the periodic nature of
the data. For a monthly series, a simple way to estimate a seasonal com-
ponent is to average values in the same month; that is,

st =
∑ yt + 12k

q

k = −p

1 + p + q

where the {yt +12k } are detrended values and st is the estimated seasonal
component.

5 This moving average should not be confused with the moving average model defined in
Section 3.5. The former is a function that operates on a time series and the latter is a
model that describes the statistical properties of a time series.
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 12 Smoothed daily soil temperatures: (a) 11-point moving average and
(b) 21-point moving average.

A time series is said to be seasonally adjusted  if a seasonal component
has been removed. This can be accomplished by subtracting the estimated
seasonal component st  from the series, or by dividing by st , depending on
whether the seasonal component is additive or multiplicative. For more
information about the purposes and methods of seasonal adjustment,
refer to Chapter 6 of Kendall et al. (1983) or Chapters 18 and 19 of
Levenbach and Cleary (1981).

3.5 Time-series Models Successful application of time-series methods requires a good understand-
ing of the models on which they are based. This section provides an
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overview of some models that are fundamental to the description and
analysis of a single time series (Section 3.5.1). More complicated models
for the analysis of two or more series are mentioned in Section 3.5.2.

3.5.1 Autoregressions and moving averages One of the simplest models
for autocorrelated data is the autoregression. An autoregression  has the
same general form as a linear regression model:

yt = ν +∑ φ i yt − i + ε t

p

i = 1

except in this case the response variables y1 , y2 , . . . , yn are correlated
because they appear on both sides of the equation (hence the name
‘‘auto’’ regression). The maximum lag (p ) of the variables on the right
side of the equation is called the order  of the autoregression, ν  is a con-
stant, and the {φi } are unknown autoregressive parameters. Like other
regression models, the errors {εt }, are assumed to be independent and
identically (usually normally) distributed. Autoregressions are often deno-
ted AR or AR(p).

Another simple model for autocorrelated data is the moving average :

yt = ν + εt − ∑ θ i ε t − i

q

i = 1

Here the observed value yt is a moving average of an unobserved series of
independent and identically (normally) distributed random variables {εt }.
The maximum lag q  is the order of the moving average and the {θi } are
unknown coefficients. Because there is overlap of the moving averages on
the right side of the equation, the corresponding response variables are
correlated. Moving average models are often denoted MA or MA(q ).

The autoregressive and moving average models can be combined to
produce a third type of model known as mixed autoregressive-moving
average :

yt = ν + ∑ φi yt − i + εt − ∑ θj ε t − j

p q

i = 1 j = 1

which is usually abbreviated as ARMA or ARMA(p,q ). A related class of
nonstationary models is obtained by substituting the first difference
ỹt = yt − yt −1 or the second difference ỹt = yt − 2yt −1 + yt −2 etc., for yt in
the preceding ARMA model. The resultant model

ỹt = ν + ∑ φi ỹt − i + ε t − ∑ θk εt − i

p q

i = 1 i = 1

is called an autoregressive-integrated-moving average  and is abbreviated as
ARIMA, or ARIMA(p,d,q ), where d  is the order of the difference (i.e.,
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d = 1 if ỹt is a first difference, d = 2 if ỹt is a second difference, etc.).
The ARMA model can be extended to include seasonal time series by sub-
stituting a seasonal difference for ỹt .

The class of AR, MA, ARMA, and ARIMA models embodies a wide
variety of stationary and nonstationary time series (Figure 13), which
have many practical applications. All MA processes are stationary (Figures
13a, b). In contrast, all time series generated by ARIMA models are non-
stationary (Figure 13f). Pure AR models and mixed ARMA models are
either stationary or nonstationary (depending on the particular combina-
tion of autoregressive parameters {φi }, although attention is generally
restricted to the stationary case (Figures 13c, d, e). More information
about AR, MA, ARMA, and ARIMA models is available in Chapter 3 of
Chatfield (1992).

Box and Jenkins (1976) developed a general scheme for fitting AR,
MA, ARMA, and ARIMA models, which has become known as Box-
Jenkins modelling. The procedure has three main steps: (1) model identi-
fication (i.e., selection of p, d, and q ), (2) model estimation (i.e., estima-
tion of the parameters φ1 , φ2 , . . . , φp and θ1 , θ2 , . . . , θq ), and (3)
model verification. Because the models have characteristic patterns of
autocorrelation that depend on the values of p, d, and q, the correlogram
is an important tool for model identification. The autocorrelation func-
tion is generally used in conjunction with the partial autocorrelation func-
tion  (PACF), which measures the amount of autocorrelation that remains
unaccounted for after fitting autoregressions of orders k = 1, 2, etc. (i.e.,
PACF(k ) is the amount of autocorrelation that cannot be explained by an
autoregression of order k ). These two functions provide complementary
information about the underlying model: for an AR(p ) process, the ACF
tails off and the PACF cuts off after lag p  (i.e., the PACF is zero if the
order of the fitted autoregression is greater than or equal to true value p );
for an MA(q ) process, the ACF cuts off after lag q  and the PACF tails off.
Refer to Table 6.1 of Kendall and Ord (1990) or Figure 6.2 of Diggle
(1991) for a handy guide to model identification using the ACF and
PACF. Other tools for model identification include the inverse autocorrela-
tion function  (IACF) of an autoregressive moving average process, which
is the ACF of the ‘‘inverse’’ process obtained by interchanging the parame-
ters φ1 , φ2 , . . . , φp and θ1 , θ2 , . . . , θq (see Chatfield 1979 for details),
and various automatic model-selection procedures, which are described in
Section 11.4 of Chatfield (1992) and in Sections 7.26–31 of Kendall and
Ord (1990).

After the model has been identified, the model parameters are esti-
mated (e.g., by maximum likelihood estimation) and the adequacy of the
fitted model is assessed by analyzing the residuals. For a detailed exposi-
tion of the Box-Jenkins procedure, the reader should consult Box and
Jenkins (1976), which is the standard reference; McCleary and Hay
(1980); or Chapters 3 and 4 of Chatfield (1992), for a less mathematical
introduction to the subject.

3.5.2 Advanced topics The AR, MA, ARMA, and ARIMA models are
useful for describing and analyzing individual time series. However, in the
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 13 Time series generated by AR, MA, ARMA, and ARIMA models
(a) yt = εt − 0.5 εt − 1 , (b) yt = εt + 0.5εt − 1 , (c) yt = −0.8yt − 1 + εt , (d) yt = 0.8yt − 1 + εt ,
(e) yt = −0.8yt − 1 − 0.5εt − 1 + εt , and (f) yt − yt − 1 = 0.8 (yt − 1 − yt − 2) + εt .

tree-ring examples described in Sections 1.1.2 and 1.1.3, and in many
other situations, the goal is to relate one series to another. This requires a
special type of time-series regression model known as a transfer function
model

yt = ν + ∑ β i xt − 1 + εt

k

i = 0
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in which the response variables {yt } and explanatory variables {xt } are
both cross-correlated and autocorrelated. Readers who are interested in
the identification, estimation, and interpretation of transfer function
models should consult Chapters 11 and 12 of Kendall and Ord (1990) for
more information.

Time series often arise as a collection of two or more time series. For
instance, in the missing tree-ring problem (Section 1.1.2), each disk has
an associated series of ring widths. In such situations, it seems natural to
attempt to analyze the time series simultaneously by fitting a multivariate
model. Multivariate AR, MA, ARMA, and ARIMA models have been
developed for this purpose. They are, however, considerably more com-
plex than their univariate counterparts. The reader should refer to Section
11.9 of Chatfield (1992) for an outline of difficulties and to Chapter 14 of
Kendall and Ord (1990) for a description of the methods that can be
used to identify and estimate multivariate models.

Other time-series models include state-space models, which are equiva-
lent to multivariate ARIMA models and are useful for representing
dependencies among one or more time series (see Chapter 9 of Kendall
and Ord [1990] or Chapter 10 of Chatfield [1992]), and intervention
models, useful for describing sudden changes in a time series, such as a
disruption in growth caused by an unexpected drought, fire, or insect
infestation (see Chapter 13 of Kendall and Ord [1990]). The reader
should consult the appropriate reference for more information about
these and other topics that are well beyond the introduction that this
handbook is intended to provide.

3.6 Forecasting Forecasting is the prediction of a future value yn +k from a series of n  pre-
vious values y1 , y2 , . . . , yn . There are three general strategies for produc-
ing a forecast: (1) extrapolation of a deterministic trend, (2) exponential
smoothing, and (3) the Box-Jenkins method. The preferred method
depends on the properties of the time series (e.g., the presence or absence
of a trend or seasonal component), the sample size n, the lead time k
(i.e., the number of steps into the future for which the forecast is
needed), and the required level of precision. If a time series is dominated
by a deterministic trend, then the first method might be appropriate. On
the other hand, this method sometimes produces unrealistic forecasts, in
part, because it gives equal weight to current and past observations, even
though the latter are generally less useful for predicting the future than
the former. Exponential smoothing can be used to extrapolate short-term
stochastic trends, as well as seasonal components. It is simple to use and
automatically discounts remote observations. The Box-Jenkins method
generates forecasts by fitting an ARIMA or seasonal ARIMA model to the
data. It has considerable versatility, but is more difficult to apply than the
other two methods because a suitable model must be identified and fitted.

All three methods have a subjective element, either in the selection of a
model or in determination of the appropriate amount of smoothing. Var-
ious automatic forecasting methods have been developed in an attempt to
eliminate this subjectivity (e.g., stepwise autoregression is a type of auto-
matic Box-Jenkins procedure). More information about forecasting
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can be found in McCleary and Hay (1980), Levenbach and Cleary (1981),
Kendall et al. (1983), or Chatfield (1992).

4 REPEATED-MEASURES AND TIME-SERIES ANALYSIS WITH SAS

The SAS package is equipped to carry out both repeated-measures and
time-series analyses. Repeated-measures analysis is available in the statistics
module SAS/STAT (SAS Institute 1989). Procedures for time-series analysis
are collected together in the econometric and time-series module SAS/ETS
(SAS Institute 1991a).

4.1 Repeated-measures
Analysis

A repeated-measures analysis is a special type of ANOVA, which is
requested with a REPEATED statement in the general linear model pro-
cedure, PROC GLM, of SAS/STAT (SAS Institute 1989). The REPEATED
statement performs a univariate or multivariate analysis, or both. If the
design is balanced (i.e., the sample sizes are equal for all groups) and the
residuals are not required, the same analyses can also be performed with
PROC ANOVA.

4.1.1 Repeated-measures data sets Repeated-measures data sets have a
univariate or multivariate structure. For the seedling experiment (Section
1.1.1), consider only the lodgepole pine seedlings grown from plugs. In
this case, the experiment reduces to a simple randomized block design
with measurements repeated on seven occasions. The objective is to com-
pare the growth curves for the three site-preparation treatments (Figure
1d) by carrying out a repeated-measures analysis of the row means. If
measurements made in successive years are treated as separate observa-
tions, then the data set for the seedling example has the following univari-
ate structure (i.e., there is one response variable):

TRT BLK YEAR HT
S 1 1983 12.43
S 1 1984 23.19
S 1 1985 36.71
S 1 1986 55.29
S 1 1987 75.71
S 1 1988 109.48
S 1 1989 155.76
. . . .
. . . .
. . . .
V 4 1983 7.83
V 4 1984 13.58
V 4 1985 30.00
V 4 1986 53.42
V 4 1987 84.71
V 4 1988 130.38
V 4 1989 186.21
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This data set has a total of 84 observations (3 treatments × 4 blocks ×
7 years) with one response variable (HT = average height of seedlings) for
each observation (row and year).

Alternatively, the same data can be converted to a multivariate data set
with 12 observations (rows of seedlings) and seven response variables
(average planting height, [PHT], and the average heights for 1984–89,
[HT84, HT85 . . . , HT89) for each row:

TRT BLK PHT HT84 HT85 HT86 HT87 HT88 HT89
S 1 12.43 23.19 36.71 55.29 75.71 109.48 155.76
S 2 10.23 18.59 33.91 53.59 74.09 108.27 150.64
S 3 9.59 17.82 32.05 49.86 69.50 97.59 133.55
S 4 13.48 21.70 34.26 48.22 73.39 103.83 141.48
U 1 12.00 22.86 34.38 49.00 71.10 105.05 148.71
U 2 9.43 17.14 30.10 43.33 60.95 87.24 125.67
U 3 8.15 15.95 28.60 39.65 58.75 89.00 129.40
U 4 8.75 15.70 27.45 42.55 58.45 85.55 123.85
V 1 12.28 19.52 33.12 55.12 89.24 136.16 193.56
V 2 9.57 17.13 28.74 46.65 74.00 114.22 163.13
V 3 10.25 17.83 29.38 48.00 78.88 116.29 161.50
V 4 7.83 13.58 30.00 53.42 84.71 130.38 186.21

With SAS, the univariate data set (UVDATA) can be readily transformed
to the multivariate form (MVDATA), as illustrated below:

PROC SORT DATA=UVDATA;
BY TRT BLK;

DATA MVDATA(KEEP=TRT BLK PHT HT84-HT89);
ARRAY H(7) PHT HT84-HT89;
DO YEAR=1983 TO 1989;

SET UVDATA;
BY TRT BLK;
H(YEAR-1982)=HT;
IF LAST.BLK THEN RETURN;

END;
RUN;

The reverse transformation can be achieved with the following
statements:

DATA UVDATA(KEEP=TRT BLK YEAR HT);
ARRAY H(7) PHT HT84-HT89;
SET MVDATA;
DO YEAR=1983 TO 1989;

HT=H(YEAR-1982);
OUTPUT;

END;
RUN;
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4.1.2 Univariate analysis A univariate repeated-measures ANOVA is requested
in PROC GLM (or PROC ANOVA) by supplying the necessary MODEL and
TEST statements, if the input data set has a univariate structure, or by
replacing the TEST statement with a REPEATED statement, if the data set is
multivariate. The two methods are illustrated below for the seedling data.

For the univariate data set, the SAS statements are:

PROC GLM DATA=UVDATA;
TITLE1 ‘Univariate Repeated-Measures Analysis’;
TITLE2 ‘Method 1: univariate data set analyzed with TEST statement’;
CLASS BLK TRT YEAR;
MODEL HT=BLK TRT BLK*TRT YEAR YEAR*TRT YEAR*BLK;
TEST H=TRT E=BLK*TRT;
TEST H=YEAR E=BLK*YEAR;

RUN;

Here the repeated-measures analysis is performed by specifying the bet-
ween- and within-units factors with the MODEL statement. The correct
error terms for testing the between-row effect of treatment and the
within-row effect of year are selected with the TEST statement. Alter-
natively, the two TEST statements can be replaced with a single RANDOM
statement with the TEST option:

RANDOM BLK BLK*TRT YEAR*BLK/TEST;

This calculates expected mean squares and automatically selects the correct
error term for each effect, which is particularly useful if the investigator is
uncertain about which error term to use. Application of the RANDOM
statement is described in more detail in the SAS/STAT manual (SAS Insti-
tute 1989) and in Sit (1992b).

The results of the analysis of the univariate data set are displayed in Fig-
ure 14. Notice that the TRT*YEAR interaction is highly significant (A), so
it is reasonable to conclude that the growth curves for the three treatments
(Figure 1d) are not parallel. The tests of H02—no growth over the seven-
year study period—and H03—no overall difference between treatments
(after averaging over the seven years)—are labelled B and C, respectively.
Both are highly significant, although the first is not particularly interesting
in this example because the seedlings have obviously grown in height.

Results from a more informative univariate analysis, including an inves-
tigation of polynomial trends, are readily obtained from an analysis of the
multivariate data set. The required SAS statements are:

PROC GLM DATA=MVDATA;
TITLE1 ‘Univariate Repeated-Measures Analysis’;
TITLE2 ‘Method 2: multivariate data set analyzed with REPEATED statement’;
CLASS BLK TRT;
MODEL PHT HT84-HT89=BLK TRT;
REPEATED YEAR 7 (1983 1984 1985 1986 1987 1988 1989) POLYNOMIAL/SUMMARY
PRINTM NOM;

RUN;
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Univariate Repeated-Measures Analysis
Method 1: univariate data set analyzed with TEST statement

General Linear Models Procedure

Dependent Variable: HT
Sum of Mean

Source DF Squares Square F Value Pr > F

Model 47 198236.399 4217.796 290.70 0.0001

Error 36 522.326 14.509

Corrected Total 83 198758.725

R-Square C.V. Root MSE HT Mean

0.997372 6.067216 3.80908 62.7813

Source DF Type III SS Mean Square F Value Pr > F

BLK 3 1206.093 402.031 27.71 0.0001
TRT 2 3032.285 1516.143 104.50 0.0001
BLK*TRT 6 340.388 56.731 3.91 0.0041
YEAR 6 188835.114 31472.519 2169.16 0.0001
TRT*YEAR 12 4206.553 350.546 24.16 0.0001 (A)
BLK*YEAR 18 615.966 34.220 2.36 0.0140

Tests of Hypotheses using the Type III MS for BLK*TRT as an error term

Source DF Type III SS Mean Square F Value Pr > F

TRT 2 3032.28507 1516.14254 26.72 0.0010 (B)

Tests of Hypotheses using the Type III MS for BLK*YEAR as an error term

Source DF Type III SS Mean Square F Value Pr > F

YEAR 6 188835.114 31472.519 919.70 0.0001 (C)

 14 Univariate repeated-measures analysis of seedling data: univariate data set.

When the multivariate data set is used, the repeated factor (YEAR) and
its levels (1983, 1984, . . . , 1989) are specified in the REPEATED
statement and the respective response variables (PHT HT84-HT89) are
identified in the MODEL statement. The REPEATED statement carries out
both univariate and multivariate analyses, unless one or the other is sup-
pressed with the NOU (no univariate analysis) or NOM (no multivariate
analysis) option. In this example, NOM is chosen because only univariate
analyses are required (the multivariate analysis is discussed in the next
section). The POLYNOMIAL transformation and SUMMARY option are also



32

selected. The POLYNOMIAL transformation generates all possible (in this
case, six) polynomial combinations of the repeated measures and the
SUMMARY option produces an ANOVA of each (which are used to test
hypothesis H06 of Section 2.1). The same results can be obtained, without
the REPEATED statement, by first creating and then analyzing the trans-
formed variables (POLY1, POLY2, . . . , POLY6) as follows:

DATA POLY;
SET MVDATA;
POLY1=-3*PHT-2*HT84 -HT85 +0*HT86 +HT87+2*HT88+3*HT89;
POLY2= 5*PHT+0*HT84 -3*HT85 -4*HT86 -3*HT87+0*HT88+5*HT89;
POLY3=-1*PHT+1*HT84 +1*HT85 +0*HT86 -1*HT87-1*HT88+1*HT89;
POLY4= 3*PHT-7*HT84 +1*HT85 +6*HT86 +1*HT87-7*HT88+3*HT89;
POLY5=-1*PHT+4*HT84 -5*HT85 +0*HT86 +5*HT87-4*HT88+1*HT89;
POLY6= 1*PHT-6*HT84+15*HT85-20*HT86+15*HT87-6*HT88+1*HT89;

PROC GLM DATA=POLY;
CLASS BLK TRT;
MODEL POLY1-POLY6=BLK TRT/SS3;

RUN;

Notice that the coefficients (-3, -2, -1, 0, 1, 2, 3) are the same as those
used to define polynomial contrasts in an ANOVA, and can be found in
such textbooks as Keppel (1973). Other linear combinations can be
selected by making the appropriate substitution for POLYNOMIAL in the
REPEATED statement: PROFILE for successive differences (refer to H04 of
Section 2.1) and CONTRAST 6 for cumulative differences (refer to H05 of
Section 2.1). The PRINTM option can be added to the REPEATED state-
ment to verify that the correct transformation has been selected. This
causes the contrast coefficients to be printed.

When the REPEATED statement is applied to a randomized block
design, or any other design with random effects (e.g., designs with sub-
sampling), a complication arises. Because the REPEATED statement
assumes that all effects are fixed, the residual mean square is used as the
error term for all within-units tests. Consequently, the F-ratio for testing
the main effect of time (YEAR) is incorrect. In the seedling example, the
correct F-ratio can be calculated by dividing the mean square for time
(YEAR) by the proper error term, which is the mean square for the time
by block interaction (YEAR*BLK). The same problem occurs in the
ANOVA of the transformed data (i.e., POLY1, POLY2, etc.), where the
F-ratio for testing the statistical significance of the overall mean of each
variable (labelled MEAN in the ANOVA tables produced by the REPEATED
statement) is incorrect. In the seedling example, the correct F-tests for the
polynomial contrasts can be obtained by inserting the following MANOVA
statement after the REPEATED statement:

6 The CONTRAST transformation of the REPEATED statement is not to be confused with the
CONTRAST statement of PROC GLM.
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MANOVA H=INTERCEPT E=BLK M=(-3 -2 -1 0 1 2 3, 5 0 -3 -4 -3 0 5,
-1 1 1 0 -1 -1 1, 3 -7 1 6 1 -7 3,
-1 4 -5 0 5 -4 1, 1 -6 15 -20 15 -6 1)

 MNAMES=POLY1 POLY2 POLY3 POLY4 POLY5 POLY6/ORTH SUMMARY;

A MANOVA statement is a multivariate analog of the TEST statement.
It is used whenever a test involves the elements of a multivariate array (in
this case, the repeated measures). The H=INTERCEPT option requests a
test of the intercept or overall mean; the E=BLK option identifies BLK as
the correct error matrix (this is a matrix of sums of squares and cross-
products and is the multivariate equivalent of the univariate YEAR*BLK
sum of squares); M=(-3 -2 -1 0 1 2 3, etc.) defines the transformed
variables to be analyzed (in this case polynomial contrasts); and
MNAMES=POLY1, etc., names the transformed variables. Proper use of the
MANOVA statement requires a good understanding of multivariate models
and multivariate hypothesis testing. Refer to Gumpertz and Brownie
(1993) for a complete description of the analysis of randomized block
designs with repeated measures and the use of MANOVA statements to
obtain the correct analysis in SAS.

An edited version of the output from the second univariate analysis of
the seedling data is shown in Figure 15. It has five main parts:
• an ANOVA for each year;
• a repeated-measures ANOVA of the between-rows (‘‘Between Subjects’’)

variation;
• a repeated-measures ANOVA of the within-rows (‘‘Within Subjects’’)

variation;
• an ANOVA of each of the six polynomial contrasts among years; and 
• the correct F-tests for the overall means of the polynomial contrasts,
which are labelled A, B, C, D, and E, respectively.

The first part of the output (A) gives the ANOVA results for each year.
For brevity, only the results for 1989 are shown in Figure 15. Notice that
there was a significant difference (A.1) between the three treatment
groups in that year. The results for the other years (not shown) suggest
that there were no significant differences between groups from the time of
planting up to the end of the first year, but by 1985 and in subsequent
years, there were significant differences between the groups.

The test for an overall treatment effect in the between-rows analysis
(B) is the same as the TRT test (C) in Figure 14. Likewise, the test for a
treatment effect in the within-rows analysis (C.3) is the same as the
TRT*YEAR test (A) in Figure 14. However, notice that the within-rows
test of year (C.1), which uses the incorrect error term, is not the same as
the corresponding test (B) in Figure 14. The correct F-statistic for the
year effect (F = 919.70) can be calculated by dividing the mean square for
YEAR, which is 31472.5190 (C.1), by the mean square for YEAR*BLK,
which is 34.2203 (C.2).

At the end of the within-units analysis there are two numbers labelled
‘‘Greenhouse-Geisser Epsilon’’ and ‘‘Huynh-Feldt Epsilon’’ (C.4). If the
variances and correlations of the repeated measures are constant over time
(as required by the univariate repeated-measures analysis), then these two
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Univariate Repeated-Measures Analysis
Method 2: multivariate data set analyzed with REPEATED statement

General Linear Models Procedure

Dependent Variable: HT89 (A)
Sum of Mean

Source DF Squares Square F Value Pr > F

Model 5 5115.06413 1023.01283 13.29 0.0034

Error 6 461.95544 76.99257

Corrected Total 11 5577.01957

R-Square C.V. Root MSE HT89 Mean

0.917168 5.806303 8.77454 151.121

Source DF Type III SS Mean Square F Value Pr > F

BLK 3 1009.76203 336.58734 4.37 0.0591
TRT 2 4105.30210 2052.65105 26.66 0.0010 (A.1)

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

BLK 3 1206.0928 402.0309 7.09 0.0213
TRT 2 3032.2851 1516.1425 26.72 0.0010 (B)

Error 6 340.3883 56.7314

Univariate Tests of Hypotheses for Within Subject Effects (C)

Source: YEAR
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
6 188835.113904 31472.518984 2169.16 0.0001 0.0001 0.0001 (C.1)

Source: YEAR*BLK
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
18 615.966173 34.220343 2.36 0.0140 0.1482 0.0673 (C.2)

Source: YEAR*TRT
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
12 4206.552681 350.546057 24.16 0.0001 0.0004 0.0001 (C.3)

 15 Univariate repeated-measures analysis of seedling data: multivariate data set.
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Source: Error(YEAR)

DF Type III SS Mean Square
36 522.326420 14.509067

Greenhouse-Geisser Epsilon = 0.2065 (C.4)
Huynh-Feldt Epsilon = 0.4505

Analysis of Variance of Contrast Variables (D)

YEAR.N represents the nth degree polynomial contrast for YEAR

Contrast Variable: YEAR.1

Source DF Type III SS Mean Square F Value Pr > F

MEAN 1 175659.5789 175659.5789 2455.33 0.0001 (D.1)
BLK 3 517.2866 172.4289 2.41 0.1654
TRT 2 3578.8219 1789.4110 25.01 0.0012

Error 6 429.2521 71.5420

Contrast Variable: YEAR.2

Source DF Type III SS Mean Square F Value Pr > F

MEAN 1 12900.59010 12900.59010 1532.32 0.0001
BLK 3 83.10595 27.70198 3.29 0.0999
TRT 2 587.24391 293.62195 34.88 0.0005

Error 6 50.51387 8.41898

Contrast Variable: YEAR.3

Source DF Type III SS Mean Square F Value Pr > F

MEAN 1 262.0476732 262.0476732 143.48 0.0001
BLK 3 10.5190901 3.5063634 1.92 0.2276
TRT 2 27.1102199 13.5551099 7.42 0.0239

Error 6 10.9585841 1.8264307
Contrast Variable: YEAR.4

Source DF Type III SS Mean Square F Value Pr > F

MEAN 1 0.84138232 0.84138232 0.28 0.6149
BLK 3 2.76045704 0.92015235 0.31 0.8195
TRT 2 11.52322226 5.76161113 1.93 0.2258

Error 6 17.94389412 2.99064902

 15 (continued)
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Contrast Variable: YEAR.5

Source DF Type III SS Mean Square F Value Pr > F

MEAN 1 11.63080680 11.63080680 16.80 0.0064
BLK 3 0.58185855 0.19395285 0.28 0.8381
TRT 2 0.88502506 0.44251253 0.64 0.5601 (D.2)

Error 6 4.15295236 0.69215873

Contrast Variable: YEAR.6

Source DF Type III SS Mean Square F Value Pr > F

MEAN 1 0.42502079 0.42502079 0.27 0.6230
BLK 3 1.71225628 0.57075209 0.36 0.7843
TRT 2 0.96838905 0.48419453 0.31 0.7475 (D.3)

Error 6 9.50504759 1.58417460

Dependent Variable: POLY1

Tests of Hypotheses using the Type III MS for BLK as an error term

Source DF Type III SS Mean Square F Value Pr > F (E)

INTERCEPT 1 175659.5789 175659.5789 1018.74 0.0001 (E.1)

Error 3 517.2866 172.4289

Dependent Variable: POLY2

Tests of Hypotheses using the Type III MS for BLK as an error term

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 12900.59010 12900.59010 465.69 0.0002

Error 3 83.10595 27.70198

Dependent Variable: POLY3

Tests of Hypotheses using the Type III MS for BLK as an error term

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 262.0476732 262.0476732 74.73 0.0033

Error 3 10.5190901 3.5063634

 15 (continued)
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Dependent Variable: POLY4

Tests of Hypotheses using the Type III MS for BLK as an error term

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 0.84138232 0.84138232 0.91 0.4095

Error 3 2.76045704 0.92015235

Dependent Variable: POLY5

Tests of Hypotheses using the Type III MS for BLK as an error term

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 11.63080680 11.63080680 59.97 0.0045 (E.2)

Error 3 0.58185855 0.19395285

Dependent Variable: POLY6

Tests of Hypotheses using the Type III MS for BLK as an error term

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 0.42502079 0.42502079 0.74 0.4516 (E.3)

Error 3 1.71225628 0.57075209

 15 (concluded).

numbers should be approximately equal to one. When this assumption is
violated, the numbers will be substantially less than one and the F-tests
for the within-units analysis will be incorrect. To compensate for this
problem, SAS uses the Greenhouse-Geisser epsilon and the Huynh-Feldt
epsilon to make two separate adjustments to the p-value for each F-test.
The adjusted p-values (‘‘Adj Pr>F’’) are labelled ‘‘G - G’’ (Greenhouse-
Geisser correction) and ‘‘H - F’’ (Huynh-Feldt correction) in the output.
More information about these adjustments can be found in Chapter 27 of
Milliken and Johnson (1992).

The ANOVA tables for the six polynomial contrasts (D) are labelled
YEAR.1 (linear trend), YEAR.2 (quadratic trend), etc., in Figure 15. As
discussed previously, the test for a MEAN effect is incorrect in these tables
and should be replaced with the corresponding MANOVA test (i.e., the
INTERCEPT test for POLY1=YEAR.1, POLY2=YEAR.2, etc., which is
given in E). For example, the correct F-ratio for testing the overall mean
of the linear transformation (YEAR.1 in D and POLY1 in E) is 1018.74
(E.1), not 2455.33 (D.1). Notice that treatment has no significant effect
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on the sixth-order polynomial contrasts (i.e., there is no significant differ-
ence between β6 for the three site-preparation treatments in D.3). More-
over, the average of these three coefficients is not significantly different
from zero (E.3). This suggests that the growth curves for the three treat-
ment groups are adequately described by polynomials of order no greater
than five (i.e., β6 = 0). Examining the results for the fifth-order poly-
nomial transformation (YEAR.5 and POLY5) reveals that there is a fifth-
order term in the trends (E.2), but it is not significantly different for the
three treatment groups (D.2). The same conclusion holds for the fourth-
order term. Site-preparation does, however, have a significant effect on the
cubic and lower-order terms. Thus the evidence suggests that the growth
curves can be described by fifth-order polynomials with the effects of site-
preparation treatment limited to the cubic and lower-order terms.

4.1.3 Multivariate analysis The REPEATED statement automatically per-
forms a multivariate repeated-measures analysis (unless the NOM option is
used). The SAS statements for carrying out a multivariate repeated-
measures analysis of the seedling data set are:

PROC GLM DATA=MVDATA;
TITLE ‘Multivariate Repeated-Measures Analysis’;
CLASS BLK TRT;
MODEL PHT HT84-HT89=BLK TRT/SS3;
REPEATED YEAR 7 (1983 1984 1985 1986 1987 1988 1989)/NOU;

RUN;

In this case, the NOU (no univariate analysis) option is used to suppress
the univariate tests of the within-units effects. These are replaced by mul-
tivariate tests, the results of which are displayed in Figure 16. Recall that
SAS does not recognize that block is a random effect. Therefore, the mul-
tivariate test of the main effect of year (labelled A in Figure 16), like the
corresponding univariate test, is incorrect. If there were seven or more
blocks, then the following MANOVA statement would produce the correct
test:

MANOVA H=INTERCEPT E=BLK M=( 1 -1 0 0 0 0 0, 0 1 -1 0 0 0 0,
0 0 1 -1 0 0 0, 0 0 0 1 -1 0 0,
0 0 0 0 1 -1 0, 0 0 0 0 0 1 -1);

However, for this particular design, which has fewer blocks than years,
there are too few degrees of freedom to carry out the test. Fortunately, the
test for no time effect is not very important in this example.

The results of the multivariate test for parallel growth curves (B in Fig-
ure 16) should be compared with the corresponding results of the uni-
variate tests (A in Figure 14 and C.1 in Figure 15). Notice that the
univariate tests suggest that the growth curves are not parallel for the
three groups (i.e., the YEAR*TRT effect is significant), but that two of the
three multivariate tests (the sample sizes are too small to compute the
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Multivariate Repeated-Measures Analysis

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no YEAR Effect

(A)

H = Type III SS&CP Matrix for YEAR E = Error SS&CP Matrix

S=1 M=2 N=-0.5

Statistic Value F Num DF Den DF Pr F

Wilks’ Lambda 0.00025957 641.9264 6 1 0.0302
Pillai’s Trace 0.99974043 641.9264 6 1 0.0302
Hotelling-Lawley Trace 3851.5581633 641.9264 6 1 0.0302
Roy’s Greatest Root 3851.5581633 641.9264 6 1 0.0302

Manova Test Criteria and F Approximations for
the Hypothesis of no YEAR*BLK Effect

H = Type III SS&CP Matrix for YEAR*BLK E = Error SS&CP Matrix

S=3 M=1 N=-0.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.01032163 0.7433 18 3.313708 0.7084
Pillai’s Trace 1.65054752 0.6116 18 9 0.8210
Hotelling-Lawley Trace 40.36355908 . 18 -1 .
Roy’s Greatest Root 39.16883650 19.5844 6 3 0.0167

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

Manova Test Criteria and F Approximations for
the Hypothesis of no YEAR*TRT Effect (B)

H = Type III SS&CP Matrix for YEAR*TRT E = Error SS&CP Matrix

S=2 M=1.5 N=-0.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.00172637 3.8446 12 2 0.2248
Pillai’s Trace 1.73572577 2.1893 12 4 0.2340
Hotelling-Lawley Trace 151.08093445 . 12 0 .
Roy’s Greatest Root 148.19852119 49.3995 6 2 0.0200

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

 16 Multivariate repeated measures analysis of seedling data.
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fourth statistic) fail to reject the hypothesis of parallel trends. The dis-
crepancy can probably be explained by the less restrictive assumptions of
the multivariate model and the resultant loss of power. In such cases, it is
usually advisable to use the adjusted p-values based on the univariate tests.

For more information and examples of repeated-measures analysis with
SAS, the reader is referred to Cody and Smith (1987), Hand and Taylor
(1987), Littell (1989), Tabachnick and Fidell (1989), Milliken and John-
son (1992), and Nemec (1992).

4.2 Time-series
Analysis

The SAS/BASE (SAS Institute 1990a) and SAS/STAT (SAS Institute 1989)
libraries are not very useful for time-series analysis. Apart from low reso-
lution time plots (PROC TIMEPLOT) and the Durbin-Watson statistic (an
option in PROC REG), all time-series procedures are in the SAS/ETS mod-
ule (SAS Institute 1991a).

The SAS/ETS library has three main procedures for analyzing a time
series in the time domain: PROC ARIMA, PROC AUTOREG, and PROC
FORECAST. The ARIMA procedure computes the sample ACF, PACF,
IACF, and CCF (refer to Sections 3.2.2 and 3.5.1 for definitions). It also
fits and forecasts AR, MA, ARMA, and ARIMA models (Section 3.5.1), as
well as transfer function and intervention models (Section 3.5.2). The
AUTOREG procedure fits and forecasts multiple regression models with
autocorrelated errors (i.e., errors generated by an autoregression). It can
also be used to fit pure AR models. The last of the three procedures,
PROC FORECAST, uses an autoregressive method or exponential smooth-
ing (nonseasonal and seasonal versions) to forecast time series. The SAS/
ETS library also includes a useful procedure, PROC EXPAND, for collaps-
ing, interpolating, or otherwise manipulating time-series data.

The following sections give a brief description of PROC EXPAND, PROC
ARIMA, PROC AUTOREG, and PROC FORECAST. Simple programs, with
accompanying output, are provided to demonstrate their application. For
more details of these and other time-series procedures, and additional
examples, the reader is referred to the SAS/ETS User’s Guide (SAS
Institute 1991a) and the SAS/ETS Software: Applications Guide 1 (SAS
Institute 1991b).

4.2.1 Time-series data sets Time-series data sets consist of a time vari-
able and the corresponding values of one or more response variables. The
data set for the daily soil temperatures depicted in Figure 9a is as follows:

Daily Soil Temperatures

 OBS DAY TSOIL
1 Sun, May 1, 1988 6.000
2 Mon, May 2, 1988 5.800
3 Tue, May 3, 1988 6.000
4 Wed, May 4, 1988 6.500
5 Thu, May 5, 1988 7.200
6 Fri, May 6, 1988 7.200
7 Sat, May 7, 1988 7.800
8 Sun, May 8, 1988 8.800
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9 Mon, May 9, 1988 9.500
10 Tue, May 10, 1988 10.500
11 Wed, May 11, 1988 10.900
12 Thu, May 12, 1988 11.500
. . .
. . .
. . .

(more data)

In this case, the time index, DAY, is an SAS date variable (printed in
WEEKDATE17. format) and the response variable, TSOIL, is the soil tem-
perature in degrees Celsius. Indexing a time series with an SAS date vari-
able facilitates data verification and manipulation with SAS/ETS
procedures but is not essential (e.g., the variable DAY could be omitted
from the previous data set).

For PROC ARIMA, PROC AUTOREG, and PROC FORECAST, the input
data set must be sorted in order of ascending time and the series must be
equally spaced in time. If the data are not equally spaced, then PROC
EXPAND can be used to convert the series, by interpolation, to equal time
intervals. The same procedure can also be used to collapse or expand the
sampling interval (e.g., by summing or averaging data points), to replace
missing values with interpolated values, or to perform other operations on
the series. As a simple illustration, consider the soil temperature series. To
convert the daily series to weekly averages, PROC EXPAND can be used as
follows:

PROC EXPAND DATA=DAILY OUT=WEEKLY FROM=DAY TO=WEEK;
CONVERT TSOIL/METHOD=AGGREGATE OBSERVED=AVERAGE;
ID DATE;

PROC PRINT DATA=WEEKLY;
TITLE ‘Weekly Averages’;

RUN;

The input series (DAILY), part of which was listed at the beginning of
this section, and the output series (WEEKLY) are specified by the DATA
and OUT options in the PROC EXPAND line. The change of intervals from
daily to weekly is defined with the FROM and TO options, and the type of
conversion is selected with the METHOD and OBSERVED options of the
CONVERT statement (i.e., METHOD=AGGREGATE specifies that the output
series is an aggregation of the input series and OBSERVED=AVERAGE spe-
cifies that the aggregation is by averaging). The resultant weekly series is
listed below.

Weekly Averages

OBS DATE TSOIL
1 Sun, 1 May 88 6.6429
2 Sun, 8 May 88 10.2143
3 Sun, 15 May 88 9.0000
4 Sun, 22 May 88 9.5286
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5 Sun, 29 May 88 9.3714
6 Sun, 5 Jun 88 10.2571
7 Sun, 12 Jun 88 12.0000
8 Sun, 19 Jun 88 12.1286
9 Sun, 26 Jun 88 12.6000

10 Sun, 3 Jul 88 12.1000
11 Sun, 10 Jul 88 12.3857
12 Sun, 17 Jul 88 12.5286
13 Sun, 24 Jul 88 12.9143
14 Sun, 31 Jul 88 12.4143
15 Sun, 7 Aug 88 12.3286
16 Sun, 14 Aug 88 12.0286
17 Sun, 21 Aug 88 12.2857
18 Sun, 28 Aug 88 12.5286
19 Sun, 4 Sep 88 11.0714
20 Sun, 11 Sep 88 9.3857
21 Sun, 18 Sep 88 7.0000
22 Sun, 25 Sep 88 7.2000
23 Sun, 2 Oct 88 8.0571
24 Sun, 9 Oct 88 7.2429
25 Sun, 16 Oct 88 5.6714
26 Sun, 23 Oct 88 3.6429

The same procedure can be used to replace missing values in the daily
series with interpolated values as follows:

PROC EXPAND DATA=DAILY OUT=INTERPOL FROM=DAY;
CONVERT TSOIL;
ID DATE;

RUN;

Since no TO option is supplied, the sampling frequency (i.e., one mea-
surement per day) for the output series is the same as the input series
and the only effect is the replacement of missing values. In this case,
the interpolated values are obtained by fitting a cubic spline to the data
(which is the default method). Other methods of interpolation can be
selected with the METHOD option. After the missing points have been
replaced, the data should be plotted (or re-plotted) to ensure that the
interpolated values are consistent with the rest of the series. For more
information about PROC EXPAND and its numerous capabilities, the
reader is referred to the SAS/ETS User’s Guide (SAS Institute 1991a).

The TIMEPLOT procedure in SAS/BASE is useful for making quick,
low-resolution plots of time series. It is similar to PROC PLOT, except that
the axes are reversed (i.e., the time axis runs vertically along the page,
instead of horizontally). This is usually more convenient for plotting time
series because they tend to have extended x-axes. The SAS statements for
plotting a time series are illustrated below for the average weekly soil
temperatures:
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PROC TIMEPLOT DATA=WEEKLY;
TITLE ‘Average Weekly Soil Temperatures’;
PLOT TSOIL=’*’;
ID YEAR;

RUN;

The output is shown in Figure 17.

4.2.2 PROC ARIMA The ARIMA procedure has three main statements:
IDENTIFY, ESTIMATE, and FORECAST. The IDENTIFY statement
appears first. It defines the time series to be analyzed and calculates sum-
mary statistics that are useful for model identification, including the sam-
ple ACF, IACF, and PACF, and if applicable, the sample CCF (refer to
Sections 3.2.2 and 3.5.1 for definitions). Once a model has been identi-
fied, it can be fitted to the series by including an ESTIMATE statement

Average Weekly Soil Temperature

DATE TSOIL

Sun, 1 May 88 6.64
Sun, 8 May 88 10.21
Sun, 15 May 88 9.00
Sun, 22 May 88 9.53
Sun, 29 May 88 9.37
Sun, 5 Jun 88 10.26
Sun, 12 Jun 88 12.00
Sun, 19 Jun 88 12.13
Sun, 26 Jun 88 12.60
Sun, 3 Jul 88 12.10
Sun, 10 Jul 88 12.39
Sun, 17 Jul 88 12.53
Sun, 24 Jul 88 12.91
Sun, 31 Jul 88 12.41
Sun, 7 Aug 88 12.33
Sun, 14 Aug 88 12.03
Sun, 21 Aug 88 12.29
Sun, 28 Aug 88 12.53
Sun, 4 Sep 88 11.07
Sun, 11 Sep 88 9.39
Sun, 18 Sep 88 7.00
Sun, 25 Sep 88 7.20
Sun, 2 Oct 88 8.06
Sun, 9 Oct 88 7.24
Sun, 16 Oct 88 5.67
Sun, 23 Oct 88 3.64

min max
3.6428571423 12.914285712

*––––––––––––––––––––––––––––––––––––––––––*

*––––––––––––––––––––––––––––––––––––––––––*

*
*

*
*
*

*
*
*

*
*
*
*
*
*
*
*
*
*

*
*

*
*

*
*

*
*

 17 Time plot of weekly soil temperatures created with PROC TIMEPLOT.
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after the IDENTIFY statement. The FORECAST statement generates pre-
dicted values (or forecasts) and occurs after the IDENTIFY and ESTI-
MATE statements.

To illustrate how the IDENTIFY, ESTIMATE, and FORECAST state-
ments are used, consider the ring-index and rainfall example of Section
1.1.3. The sample ACF, IACF, and PACF of the ring-index series are
requested with an IDENTIFY statement as follows:

DATA INDEXRAIN;
INFILE ‘INDEX.DAT’ MISSOVER;
INPUT YEAR INDEX RAIN;
LABEL INDEX=’Ring index’ RAIN=’Spring rainfall’;

PROC ARIMA;
TITLE1 ‘Time-Series Analysis: PROC ARIMA’;
TITLE2 ‘Identify model for ring-index series.’;
IDENTIFY VAR=INDEX;

RUN;

The VAR part of the IDENTIFY statement specifies the time series
(INDEX) to be analyzed and is always required.

Figure 18 shows the resultant autocorrelations (A), inverse autocorrela-
tions (B), and partial autocorrelations (C). Each set of autocorrelations is
tabulated and plotted for lags 0 through 24 (for brevity, only lags 0–15
are listed in B and C). Also plotted are two dotted lines—one to the left
and one to the right of zero. If the series is white noise, then individual
values that lie outside these boundaries are more than two standard errors
away from zero. Such values can be considered statistically significant at
an approximately 5% level of significance. Notice that the sample ACF
(A), which is the same as that illustrated in Figure 10a, tails off but shows
no evidence of nonstationarity (because the ring index is a detrended
value). Observe also that the sample IACF and PACF have a large, statis-
tically significant spike at lag 1, a smaller spike at lag 6 or 7, and are
approximately zero for all other lags. This behaviour is indicative of an
autoregression with p = 1, 6, or 7.

The last part (D) of the output shown in Figure 18, which is labelled
‘‘Autocorrelation Check for White Noise,’’ summarizes the results of a
series of tests of randomness. The first row in the table is a test of the
null hypothesis that the autocorrelation coefficients from lag 1 up to lag 6
are zero, the second row is a test of the same hypothesis for lags 1–12,
and so on. The chi-squared statistic for each test is listed in the second
column of the table, the degrees of freedom are in the third column, and
the p-values are in the fourth. The last six columns are the estimated
autocorrelation coefficients for lags 1– 6 (first row), lags 7–12 (second
row), etc., which are the same as the values given in the first part (A) of
the output. Each null hypothesis is rejected if the corresponding p-value is
small (i.e., no greater than 0.05 for a 5% level of significance). If the
series is white noise, then none of the hypotheses should be rejected. In
this case, all four p-values are less than 0.001 for the ring-index series,
which suggests that there is some autocorrelation.
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Time-Series Analysis: PROC ARIMA
Identify model for ring-index series.

ARIMA Procedure

Name of variable = INDEX.

Mean of working series = 0.99646
Standard deviation = 0.191788
Number of observations = 463

Autocorrelations (A)

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
0 0.036782 1.00000 ********************
1 0.026179 0.71173 . **************
2 0.020030 0.54455 . ***********
3 0.015960 0.43391 . *********
4 0.011755 0.31958 . ******
5 0.009626 0.26170 . *****
6 0.0092158 0.25055 . *****
7 0.0057674 0.15680 . ***
8 0.0033671 0.09154 . **.
9 0.0024593 0.06686 . * .
10 0.0012791 0.03477 . * .
11 0.0014994 0.04076 . * .
12 0.0017450 0.04744 . * .
13 -0.000112 -0.00304 . .
14 -0.0014171 -0.03853 . * .
15 -0.0026482 -0.07200 . * .
16 -0.0047892 -0.13020 .*** .
17 -0.0066828 -0.18168 **** .
18 -0.0076178 -0.20710 **** .
19 -0.0081882 -0.22261 **** .
20 -0.0079820 -0.21700 **** .
21 -0.0079143 -0.21516 **** .
22 -0.0089012 -0.24200 ***** .
23 -0.0084721 -0.23033 ***** .
24 -0.0093843 -0.25513 ***** .

‘‘.’’ marks two standard errors

 18 Time-series analysis of ring-index series: model identification.
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Inverse Autocorrelations (B)

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 -0.42101 ********
2 -0.02881 .* .
3 -0.05024 .* .
4 0.03697 . .
5 0.07171 . .
6 -0.14301 *** .
7 0.03444 . *.
8 0.04396 . *.
9 -0.00244 . .
10 0.03660 . *.
11 -0.01465 . .
12 -0.06493 .* .
13 0.02966 . *.
14 0.01278 . .
15 -0.01721 . .

Partial Autocorrelations (C)

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 0.71173 . **************
2 -0.07700 . **
3 0.04358 . *.
4 -0.04365 .* .
5 0.04527 . *.
6 0.08370 . **
7 -0.12827 *** .
8 -0.03453 .* .
9 0.02383 . .
10 -0.00429 . .
11 0.04314 . *.
12 0.00104 . .
13 -0.07924 ** .
14 -0.03113 .* .
15 -0.04762 .* .

Autocorrelation Check for White Noise (D)

To Chi Autocorrelations
Lag Square DF Prob
6 572.34 6 0.000 0.712 0.545 0.434 0.320 0.262 0.251
12 592.47 12 0.000 0.157 0.092 0.067 0.035 0.041 0.047
18 640.53 18 0.000 -0.003 -0.039 -0.072 -0.130 -0.182 -0.207
24 796.46 24 0.000 -0.223 -0.217 -0.215 -0.242 -0.230 -0.255

 18 (continued).
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The IDENTIFY statement generates summary statistics for differenced
series, as well as untransformed series. To analyze a differenced series
(yt − yt −k), the interval k  is enclosed in parentheses after the variable
name. If the series is differenced more than once (e.g., [yt − yt −1] −
[yt −1 − yt −2], then the corresponding intervals must be separated by
commas as illustrated below:

PROC ARIMA DATA=INDXRAIN;
IDENTIFY VAR=INDEX(1); /* First difference of INDEX series */
IDENTIFY VAR=INDEX(1,1); /* Second difference of INDEX series */

RUN;

Alternatively, the same results can be achieved by creating, with the LAG
function (SAS Institute 1990b), the differenced series in a DATA step:

DATA DIFFS;
INFILE ‘INDEX.DAT’ MISSOVER;
INPUT YEAR INDEX RAIN;
DIFF1=INDEX-LAG1(INDEX);
DIFF2=INDEX-2*LAG1(INDEX)+LAG2(INDEX);

PROC ARIMA DATA=DIFFS;
IDENTIFY VAR=DIFF1; /* First difference of INDEX series */
IDENTIFY VAR=DIFF2; /* Second difference of INDEX series */

RUN;

The IDENTIFY statement has various options. The CROSSCOR option
requests a cross-correlation analysis of the main series (i.e., the series
defined by VAR) and one or more other series. The latter are identified by
variable names enclosed in parentheses after CROSSCOR, with differenced
series specified in the same manner as described above for the main
series. The CROSSCOR option is demonstrated in the following example:

PROC ARIMA DATA=PWSERIES;
IDENTIFY VAR=PWINDEX CROSSCOR(PWRAIN) NLAG=15
OUTCOV=STATS;

RUN;

Here a prewhitened ring-index series (PWINDEX) is cross-correlated with
a prewhitened rainfall series (PWRAIN). (Details of the computation of
the prewhitened series are deferred until the discussion of FORECAST.)
The NLAG and OUTCOV options are also illustrated. The NLAG option
defines the maximum lag for which the ACF, IACF, PACF, and CCF are to
be calculated (a warning message is printed if NLAG exceeds 25% of the
series length); and the OUTCOV option creates a data set (STATS) con-
taining the summary statistics generated by the IDENTIFY statement.

Output from the last example includes the sample ACF, IACF, and PACF
of the prewhitened index series for lags 0 through 15, and a check for white
noise. These results have the same interpretation as Figure 18 and will not
be discussed further. The rest of the output is displayed in Figure 19. It
shows the cross-correlogram for lags −15 through 15, which was also plotted
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in Figure 11. If a cross-correlation value lies outside the pair of dotted lines
it can be considered statistically significant at an approximately 5% level of
significance (i.e., the null hypothesis that the cross-correlation is zero can
be rejected at the 5% level of significance). Notice that in this case, only
one significant spike occurs at lag 0, suggesting that the ring index is
(weakly) correlated with the rainfall during the spring of the same year, but
is uncorrelated with the rainfall in previous years.

Correlation of PWINDEX and PWRAIN
Variance of input = 2965.586
Number of observations = 102

Crosscorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
-15 -0.290235 -0.03318 . * .
-14 0.871138 0.09958 . ** .
-13 0.084201 0.00962 . .
-12 0.287734 0.03289 . * .
-11 0.297993 0.03406 . * .
-10 -0.120706 -0.01380 . .
-9 -0.145245 -0.01660 . .
-8 -0.432502 -0.04944 . * .
-7 0.987679 0.11290 . ** .
-6 0.578575 0.06614 . * .
-5 -1.566862 -0.17910 **** .
-4 0.755446 0.08635 . ** .
-3 0.945793 0.10811 . ** .
-2 -0.388612 -0.04442 . * .
-1 0.579211 0.06621 . * .
0 2.351343 0.26878 . *****
1 -0.567222 -0.06484 . * .
2 -0.204336 -0.02336 . .
3 1.412760 0.16149 . ***.
4 -1.019255 -0.11651 . ** .
5 -0.302926 -0.03463 . * .
6 -0.160564 -0.01835 . .
7 0.089897 0.01028 . .
8 -0.746720 -0.08536 . ** .
9 -0.686667 -0.07849 . ** .
10 0.392745 0.04489 . * .
11 -0.900352 -0.10292 . ** .
12 1.354699 0.15485 . ***.
13 -1.016035 -0.11614 . ** .
14 0.709422 0.08109 . ** .
15 -0.040492 -0.00463 . .

‘‘.’’ marks two standard errors

 19 Cross-correlation of prewhitened ring-index and rainfall series.
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The sample ACF, IACF, and PACF (Figure 18) suggest that an AR
model (refer to Section 3.5.1) might be appropriate for the ring-index
series. Since the order of the autoregression is uncertain, three candidate
models are fitted as follows:

PROC ARIMA DATA=INDXRAIN;
TITLE1 ‘Time-Series Analysis: PROC ARIMA’;
TITLE2 ‘Fit models to ring-index series.’;
IDENTIFY VAR=INDEX NOPRINT NLAG=10;
ESTIMATE P=1 METHOD=ML;
ESTIMATE P=7 METHOD=ML;
ESTIMATE P=(1 6 7) METHOD=ML PLOT;

RUN;

Each model is defined by a separate ESTIMATE statement and is fitted
to the series specified in the preceding IDENTIFY statement. Since all
three models are fitted to the same series (INDEX), only one IDENTIFY
statement is needed. The NOPRINT option of IDENTIFY suppresses the
printing of the sample ACF, IACF, and PACF (Figure 18), which were use-
ful for model identification but are not required here. The P option of the
ESTIMATE statements defines the autoregressive terms that are to be
included in the fitted models. The option P=k includes all terms up to lag
k. Thus the first two ESTIMATE statements fit the models

yt = ν + φ 1 yt − 1 + εt

and

yt = ν + φ 1 yt − 1 + φ 2 yt − 2 + . . . + φ 7 yt − 7 + εt

respectively. To limit the model to a specific set of autoregressive terms,
the corresponding lags must be enclosed in parentheses as illustrated by
the last ESTIMATE statement, which fits the model

yt = ν + φ 1 yt − 1 + φ 6 yt − 6 + φ 7 yt − 7 + εt

Moving-average models are defined in a similar manner with the Q
option: for instance,

PROC ARIMA;
IDENTIFY VAR=INDEX;
ESTIMATE Q=(1 3);

RUN;

fits the model yt = ν + εt − φ 1 εt − 1 − φ 3 εt − 3 . Mixed models require that P
and Q be specified: thus,

PROC ARIMA;
IDENTIFY VAR=INDEX;
ESTIMATE P=2 Q=(1 3);

RUN;
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fits the ARMA model yt = ν + φ 1 yt − 1 + φ 2 yt − 2 + εt − φ 1 εt − 1 − φ 3 εt − 3 .
To fit an ARIMA model, the appropriate differenced series is specified
in the IDENTIFY statement (or created in a previous data step). The cor-
responding ARMA model is selected with the P and Q options of ESTI-
MATE. The following example demonstrates how PROC ARIMA can be
used to fit an ARIMA(1, 1, 1) model:

PROC ARIMA;
IDENTIFY VAR=INDEX(1);
ESTIMATE P=1 Q=1;

RUN;

The results of fitting the three AR models are displayed in A, B, and C
of Figure 20. For each model, the parameter estimates, approximate stan-
dard errors, T-statistics (with degrees of freedom equal to the number of
observations minus the number of free parameters in the model), and asso-
ciated lags are summarized in a table labelled ‘‘Maximum Likelihood Esti-
mation.’’ The title reflects the method of estimation, which is selected with
the METHOD option of ESTIMATE. In this case, maximum likelihood esti-
mation (METHOD=ML) was used. Other methods are available, but maxi-
mum likelihood estimation is usually preferred because the resultant
estimates have desirable statistical properties (see Chapter 6 of Diggle 1991).

Each set of parameter estimates includes an estimate of the mean of the
response variable (MU ), estimates of any autoregressive parameters {φi }
(which have labels with the prefix ‘‘AR’’), and estimates of any moving-
average parameters {θi } (prefix ‘‘MA’’). The estimate of the constant ν  is
labelled ‘‘Constant Estimate’’ and the estimated variance (standard devia-
tion) of εt is labelled ‘‘Variance Estimate’’ (‘‘Std Error Estimate’’). All AR
and MA estimates are numbered consecutively, with the associated lags lis-
ted in the last column. For example, reading the relevant parameter esti-
mates (C.1) from Figure 20 yields the third and final fitted model:

yt = 0.26800 + 0.70855 yt − 1 + 0.16708 yt − 6 − 0.14479 yt − 7 + εt

Similarly, the estimates for the first and second models can be read from
A.1 and B.1 of the output.

The constant and variance estimates are followed by two numbers
labelled ‘‘AIC’’ and ‘‘SBC,’’ which stand for ‘‘Akaike’s information crite-
rion’’ and ‘‘Schwartz’s Bayesian criterion.’’ Models are sometimes compared
on the basis of these criteria, which take into account both the quality of
the fit and the number of estimated parameters. Models with smaller
values are judged to be ‘‘better’’ (i.e., provide a better fit without substan-
tially increasing number parameters) than models with larger values.
Comparison of AIC and SBC for the three AR models (refer to A.2, B.2,
and C.2 in Figure 20) suggests that the last model is best. The other two
models are rejected because the first does not provide a good fit (see
below) and the second has too many terms (notice that the AR parame-
ters for lags 2–5 are not statistically significant according to their
T-statistics).
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Time-Series Analysis: PROC ARIMA
Fit models to ring-index series.

ARIMA Procedure

Maximum Likelihood Estimation (A)

  Approx.
Parameter Estimate Std Error T Ratio Lag
MU 0.99608 0.02187 45.55 0
AR1,1 0.71594 0.03252 22.02 1 (A.1)

Constant Estimate = 0.28294583

Variance Estimate = 0.01807707 (A.2)
Std Error Estimate = 0.134451
AIC = -541.41897
SBC = -533.14351
Number of Residuals= 463

Correlations of the Estimates

Parameter MU AR1,1

MU 1.000 0.009
AR1,1 0.009 1.000

Autocorrelation Check of Residuals (A.3)

To Chi Autocorrelations
Lag Square DF Prob
6 17.48 5 0.004 -0.055 0.007 0.077 -0.029 -0.026 0.163
12 24.26 11 0.012 -0.019 -0.047 0.024 -0.046 0.001 0.095
18 28.50 17 0.039 -0.016 -0.013 0.022 -0.031 -0.064 -0.053
24 39.04 23 0.020 -0.066 -0.036 0.010 -0.094 0.013 -0.083
30 53.72 29 0.003 -0.088 0.034 -0.092 0.041 -0.055 -0.088
36 62.06 35 0.003 -0.051 -0.063 -0.041 0.015 -0.036 -0.083
42 68.37 41 0.005 0.036 -0.007 -0.090 0.009 0.054 -0.010

Model for variable INDEX

Estimated Mean = 0.99608307

Autoregressive Factors
Factor 1: 1 - 0.71594 B**(1)

 20 Time-series analysis of ring-index series: model estimation.
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Time-Series Analysis: PROC ARIMA
Fit models to ring-index series.

ARIMA Procedure

Maximum Likelihood Estimation (B)

Approx.
Parameter Estimate Std Error T RatioLag
MU 0.99591 0.02334 42.68 0
AR1,1 0.67213 0.04653 14.45 1 (B.1)
AR1,2 0.04622 0.05572 0.83 2
AR1,3 0.05693 0.05564 1.02 3
AR1,4 -0.06529 0.05577 -1.17 4
AR1,5 -0.00958 0.05587 -0.17 5
AR1,6 0.17429 0.05574 3.13 6
AR1,7 -0.13755 0.04665 -2.95 7

Constant Estimate = 0.26176758

Variance Estimate = 0.01765436 (B.2)
Std Error Estimate = 0.1328697
AIC = -546.23093
SBC = -513.12911
Number of Residuals= 463

Correlations of the Estimates

Parameter MU AR1,1 AR1,2 AR1,3 AR1,4 AR1,5

MU 1.000 0.004 0.002 0.002 -0.001 0.000
AR1,1 0.004 1.000 -0.554 -0.037 -0.060 0.060
AR1,2 0.002 -0.554 1.000 -0.439 -0.000 -0.085
AR1,3 0.002 -0.037 -0.439 1.000 -0.433 0.000
AR1,4 -0.001 -0.060 -0.000 -0.433 1.000 -0.438
AR1,5 0.000 0.060 -0.085 0.000 -0.438 1.000
AR1,6 -0.000 0.017 0.042 -0.091 0.006 -0.439
AR1,7 0.001 -0.084 0.014 0.065 -0.062 -0.041

Parameter AR1,6 AR1,7

MU -0.000 0.001
AR1,1 0.017 -0.084
AR1,2 0.042 0.014
AR1,3 -0.091 0.065
AR1,4 0.006 -0.062
AR1,5 -0.439 -0.041
AR1,6 1.000 -0.552
AR1,7 -0.552 1.000

 20 (continued)
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Autocorrelation Check of Residuals (B.3)

To Chi Autocorrelations
Lag Square DF Prob
6 0.00 0 0.000 -0.007 0.007 -0.003 -0.001 0.002 -0.013
12 4.64 5 0.461 0.025 -0.035 -0.004 -0.029 0.024 0.079
18 9.59 11 0.567 0.006 0.002 0.011 -0.004 -0.073 -0.069
24 18.73 17 0.344 -0.049 -0.042 0.022 -0.094 0.019 -0.069
30 31.47 23 0.112 -0.080 0.041 -0.083 0.053 -0.060 -0.067
36 39.43 29 0.094 -0.060 -0.077 -0.005 0.004 -0.043 -0.067
42 44.88 35 0.122 0.039 -0.008 -0.075 -0.016 0.056 0.007

Model for variable INDEX

Estimated Mean = 0.99590623

Autoregressive Factors
Factor 1: 1 - 0.67213 B**(1) - 0.046223 B**(2) - 0.056927 B**(3)

+ 0.065289 B**(4) + 0.009579 B**(5) - 0.17429 B**(6)
+ 0.13755 B**(7)

 20 (continued)
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Time-Series Analysis: PROC ARIMA
Fit models to ring-index series.

ARIMA Procedure

Maximum Likelihood Estimation (C)

  Approx.
Parameter Estimate Std Error T Ratio Lag
MU 0.99568 0.02278 43.71 0
AR1,1 0.70855 0.03339 21.22 1 (C.1)
AR1,2 0.16708 0.04655 3.59 6
AR1,3 -0.14479 0.04637 -3.12 7

Constant Estimate = 0.26799846

Variance Estimate = 0.01763278 (C.2)
Std Error Estimate = 0.13278848
AIC = -550.7613
SBC = -534.21039
Number of Residuals= 463

Correlations of the Estimates

Parameter MU AR1,1 AR1,2 AR1,3

MU 1.000 0.007 0.000 0.001
AR1,1 0.007 1.000 -0.125 -0.092
AR1,2 0.000 -0.125 1.000 -0.698
AR1,3 0.001 -0.092 -0.698 1.000

Autocorrelation Check of Residuals (C.3)

To Chi Autocorrelations
Lag Square DF Prob
6 3.54 3 0.316 -0.043 0.024 0.066 -0.019 -0.014 -0.014
12 8.09 9 0.525 0.017 -0.033 0.016 -0.033 0.017 0.081
18 12.70 15 0.625 0.002 0.002 0.014 -0.009 -0.074 -0.062
24 23.26 21 0.330 -0.053 -0.044 0.019 -0.104 0.026 -0.070
30 37.40 27 0.088 -0.080 0.047 -0.096 0.050 -0.060 -0.069
36 45.46 33 0.073 -0.050 -0.080 -0.015 0.004 -0.041 -0.072
42 50.90 39 0.096 0.040 -0.007 -0.076 -0.011 0.056 -0.006

 20 (continued)
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Autocorrelation Plot of Residuals (C.4)

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
0 0.017633 1.00000 ********************
1 -0.0007632 -0.04328 .* .
2 0.00042402 0.02405 . .
3 0.0011637 0.06600 . *.
4 -0.0003339 -0.01894 . .
5 -0.0002492 -0.01414 . .
6 -0.0002487 -0.01410 . .
7 0.00029504 0.01673 . .
8 -0.0005798 -0.03288 .* .
9 0.00028309 0.01605 . .
10 -0.0005744 -0.03257 .* .

‘‘.’’ marks two standard errors

Inverse Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 0.03989 . *.
2 -0.02780 .* .
3 -0.07089 .* .
4 0.01846 . .
5 0.01828 . .
6 0.01898 . .
7 -0.01985 . .
8 0.02563 . *.
9 -0.01135 . .
10 0.03281 . *.

Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 -0.04328 .* .
2 0.02222 . .
3 0.06814 . *.
4 -0.01380 . .
5 -0.01898 . .
6 -0.01931 . .
7 0.01852 . .
8 -0.02874 .* .
9 0.01426 . .
10 -0.03316 .* .

Model for variable INDEX

Estimated Mean = 0.995679

Autoregressive Factors
Factor 1: 1 - 0 0.70855 B**(1) - 0.16708 B**(6) = 0.14479 B**(7)

 20 (concluded).
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The results of each ESTIMATE statement also include the estimated
correlations between the parameter estimates (which are usually of less
interest than the parameter estimates themselves) and an ‘‘Autocorrelation
Check of Residuals’’ (A.3, B.3, and C.3). The latter has the same inter-
pretation as the ‘‘Autocorrelation Check for White Noise’’ of the IDEN-
TIFY statement (part D of Figure 18), except in this case, the tests are
applied to the residuals from the fitted model. If the model is adequate,
the residuals are expected to resemble white noise (i.e., all autocorrela-
tions should be near zero). Notice that the residuals for the first model
show evidence of autocorrelation, which suggests that more AR or MA
terms are required. The other two models show little or no evidence of
autocorrelation, although the second model has too many parameters (i.e.,
no degrees of freedom) to test the first six lags.

Plots of the ACF, IACF, and PACF of the residuals are also useful for
checking the adequacy of the fitted model. They are requested with the
PLOT option of ESTIMATE. Figure 20 (C.4) shows the residual ACF,
IACF, and PACF for the last of the three fitted models. Only lags 0
through 10 are plotted because a maximum lag of 10 (NLAG=10) was
specified in the IDENTIFY statement (this was done mainly for conve-
nience, to limit the amount of output). Notice that none of the plots
shows any evidence of autocorrelation, which is consistent with a good fit.

After a model has been successfully fitted to a time series, predicted
values, residuals, and forecasts can be obtained with the FORECAST state-
ment as demonstrated below:

PROC ARIMA DATA=INDXRAIN;
TITLE1 ‘Time-Series Analysis: PROC ARIMA’;
TITLE2 ‘Calculate predicted values and residuals for ring-index series.’;
IDENTIFY VAR=INDEX NOPRINT;
ESTIMATE P=(1 6 7) METHOD=ML NOPRINT;
FORECAST LEAD=0 OUT=PWINDEX ID=YEAR;

RUN;

Here the IDENTIFY and ESTIMATE statements are used to fit the model
that was previously determined to be the best of the three AR models.
Since there is no need to repeat the results from the model identification
or estimation (Figures 18 and 20), they are suppressed with the NOPRINT
options of IDENTIFY and ESTIMATE. The FORECAST statement uses the
results of the most recent ESTIMATE statement to compute fitted values
and residuals (i.e., observed – fitted values). These are saved in the data
set (PWINDEX) specified by the OUT option. Forecasts (i.e., predicted
values for future observations) are requested with the LEAD option, which
specifies the lead time or number of forecasts. In this application, only the
fitted values and residuals are requested since LEAD=0. If forecasts were
required for the next k  years, then LEAD=0 would be replaced with
LEAD=k. The last option, ID=YEAR, adds the variable YEAR to the out-
put data set.

The output data set (PWINDEX) contains the fitted ring-index values
and, if applicable, forecasted values (both types of predicted values have
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the variable name FORECAST), the corresponding estimated standard
errors (STD), upper (U95) and lower (L95) 95% confidence limits, the
residuals (RESIDUAL), and the identification variable YEAR. The residuals
are the prewhitened values that were used to calculate the cross-correlo-
gram shown in Figure 19. The rainfall series was prewhitened in the same
manner, by fitting a suitable time-series model and computing the
residuals.

The ARIMA procedure is extremely versatile. It can be used for explor-
atory analyses (i.e., computation of the ACF, CCF, etc.), time-series mod-
elling (including transfer function models and intervention models, as
well as ARIMA models), and forecasting. For more information about the
IDENTIFY, ESTIMATE, and FORECAST statements of PROC ARIMA, and
their various other options, the reader should consult the SAS/ETS User’s
Guide (SAS Institute 1991a).

4.2.3 PROC AUTOREG The model on which PROC REG is based—the
ordinary least-squares regression model—assumes that the data are inde-
pendent; that is,

yt = β 0 + β 1 x 1t + β 2 x 2t + . . . + βm xmt + εt

where the errors {εt } are independent and identically distributed normal
random variables. When observations are made over time, the indepen-
dence assumption may not be realistic. To allow for this possibility, PROC
AUTOREG assumes that the errors are generated by an autoregression;
that is,

εt = δt − α 1 εt − 1 − α 2 εt − 2 − . . . − αp εt − p

where {δt } are independent and identically distributed normal random
variables. Notice that when there are no independent variables (i.e.,
yt = β 0 + εt ), the model reduces to a simple autoregression:

yt = α 0 − α 1 yt − 1 − α 2 yt − 2 − . . . − αp yt − p + δt

with α 0 = β 0

To illustrate PROC AUTOREG, consider the final AR model that was fit-
ted to ring-index series with PROC ARIMA. The same analysis can be per-
formed with PROC AUTOREG as follows:

PROC AUTOREG DATA=INDXRAIN;
TITLE1 ‘Time-Series Analysis: PROC AUTOREG’;
TITLE2 ‘Fit model to ring-index series.’;
MODEL INDEX=/NLAG=7 METHOD=ML;
LAGLIST 1 6 7;
OUTPUT OUT=RESID R=PWINDEX;

RUN;
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The MODEL statement identifies the dependent response variable
(INDEX) and the regressors x 1t , x 2t , . . . , xmt . In this example there are
no regressors, but if there were they would be listed after the equals sign
(e.g., MODEL INDEX=X1 X2;). The options NLAG and METHOD specify the
order of the autoregression for the error process and the method of esti-
mation (ML = maximum likelihood estimation). A LAGLIST statement is
also required since the number of autoregressive parameters is less than
the value specified by NLAG. It identifies the lagged terms that are to be
included in the autoregression (if LAGLIST is omitted, all lags up to and
including NLAG are selected). The OUTPUT statement identifies the output
data set (RESID) and names the residuals (PWINDEX).

The output from PROC AUTOREG is presented in Figure 21. The first
part (A) gives the ordinary least-squares estimates of the parameters
(which are the same as the values that would be obtained with PROC
REG) and the results of a diagnostic analysis of the residuals, including
the Durbin-Watson statistic and sample ACF up to the lag specified by
NLAG. Notice that the Durbin-Watson statistic (0.5685) is considerably
less than 2, which is the expected value under the null hypothesis of inde-
pendent errors. This confirms the need for a model with autocorrelated
errors.

The second part (B) of the output lists preliminary estimates of the
mean square error and autoregressive parameters for the correlated-errors
model. These so-called ‘‘Yule-Walker’’ estimates are the starting values for
the iterative scheme that is used to obtain the maximum likelihood esti-
mates, given in the last part of the output (C). The Yule-Walker estimates
are easier to calculate and are usually good first approximations to the
maximum likelihood estimates. Notice that the standard error (0.02280)
for the maximum likelihood estimate (C.1) is considerably larger than the
corresponding standard error (0.008923) for the ordinary least-squares
estimate of the intercept (A.1), even though the estimated intercepts are
approximately equal. Here, and in general, failure to account for autocor-
relation among the observations causes the standard errors of the regres-
sion coefficients to be underestimated. Notice also that the maximum
likelihood estimates of AR parameters and associated summary statistics
(AIC, SBC, etc.) are the same as the values obtained with PROC ARIMA,
apart from the sign reversal of the AR estimates, which reflects the differ-
ent parameters used by the two procedures. The Durbin-Watson statistic
provides an additional check of the residuals, which is not available in
PROC ARIMA. After fitting the AR model, the residuals no longer show
evidence of autocorrelation (i.e., the Durbin-Watson statistic is close to 2).

4.2.4 PROC FORECAST The emphasis of PROC ARIMA and PROC
AUTOREG is model development and hypothesis testing. In contrast, the
primary objective of PROC FORECAST is forecasting, without necessarily
understanding details of the process by which the data are generated.
There are three methods for generating forecasts with PROC FORECAST: a
stepwise autoregressive method (STEPAR), exponential smoothing
(EXPO), and the Holt-Winters method (WINTERS). The choice of method
depends on the characteristics of the series—that is, the type of trend, if
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Time-Series Analysis: PROC AUTOREG
Fit model to ring-index series.

Autoreg Procedure

Dependent Variable = INDEX Tree ring index

Ordinary Least Squares Estimates (A)

SSE 17.0303 DFE 462
MSE 0.036862 Root MSE 0.191995
SBC -209.091 AIC -213.228
Reg Rsq 0.0000 Total Rsq 0.0000
Durbin-Watson 0.5685

Variable DF B Value Std Error t Ratio Approx Prob

Intercept 1 0.996460043 0.008923 111.676 0.0001 (A.1)

Estimates of Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.036782 1.000000 ********************
1 0.026179 0.711727 **************
2 0.02003 0.544552 ***********
3 0.01596 0.433909 *********
4 0.011755 0.319577 ******
5 0.009626 0.261701 *****
6 0.009216 0.250548 *****
7 0.005767 0.156796 ***

Preliminary MSE = 0.017658

Estimates of the Autoregressive Parameters (B)

Lag Coefficient Std Error t Ratio
1 -0.70299696 0.03365984 -20.885334
6 -0.16280822 0.04638895 -3.509633
7 0.13521321 0.04624735 2.923696

Expected Autocorrelations

Lag Autocorr
0 1.0000
1 0.7115
2 0.5143
3 0.3832
4 0.3013
5 0.2581
6 0.2481
7 0.1550

 21 Time-series analysis of ring-index series: PROC AUTOREG.
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Time-Series Analysis: PROC AUTOREG
Fit model to ring-index series.

Maximum Likelihood Estimates (C)

SSE 8.093447 DFE 459
MSE 0.017633 Root MSE 0.132788
SBC -534.21 AIC -550.761
Reg Rsq 0.0000 Total Rsq 0.5248
Durbin-Watson 2.0748

Variable DF B Value Std Error t Ratio Approx Prob

Intercept 1 0.995679409 0.02280 43.669 0.0001 (C.1)
A(1) 1 -0.708546978 0.03342 -21.200 0.0001
A(6) 1 -0.167079541 0.04660 -3.586 0.0004
A(7) 1 0.144794292 0.04642 3.119 0.0019

Expected Autocorrelations

Lag Autocorr
0 1.0000
1 0.7162
2 0.5209
3 0.3898
4 0.3068
5 0.2616
6 0.2487
7 0.1511

Autoregressive parameters assumed given.

Maximum Likelihood Estimates

SSE 8.093447 DFE 459
MSE 0.017633 Root MSE 0.132788
SBC -534.21 AIC -550.761
Reg Rsq 0.0000 Total Rsq 0.5248
Durbin-Watson 2.0748

Variable DF B Value Std Error t Ratio Approx Prob

Intercept 1 0.995679409 0.02280 43.669 0.0001

 21 (continued).
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there is one, and the presence or absence of a seasonal component. The
stepwise AR method is applicable when there is no seasonal component
and the trend is adequately approximated by a deterministic linear or
quadratic function (e.g., Figure 4a). If the series exhibits a stochastic
trend (e.g., Figure 9a), exponential smoothing or the Holt-Winters
method can be used. The former is applicable when no seasonal compo-
nent is present. When a seasonal component is present, the latter (which
is a seasonal version of exponential smoothing) should be used.

Forecasts for the ring-index series can be generated with PROC FORE-
CAST, as follows:

PROC FORECAST DATA=INDXRAIN METHOD=STEPAR AR=7 TREND=1
LEAD=5 OUT=FORECAST OUTLIMIT OUTEST=PARMS;

VAR INDEX;
ID YEAR;

PROC PRINT DATA=PARMS;
TITLE1 ‘Forecast ring-index series with PROC FORECAST.’;
TITLE2 ‘Parameter estimates.’;

PROC PRINT DATA=FORECAST;
TITLE ‘Forecast ring-index series with PROC FORECAST’;
TITLE2 ‘Forecasts for 1993-1997.’;

RUN;

The PROC FORECAST line sets the options for generating forecasts and
controls the output (refer to SAS/ETS User’s Guide [SAS Institute 1991a],
for a complete list of options). In this case, the stepwise AR method is cho-
sen (METHOD=STEPAR). The AR (or NLAGS) option selects the maximum
order for the fitted autoregression. Based on the previous analyses, AR=7 is
chosen. If no estimate of the order is available, a large value should be
assigned (the default is AR=13) and the order of the fitted autoregression
determined automatically. The order selection process is controlled by the
options SLENTRY (significance level for entering a term) and SLSTAY (sig-
nificance level for removing a term), as well as AR. In this case, SLSTAY
and SLENTRY are omitted so the default values of 0.05 and 0.2 are used.
The TREND option describes the type of the trend (1 = constant, 2 = linear,
3 = quadratic) and LEAD specifies the number of time steps into the future
to be forecasted. Here LEAD=5 requests forecasts for the five years following
the last observation (i.e., forecasts for the years 1993–1997). The three
‘‘OUT’’ options control the output: OUT names the output data set for the
forecasts, OUTLIMIT requests confidence limits for the forecasts, and OUT-
EST names the data set for the parameter estimates.

The output from the preceding program is displayed in Figure 22. The
first part (A) lists the parameter estimates. Notice that an autoregression
with lags 1, 6, and 7 is fitted (the missing values for lags 2–5 imply that
those terms were dropped) and that estimated parameters are the same as
the preliminary Yule-Walker estimates calculated by PROC AUTOREG (part
B of Figure 21). The forecasts for the years 1993 through 1997 (B), and
the corresponding 95% confidence limits, are printed after the parameter
estimates.
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Forecast ring-index series with PROC FORECAST. (A)
Parameter estimates.

OBS TYPE YEAR INDEX
1 N 1992 463
2 SIGMA 1992 0.1334615
3 CONSTANT 1992 0.99646
4 AR1 1992 0.702997
5 AR2 1992 .
6 AR3 1992 .
7 AR4 1992 .
8 AR5 1992 .
9 AR6 1992 0.1628082
10 AR7 1992 -0.135213

Forecast ring-index series with PROC
FORECAST (B)

Forecasts for 1993-1997.

OBS YEAR TYPE LEAD INDEX

1 1993 FORECAST 1 1.15013
2 1993 L95 1 0.88769
3 1993 U95 1 1.41258
4 1994 FORECAST 2 1.09827
5 1994 L95 2 0.77782
6 1994 U95 2 1.41873
7 1995 FORECAST 3 1.04307
8 1995 L95 3 0.69753
9 1995 U95 3 1.38862
10 1996 FORECAST 4 1.05039
11 1996 L95 4 0.69309
12 1996 U95 4 1.40769
13 1997 FORECAST 5 1.04565
14 1997 L95 5 0.68269
15 1997 U95 5 1.40862

 22 Ring-index forecasts generated with PROC FORECAST (METHOD=STEPAR).

5 SAS EXAMPLES

5.1 Repeated-measures
Analysis of Seedling

Height Growth

The first example is an expanded analysis of the seedling data (Section
1.1.1). In the previous analysis (Section 4.1), only seedlings grown from
lodgepole pine plugs were considered. The following SAS program carries
out both univariate and multivariate repeated-measures analyses of the
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complete data set, and the corresponding analyses for each of the two spe-
cies: Douglas-fir (FD) and lodgepole pine (PL). The analysis of the indi-
vidual species includes an ANOVA of successive height increments (i.e.,
the change in height from 1983 to 1984, 1984 to 1985, etc.). This is easily
generated with the PROFILE transformation and SUMMARY option of the
REPEATED statement. A MANOVA statement is added to test the statistical
significance of the overall mean of each increment. Part of the output is
shown in Figure 23.

DATA SEEDLING; /* Read data in multivariate form. */
INFILE ‘SURVIV.DAT’;
INPUT SPP STK TRT BLK ROW TRENO PHT HT84-HT89;

PROC SORT DATA=SEEDLING; /* Sort data set and calculate row */
BY SPP STK TRT BLK ROW; /* averages. */

PROC SUMMARY DATA=SEEDLING;
BY SPP STK TRT BLK ROW;
VAR PHT HT84-HT89;
OUTPUT OUT=ROWMEANS MEAN=;

/* Repeated measures analysis of row */
/* means - both species. */

PROC GLM DATA=ROWMEANS;
TITLE ‘Repeated-Measures Analysis of Seedling Growth (Section 1.1.1)’;
CLASS BLK TRT SPP STK;
MODEL PHT HT84-HT89=BLK TRT SPP STK/SS3;
REPEATED YEAR 7 (1983 1984 1985 1986 1987 1988 1989);

/* Repeated measures analysis of row */
/* means - by species. */

PROC GLM DATA=ROWMEANS;
TITLE1 ‘Repeated-Measures Analysis of Seedling Growth - by species’;
BY SPP;
CLASS BLK TRT STK;
MODEL PHT HT84-HT89=BLK TRT STK/SS3;
REPEATED YEAR 7 (1983 1984 1985 1986 1987 1988 1989) PROFILE/SUMMARY;
MANOVA H=INTERCEPT E=BLK M=( 1 -1 0 0 0 0 0, 0 1 -1 0 0 0 0,

0 0 1 -1 0 0 0, 0 0 0 1 -1 0 0,
0 0 0 0 1 -1 0, 0 0 0 0 0 1 -1)

MNAMES=INC1 INC2 INC3 INC4 INC5 INC6/SUMMARY;
RUN;

The results of the analysis of the complete data set (not shown in
Figure 23) suggest that site-preparation treatment, species, and stock
type have a nonadditive effect on the growth of seedlings (i.e., the
YEAR*TRT*SPP*STK interaction is significant, which implies that the
effect of one factor depends on the other two). Analyzing each species
separately provides insight into the various effects.

The results of the multivariate within-rows analyses (Parts A and C
of Figure 23) suggest that treatment and stock type have a significant
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Repeated-Measures Analysis of Seedling Growth - by species

--------------------------------- SPP=FD ---------------------------------

Manova Test Criteria and F Approximations for (A)
the Hypothesis of no YEAR*BRT Effect

H = Type III SS&CP Matrix for YEAR*BRT E = Error SS&CP Matrix

S=3 M=1 N=4

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.35327581 0.7107 18 28.76955 0.7734
Pillai’s Trace 0.78357175 0.7071 18 36 0.7816
Hotelling-Lawley Trace 1.45319704 0.6997 18 26 0.7814
Roy’s Greatest Root 1.13784264 2.2757 6 12 0.1062

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

Manova Test Criteria and F Approximations for
the Hypothesis of no YEAR*TRT Effect

H = Type III SS&CP Matrix for YEAR*TRT E = Error SS&CP Matrix

S=2 M=1.5 N=4

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.08931022 3.9103 12 20 0.0035
Pillai’s Trace 1.39068228 4.1843 12 22 0.0018
Hotelling-Lawley Trace 4.82248581 3.6169 12 18 0.0070
Roy’s Greatest Root 3.07430517 5.6362 6 11 0.0068

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no YEAR*STK Effect

H = Type III SS&CP Matrix for YEAR*STK E = Error SS&CP Matrix

S=1 M=2 N=4

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.09360369 16.1389 6 10 0.0001
Pillai’s Trace 0.90639631 16.1389 6 10 0.0001
Hotelling-Lawley Trace 9.68333917 16.1389 6 10 0.0001
Roy’s Greatest Root 9.68333917 16.1389 6 10 0.0001

 23 Repeated-measures analysis of the growth of Douglas-fir (FD) and lodgepole pine (PL) seedlings.
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Manova Test Criteria and F Approximations for
the Hypothesis of no YEAR*TRT*STK Effect

H = Type III SS&CP Matrix for YEAR*TRT*STK E = Error SS&CP Matrix

S=2 M=1.5 N=4

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.26693746 1.5592 12 20 0.1835
Pillai’s Trace 0.96038574 1.6936 12 22 0.1370
Hotelling-Lawley Trace 1.89459867 1.4209 12 18 0.2429
Roy’s Greatest Root 1.16125919 2.1290 6 11 0.1315

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

BLK 3 100.3616 33.4539 0.33 0.8005
TRT 2 18.6268 9.3134 0.09 0.9116
STK 1 5734.5531 5734.5531 57.36 0.0001
TRT*STK 2 129.7455 64.8728 0.65 0.5367

Error 15 1499.5926 99.9728

YEAR.N represents the nth successive difference in YEAR (B)

Contrast Variable: YEAR.1

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 694.1780666 694.1780666 5245.83 0.0001
BLK 3 0.3969884 0.1323295 0.19 0.9019
TRT 2 7.5455373 3.7727687 5.40 0.0171
STK 1 31.1908783 31.1908783 44.67 0.0001
TRT*STK 2 3.8294677 1.9147339 2.74 0.0966

Error 15 10.4747898 0.6983193

Contrast Variable: YEAR.2

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 196.9523432 196.9523432 439.44 0.0002
BLK 3 1.3445730 0.4481910 0.29 0.8337
TRT 2 2.7786218 1.3893109 0.89 0.4308
STK 1 51.3021147 51.3021147 32.91 0.0001
TRT*STK 2 6.2404211 3.1202105 2.00 0.1696

Error 15 23.3838857 1.5589257

 23 (continued)
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Contrast Variable: YEAR.3

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 340.8068656 340.8068656 427.76 0.0002
BLK 3 2.3901996 0.7967332 0.17 0.9177
TRT 2 15.0366612 7.5183306 1.57 0.2413
STK 1 61.9420632 61.9420632 12.90 0.0027
TRT*STK 2 11.0474349 5.5237175 1.15 0.3430

Error 15 72.0473290 4.8031553

Contrast Variable: YEAR.4

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 720.9847437 720.9847437 124.62 0.0015
BLK 3 17.3561446 5.7853815 0.88 0.4722
TRT 2 6.2875278 3.1437639 0.48 0.6281
STK 1 82.3489709 82.3489709 12.57 0.0029
TRT*STK 2 21.4928604 10.7464302 1.64 0.2269

Error 15 98.2998740 6.5533249

Contrast Variable: YEAR.5

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 2643.323212 2643.323212 471.55 0.0002
BLK 3 16.816883 5.605628 0.84 0.4949
TRT 2 20.564462 10.282231 1.53 0.2478
STK 1 40.449551 40.449551 6.03 0.0267
TRT*STK 2 2.419067 1.209534 0.18 0.8368

Error 15 100.594149 6.706277

Contrast Variable: YEAR.6

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 4158.138937 4158.138937 3529.16 0.0001
BLK 3 3.534670 1.178223 0.10 0.9568
TRT 2 104.916963 52.458481 4.60 0.0277
STK 1 73.653859 73.653859 6.46 0.0226
TRT*STK 2 5.287465 2.643733 0.23 0.7958

Error 15 171.016228 11.401082

 23 (continued)
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Repeated-Measures Analysis of Seedling Growth - by species

--------------------------------- SPP=PL ---------------------------------

Manova Test Criteria and F Approximations for (C)
the Hypothesis of no YEAR*BLK Effect

H = Type III SS&CP Matrix for YEAR*BLK E = Error SS&CP Matrix

S=3 M=1 N=4

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.19910807 1.2296 18 28.76955 0.3025
Pillai’s Trace 1.16471225 1.2692 18 36 0.2640
Hotelling-Lawley Trace 2.40797089 1.1594 18 26 0.3576
Roy’s Greatest Root 1.62683040 3.2537 6 12 0.0389

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

Manova Test Criteria and F Approximations for
the Hypothesis of no YEAR*TRT Effect

H = Type III SS&CP Matrix for YEAR*TRT E = Error SS&CP Matrix

S=2 M=1.5 N=4

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.03787338 6.8974 12 20 0.0001
Pillai’s Trace 1.55376510 6.3836 12 22 0.0001
Hotelling-Lawley Trace 9.78228222 7.3367 12 18 0.0001
Roy’s Greatest Root 7.77242156 14.2494 6 11 0.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no YEAR*STK Effect

H = Type III SS&CP Matrix for YEAR*STK E = Error SS&CP Matrix

S=1 M=2 N=4

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.18244512 7.4685 6 10 0.0031
Pillai’s Trace 0.81755488 7.4685 6 10 0.0031
Hotelling-Lawley Trace 4.48110016 7.4685 6 10 0.0031
Roy’s Greatest Root 4.48110016 7.4685 6 10 0.0031

 23 (continued)
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Manova Test Criteria and F Approximations for
the Hypothesis of no YEAR*TRT*STK Effect

H = Type III SS&CP Matrix for YEAR*TRT*STK E = Error SS&CP Matrix

S=2 M=1.5 N=4

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.40010042 0.9682 12 20 0.5072
Pillai’s Trace 0.68713772 0.9595 12 22 0.5119
Hotelling-Lawley Trace 1.28133196 0.9610 12 18 0.5154
Roy’s Greatest Root 1.07931424 1.9787 6 11 0.1547

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

BLK 3 310.8867 103.6289 0.80 0.5144
TRT 2 5176.6388 2588.3194 19.91 0.0001
STK 1 2069.3402 2069.3402 15.92 0.0012
TRT*STK 2 35.1474 17.5737 0.14 0.8746

Error 15 1949.8385 129.9892

YEAR.N represents the nth successive difference in YEAR (D)

Contrast Variable: YEAR.1

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 1148.722693 1148.722693 278.69 0.0005
BLK 3 12.365716 4.121905 3.61 0.0384
TRT 2 12.682957 6.341478 5.55 0.0157
STK 1 32.713768 32.713768 28.65 0.0001
TRT*STK 2 2.137003 1.068502 0.94 0.4140

Error 15 17.128055 1.141870

Contrast Variable: YEAR.2

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 3306.602159 3306.602159 1882.02 0.0001
BLK 3 5.270843 1.756948 0.73 0.5488
TRT 2 28.463329 14.231665 5.93 0.0127
STK 1 47.177524 47.177524 19.66 0.0005
TRT*STK 2 4.344947 2.172474 0.91 0.4254

Error 15 35.996519 2.399768

 23 (continued)
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Contrast Variable: YEAR.3

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 6335.366338 6335.366338 9195.68 0.0001
BLK 3 2.066852 0.688951 0.11 0.9544
TRT 2 81.064714 40.532357 6.33 0.0102
STK 1 20.249735 20.249735 3.16 0.0957
TRT*STK 2 25.405195 12.702598 1.98 0.1722

Error 15 96.094158 6.406277

Contrast Variable: YEAR.4

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 10941.23603 10941.23603 12593.09 0.0001
BLK 3 2.60649 0.86883 0.06 0.9817
TRT 2 716.78647 358.39323 23.27 0.0001
STK 1 129.45717 129.45717 8.40 0.0110
TRT*STK 2 1.71725 0.85863 0.06 0.9460

Error 15 231.04136 15.40276

Contrast Variable: YEAR.5

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 23787.47161 23787.47161 1770.44 0.0001
BLK 3 40.30773 13.43591 1.11 0.3754
TRT 2 740.50850 370.25425 30.63 0.0001
STK 1 221.90586 221.90586 18.36 0.0007
TRT*STK 2 3.33963 1.66982 0.14 0.8721

Error 15 181.31448 12.08763

Contrast Variable: YEAR.6

Source DF Type III SS Mean Square F Value Pr > F

INTERCEPT 1 39922.99305 39922.99305 1577.06 0.0001
BLK 3 75.94464 25.31488 2.26 0.1233
TRT 2 794.08672 397.04336 35.46 0.0001
STK 1 279.89157 279.89157 25.00 0.0002
TRT*STK 2 9.53943 4.76972 0.43 0.6608

Error 15 167.96039 11.19736

 23 (concluded).
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additive effect on the growth of both species (i.e., the YEAR*STK and
YEAR*TRT interactions are significant for both species but the
YEAR*TRT*STK interaction is not). The analysis of the annual incre-
ments (B and D), which are labelled YEAR.1 (1983 height–1984 height),
YEAR.2 (1984 height–1985 height), etc., are even more informative. To
reduce the amount of output, the ANOVA tables for the increments have
been modified by replacing the default test for the MEAN (i.e., the test
produced by the REPEATED statement, which is incorrect for a ran-
domized block design) with the correct MANOVA test (labelled INTER-
CEPT). For convenience, the p-values for the corrected analyses have been
extracted from the output and are summarized in Table 2. Notice that
stock type appears to have a more significant and persistent effect on the
Douglas-fir seedlings than the method of site preparation. However, both
factors have an important and apparently prolonged effect on the growth
of lodgepole pine seedlings.

 2 Analysis of annual height increments: summary of  p-values (p-values less
than 0.05 are underlined)

Source 1983–84 1984–85 1985–86 1986–87 1987–88 1988–89

Douglas-fir
INTERCEPT 0.0001 0.0002 0.0002 0.0015 0.0002 0.0001
BLK 0.9019 0.8337 0.9177 0.4722 0.4949 0.9568
TRT 0.0171 0.4308 0.2413 0.6281 0.2478 0.0277
STK 0.0001 0.0001 0.0027 0.0029 0.0267 0.0226
TRT*STK 0.0966 0.1696 0.3430 0.2269 0.8368 0.7958

Lodgepole pine
INTERCEPT 0.0005 0.0001 0.0001 0.0001 0.0001 0.0001
BLK 0.0384 0.5488 0.9544 0.9817 0.3754 0.1233
TRT 0.0157 0.0127 0.0102 0.0001 0.0001 0.0001
STK 0.0001 0.0005 0.0957 0.0110 0.0007 0.0002
TRT*STK 0.4140 0.4254 0.1722 0.9460 0.8721 0.6608

5.2 Cross-correlation
Analysis of Missing

Tree Rings

The second example is a cross-correlation analysis of the tree-ring series
shown in Figure 2a and 2b. The objective is to find the number of years
by which the lower series must be shifted relative to the upper series to
achieve the best alignment, or maximum cross-correlation, of the growth
patterns. Before calculating the cross-correlation function, the confound-
ing effects of trend and autocorrelation must be eliminated.

An SAS program for carrying out the preliminary detrending and pre-
whitening of the individual series and the final cross-correlation analysis is
listed below. First, a log transformation is applied to each series to convert
the exponential trend into a linear trend. This has the added effect of sta-
bilizing the variance. Next a trend line is fitted to each series with PROC
REG (PROC AUTOREG could also be used). Subtraction of the trend pro-
duces a detrended ring index or, in this case, the log of the ring index.
Prewhitening is accomplished by fitting a first-order autoregression to
each ring-index series. (A preliminary model identification step suggested
that both ring-index series are adequately described by a first-order auto-
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regression.) The prewhitened series are calculated by including a FORE-
CAST statement in the PROC ARIMA step (refer to Section 4.2.2). This
saves the residuals from the fitted autoregressions, which are the required
prewhitened values. Finally, the two prewhitened series are cross-correlated
in a third application of PROC ARIMA.

/* Read data from input file and */
/* apply log transformation. */

DATA TREE94;
TITLE ‘Example 1.1.2: Cross-Correlation Analysis of Missing Tree Rings’;
INFILE ‘TREE94.DAT’ MISSOVER;
INPUT DISKHT 21-25 YEAR 29-32 RINGNO 34-36 RNGWIDTH 39-43;
LOGRW=LOG(RNGWIDTH);

/* Fit trend line to each series. */
PROC SORT DATA=TREE94;

BY DISKHT;
PROC REG NOPRINT;

BY DISKHT;
MODEL LOGRW=RINGNO;

OUTPUT OUT=TREND P=RNGTREND;
/* Subtract trend from each series*/
/* and convert data to multi- */
/* variate form. */

PROC SORT DATA=TREND;
BY YEAR DISKHT;

PROC SORT DATA=TREE94;
BY YEAR DISKHT;

DATA RINGS94 (KEEP=YEAR RW1-RW13 LR1-LR13 RI1-RI13 RT1-RT13);
MERGE TREE94 TREND;
BY YEAR DISKHT;
RETAIN;
ARRAY DISK HT1-HT13 (20 18 16 14 12 10 8 5.9 4 2 1.3 0.7 0.3);
ARRAY RING RW1-RW13;
ARRAY LOGRING LR1-LR13;
ARRAY TREND RT1-RT13;
ARRAY RNGINDX RI1-RI13;
IF FIRST.YEAR THEN DO I=1 TO 13;

RING(I)=.;
LOGRING(I)=.;
RNGINDX(I)=.;
TREND(I)=.;

END;
DO I=1 TO 13;

IF DISKHT=DISK(I) THEN DO;
RING(I)=RNGWIDTH;
LOGRING(I)=LOGRW;
TREND(I)=RNGTREND;
RNGINDX(I)=LOGRING(I)-TREND(I);

END;
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END;
IF LAST.YEAR THEN OUTPUT;

/* Prewhiten detrended series for */
/* disks at 2.0 and 1.3 meters. */

PROC SORT DATA=RINGS94;
BY YEAR;

PROC ARIMA DATA=RINGS94;
TITLE ‘Prewhiten first series (disk at 2.0m)’;
IDENTIFY VAR=RI10 NOPRINT;
ESTIMATE P=1 NOPRINT;
FORECAST LEAD=0 BACK=0 OUT=RES10 ID=YEAR;

PROC ARIMA DATA=RINGS94;
TITLE ‘Prewhiten second series (disk at 1.3m)’;
IDENTIFY VAR=RI11 NOPRINT;
ESTIMATE P=1 NOPRINT;
FORECAST LEAD=0 BACK=0 OUT=RES11 ID=YEAR;

/* Merge residual data sets. */
DATA PWINDX94;

MERGE RES10(RENAME=(RESIDUAL=PW10)) RES11(RENAME=(RESIDUAL=PW11));
BY YEAR;

/* Cross-correlate detrended, */
/* prewhitened series. */

PROC ARIMA DATA=PWINDX94;
TITLE ‘Cross-correlation analysis of prewhitened ring-index series’;
IDENTIFY VAR=PW11 CROSSCOR=PW10;

RUN;

The results of the preceding analysis are displayed in Figure 24. The fit-
ted first-order autoregressions that were used to prewhiten the two ring-
index series are given in the first two sections (A and B). Output from
the cross-correlation analysis (third PROC ARIMA statement) is given next
(C). This includes the ACF, IACF, and PACF (C.1–C.3) of the pre-
whitened ring-index series for the disk at 1.3 m (i.e., the variable named
in the VAR option of the IDENTIFY statement) and the corresponding
autocorrelation test for randomness (C.4). Notice that all of these checks
are consistent with a white noise or a purely random series. This confirms
the effectiveness of the detrending and prewhitening procedure. The same
checks can be applied to the other series by including another IDENTIFY
statement with VAR=PW10.

The key part of the output is the cross-correlation function for the two
series (C.5). Inspection of the cross-correlation function reveals a clear
spike at a lag of −5 years. This suggests that the best alignment of the two
series occurs when the series for the lower disk (PW11) is shifted to the
left by 5 years. In other words, the five outer rings of the upper disk are
missing in the lower disk and the year of the innermost ring of that disk
must be adjusted accordingly. The same analysis can be applied to all
pairs of disks and the results used to obtain a corrected estimate of the
year of the innermost ring of each disk. The effect of these corrections is
illustrated in Figures 2c and 2d.
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Prewhiten first series (disk at 1.3m)

ARIMA Procedure

Model for variable RI10 (A)

Estimated Mean = -0.0957115

Autoregressive Factors
Factor 1: 1 0.68642 B**(1)

Prewhiten second series (disk at 2.0m)

ARIMA Procedure

Model for variable RI11 (B)

Estimated Mean = -0.1387615

Autoregressive Factors
Factor 1: 1 - 0.75888 B**(1)

 24 Cross-correlation analysis of missing tree rings.
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Cross-correlation analysis of prewhitened ring-index series (C)

ARIMA Procedure

Name of variable = PW11.

Mean of working series  = 0.02743
Standard deviation = 0.372727
Number of observations = 106

Autocorrelations (C.1)

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
0 0.138925 1.00000 ********************
1 -0.0072260 -0.05201 . * .
2 -0.0027024 -0.01945 . .
3 0.019128 0.13769 . ***.
4 -0.0009828 -0.00707 . .
5 -0.0019721 -0.01420 . .
6 -0.0062541 -0.04502 . * .
7 -0.0014004 -0.01008 . .
8 -0.016739 -0.12049 . ** .
9 0.0010574 0.00761 . .
10 0.0029933 0.02155 . .
11 -0.029235 -0.21043 **** .
12 -0.0062555 -0.04503 . * .
13 0.0050624 0.03644 . * .
14 -0.0076410 -0.05500 . * .
15 0.0040052 0.02883 . * .
16 -0.015233 -0.10965 . ** .
17 0.017330 0.12474 . ** .
18 0.009667 0.06958 . * .
19 -0.0025763 -0.01854 . .
20 -0.0060426 -0.04350 . * .
21 -0.012409 -0.08932 . ** .
22 0.011612 0.08358 . ** .
23 -0.015190 -0.10934 . ** .
24 -0.0064761 -0.04662 . * .

‘‘.’’ marks two standard errors

 24 (continued)
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Inverse Autocorrelations (C.2)

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 0.06895 . * .
2 0.00465 . .
3 -0.08517 . ** .
4 0.04779 . * .
5 0.04779 . * .
6 -0.00019 . .
7 0.02669 . * .
8 0.12002 . ** .
9 0.00915 . .
10 0.02568 . * .
11 0.16505 . ***.
12 0.11763 . ** .
13 -0.00310 . .
14 0.04324 . * .
15 0.02690 . * .
16 0.11930 . ** .
17 -0.10980 . ** .
18 -0.06740 . * .
19 0.04166 . * .
20 0.06931 . * .
21 0.08527 . ** .
22 -0.01543 . .
23 0.09676 . ** .
24 0.04462 . * .

 24 (continued)
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Partial Autocorrelations (C.3)

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 -0.05201 . * .
2 -0.02222 . .
3 0.13593 . ***.
4 0.00676 . .
5 -0.00971 . .
6 -0.06641 . * .
7 -0.01644 . .
8 -0.12308 . ** .
9 0.01049 . .
10 0.02302 . .
11 -0.18193 **** .
12 -0.07550 . ** .
13 0.01537 . .
14 -0.01694 . .
15 0.04037 . * .
16 -0.13835 .*** .
17 0.10932 . ** .
18 0.06625 . * .
19 -0.02336 . .
20 -0.09580 . ** .
21 -0.11291 . ** .
22 0.03130 . * .
23 -0.10579 . ** .
24 -0.05140 . * .

Autocorrelation Check for White Noise (C.4)

To Chi Autocorrelations
Lag Square DF Prob
6 2.70 6 0.845 -0.052 -0.019 0.138 -0.007 -0.014 -0.045
12 10.06 12 0.611 -0.010 -0.120 0.008 0.022 -0.210 -0.045
18 14.86 18 0.671 0.036 -0.055 0.029 -0.110 0.125 0.070
24 19.14 24 0.745 -0.019 -0.043 -0.089 0.084 -0.109 -0.047

 24 (continued)
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Correlation of PW11 and PW10 (C.5)
Variance of input = 0.112964
Number of observations = 99

Crosscorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
-21 -0.014955 -0.12510 .*** .
-20 0.0034147 0.02856 . * .
-19 -0.0016700 -0.01397 . .
-18 -0.0021975 -0.01838 . .
-17 -0.019465 -0.16283 .*** .
-16 -0.018676 -0.15623 .*** .
-15 0.017216 0.14401 . ***.
-14 -0.014613 -0.12224 . ** .
-13 -0.010219 -0.08549 . ** .
-12 0.0020309 0.01699 . .
-11 -0.012335 -0.10319 . ** .
-10 0.0018776 0.01571 . .
-9 0.0066333 0.05549 . * .
-8 0.0031654 0.02648 . * .
-7 0.0068038 0.05692 . * .
-6 0.0064057 0.05359 . * .
-5 0.060589 0.50684 . **********
-4 -0.0094345 -0.07892 . ** .
-3 0.020050 0.16772 . ***.
-2 0.022023 0.18423 . ****
-1 0.00031661 0.00265 . .
0 -0.0004457 -0.00373 . .
1 0.0049424 0.04134 . * .
2 0.0018182 0.01521 . .
3 -0.012707 -0.10630 . ** .
4 -0.0063191 -0.05286 . * .
5 0.0056615 0.04736 . * .
6 -0.029310 -0.24519 ***** .
7 0.020149 0.16855 . ***.
8 -0.026690 -0.22327 **** .
9 0.0019742 0.01651 . .
10 -0.0020306 -0.01699 . .
11 -0.012346 -0.10327 . ** .
12 0.0063665 0.05326 . * .
13 0.011237 0.09400 . ** .
14 -0.0013013 -0.01089 . .
15 -0.010942 -0.09153 . ** .
16 -0.0004128 -0.00345 . .
17 -0.0037202 -0.03112 . * .
18 -0.022580 -0.18889 **** .
19 -0.00034 -0.00284 . .
20 0.0064959 0.05434 . * .
21 -0.013566 -0.11348 . ** .

‘‘.’’ marks two standard errors

 24 (concluded).
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6 CONCLUSIONS

Repeated measurements of the same experimental unit or process are
often correlated and require special methods of analysis. If the number of
observation times is relatively small and the objective is to compare trends
for several treatment groups, then repeated-measures ANOVA is applica-
ble. There are two types of repeated-measures ANOVA—one is based on a
split-plot univariate model and the other on a multivariate model. The
multivariate model is less restrictive than the univariate model, but the
associated statistical tests may lack power because there are more param-
eters to estimate and therefore fewer degrees of freedom. When the data
do not satisfy the correlation assumptions of the univariate model,
another alternative is to apply the Greenhouse-Geisser or Huynh-Feldt
correction to the univariate tests. Both univariate and multivariate
repeated-measures analyses are available in PROC GLM and PROC ANOVA
of the SAS system. They are requested with the REPEATED statement,
which also provides a range of options for comparing polynomial trends
and other contrasts over time.

Time series have various properties that are of interest to researchers,
including the presence or absence of trend, seasonality, and other types of
nonstationarity, and for stationary time series, the presence or absence of
short-term autocorrelation. Many statistical methods are available for the
analysis of univariate time series. The time plot, correlogram, and sample
PACF and IACF are useful for describing a time series, and are valuable
tools for outlier detection, model identification, and verification. Trend
and cyclic components can be described or removed by regression meth-
ods, or by smoothing the series. If the objective is model development or
forecasting, then the Box-Jenkins procedure can be used to fit and predict
stationary and nonstationary ARIMA processes. Alternative forecasting
methods include stepwise autoregression, exponential smoothing, and the
Holt-Winters method. The SAS/ETS library provides a full range of time-
series analyses. There are three main procedures for analyzing time series
in the time domain: PROC ARIMA, PROC AUTOREG, and PROC FORE-
CAST, and a fourth procedure, PROC EXPAND, can be used to aggregate,
interpolate, or otherwise manipulate a time series in preparation for
analysis.
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APPENDIX 1 Average height of seedlings

Average height (cm)a

Spp. Stk. Trt. Blk. Row Initial 1984 1985 1986 1987 1988 1989

FD B S 1 12 18.78 22.89 22.44 22.89 22.44 27.56 33.56
FD B S 2 10 15.92 20.08 21.50 24.75 28.42 39.67 53.67
FD B S 3 10 20.80 26.60 28.20 27.90 36.90 48.30 59.80
FD B S 4 4 18.60 22.60 21.40 23.00 22.20 30.60 39.80
FD B U 1 1 14.10 18.40 20.80 24.70 29.00 40.80 57.70
FD B U 2 12 17.00 21.00 22.00 18.00 20.00 22.00 25.00
FD B U 3 9 18.00 22.22 25.22 27.56 29.33 38.67 49.67
FD B U 4 9 18.14 23.29 25.36 28.36 30.07 38.00 48.50
FD B V 1 10 16.14 19.81 22.10 25.95 33.43 45.76 59.19
FD B V 2 2 14.89 19.28 21.11 25.78 30.28 39.89 53.83
FD B V 3 5 15.08 18.08 19.77 23.08 27.08 37.38 52.08
FD B V 4 8 19.00 23.06 24.24 28.12 34.47 45.35 58.12
FD P S 1 5 18.94 26.71 31.06 33.24 42.00 54.12 65.94
FD P S 2 8 22.82 28.91 34.05 39.91 47.32 59.50 75.64
FD P S 3 3 22.90 28.15 32.95 39.05 49.20 62.60 74.85
FD P S 4 5 20.59 25.65 30.12 33.35 39.53 49.29 61.65
FD P U 1 8 21.56 29.22 31.17 38.00 43.83 54.72 66.78
FD P U 2 5 20.47 27.11 33.16 39.95 46.74 57.37 70.79
FD P U 3 6 19.05 27.52 31.33 37.95 46.62 56.95 68.52
FD P U 4 3 16.29 24.71 31.05 35.76 43.48 55.62 70.86
FD P V 1 6 18.08 23.63 28.54 37.08 47.83 64.75 86.75
FD P V 2 6 20.88 26.58 30.50 35.88 42.83 53.71 70.58
FD P V 3 2 20.19 25.94 28.38 32.38 37.06 48.63 67.63
FD P V 4 11 20.40 26.25 30.00 34.25 38.35 49.05 65.30
PL B S 1 11 12.44 20.28 34.67 49.83 65.78 90.83 125.17
PL B S 2 7 16.33 22.00 32.00 47.33 58.33 81.73 113.07
PL B S 3 4 11.32 20.05 32.45 47.45 66.77 96.32 132.55
PL B S 4 7 11.11 16.37 28.74 44.11 65.79 94.05 130.74
PL B U 1 7 12.40 17.40 26.50 36.80 49.60 75.80 109.90
PL B U 2 11 13.44 18.44 24.75 41.00 54.31 80.00 111.56
PL B U 3 1 14.19 19.44 29.63 48.38 62.25 86.69 120.31
PL B U 4 10 15.22 20.61 29.61 41.83 55.06 70.72 97.78
PL B V 1 4 12.31 17.08 26.38 41.46 64.08 100.38 147.62
PL B V 2 4 13.94 19.00 28.41 46.41 81.94 118.41 166.18
PL B V 3 8 11.53 18.58 29.68 45.47 70.89 105.47 150.32
PL B V 4 2 12.63 16.63 27.06 43.75 67.38 103.06 146.75
PL P S 1 3 12.43 23.19 36.71 55.29 75.71 109.48 155.76
PL P S 2 9 10.23 18.59 33.91 53.59 74.09 108.27 150.64
PL P S 3 12 9.59 17.82 32.05 49.86 69.50 97.59 133.55
PL P S 4 1 13.48 21.70 34.26 48.22 73.39 103.83 141.48
PL P U 1 2 12.00 22.86 34.38 49.00 71.10 105.05 148.71
PL P U 2 3 9.43 17.14 30.10 43.33 60.95 87.24 125.67
PL P U 3 7 8.15 15.95 28.60 39.65 58.75 89.00 129.40
PL P U 4 12 8.75 15.70 27.45 42.55 58.45 85.55 123.85
PL P V 1 9 12.28 19.52 33.12 55.12 89.24 136.16 193.56
PL P V 2 1 9.57 17.13 28.74 46.65 74.00 114.22 163.13
PL P V 3 11 10.25 17.83 29.38 48.00 78.88 116.29 161.50
PL P V 4 6 7.83 13.58 30.00 53.42 84.71 130.38 186.21

a Data provided by T. Newsome and N. Daintith, B.C. Ministry of Forests, Cariboo Forest Region.
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APPENDIX 2 Ring widths

Ring width (cm)a

Year Disk at 2.0 m Disk at 1.3 m

1888 . 0.090
1889 . 0.049
1890 . 0.132
1891 . 0.137
1892 . 0.175
1893 . 0.135
1894 . 0.114
1895 0.090 0.148
1896 0.153 0.243
1897 0.096 0.211
1898 0.157 0.215
1899 0.168 0.222
1900 0.270 0.211
1901 0.264 0.173
1902 0.209 0.141
1903 0.243 0.203
1904 0.261 0.196
1905 0.196 0.281
1906 0.186 0.268
1907 0.260 0.279
1908 0.304 0.246
1909 0.323 0.164
1910 0.305 0.240
1911 0.265 0.148
1912 0.330 0.127
1913 0.225 0.222
1914 0.219 0.207
1915 0.223 0.127
1916 0.163 0.138
1917 0.211 0.136
1918 0.166 0.134
1919 0.143 0.108
1920 0.132 0.093
1921 0.145 0.108
1922 0.159 0.110
1923 0.136 0.121
1924 0.065 0.102
1925 0.094 0.103
1926 0.098 0.089
1927 0.093 0.102
1928 0.073 0.072
1929 0.097 0.067
1930 0.070 0.099
1931 0.047 0.109
1932 0.073 0.085
1933 0.068 0.101
1934 0.067 0.105
1935 0.080 0.118
1936 0.092 0.083
1937 0.088 0.051
1938 0.103 0.078
1939 0.083 0.062
1940 0.138 0.089

Ring width (cm)

Year Disk at 2.0 m Disk at 1.3 m

1941 0.110 0.067
1942 0.063 0.067
1943 0.075 0.046
1944 0.063 0.042
1945 0.072 0.062
1946 0.079 0.024
1947 0.067 0.032
1948 0.059 0.091
1949 0.051 0.101
1950 0.066 0.100
1951 0.039 0.126
1952 0.029 0.125
1953 0.080 0.108
1954 0.076 0.101
1955 0.059 0.093
1956 0.068 0.036
1957 0.045 0.033
1958 0.059 0.053
1959 0.062 0.020
1960 0.082 0.025
1961 0.023 0.023
1962 0.027 0.019
1963 0.032 0.015
1964 0.024 0.009
1965 0.016 0.019
1966 0.014 0.031
1967 0.013 0.067
1968 0.024 0.036
1969 0.017 0.085
1970 0.032 0.068
1971 0.025 0.062
1972 0.062 0.061
1973 0.042 0.059
1974 0.048 0.051
1975 0.051 0.038
1976 0.072 0.032
1977 0.037 0.045
1978 0.032 0.019
1979 0.040 0.029
1980 0.035 0.023
1981 0.029 0.016
1982 0.044 0.026
1983 0.022 0.029
1984 0.022 0.026
1985 0.026 0.022
1986 0.023 0.021
1987 0.015 0.009
1988 0.009 0.006
1989 0.012 0.005
1990 0.011 0.004
1991 0.013 0.007
1992 0.008 0.012
1993 0.005 0.006

a Data provided by I. Cameron, B.C. Ministry of Forests, Research Branch.



81

APPENDIX 3 Ring index and rainfall

Spring rainfall
Year Ring indexa (mm)

1891 1.153 209.2
1892 1.296 232.1
1893 1.428 343.4
1894 1.432 356.0
1895 1.019 156.3
1896 0.976 137.5
1897 0.893 191.6
1898 1.032 96.0
1899 1.133 264.1
1900 1.286 219.8
1901 1.201 187.4
1902 1.139 164.3
1903 1.228 192.2
1904 1.114 194.3
1905 1.084 150.7
1906 1.014 99.7
1907 0.825 106.9
1908 0.785 237.6
1909 0.700 71.4
1910 0.718 164.9
1911 0.655 147.0
1912 0.681 145.9
1913 0.759 116.3
1914 0.912 111.4
1915 0.743 114.4
1916 0.895 251.2
1917 0.836 280.6
1918 0.616 189.8
1919 0.771 158.0
1920 0.873 166.3
1921 0.847 129.4
1922 0.837 102.3
1923 0.739 131.3
1924 0.769 63.7
1925 0.715 100.3
1926 0.617 108.8
1927 0.678 123.2
1928 0.816 160.2
1929 0.888 185.0
1930 0.861 153.2
1931 1.100 159.4
1932 1.203 194.6
1933 1.241 92.3
1934 1.373 212.8
1935 1.021 139.1
1936 1.208 110.8
1937 1.427 139.4
1938 1.144 114.7
1939 1.264 116.2
1940 1.326 162.6
1941 0.991 116.9

Spring rainfall
Year Ring indexa (mm)

1942 1.299 67.7
1943 1.168 244.9
1944 1.228 108.7
1945 1.020 175.1
1946 1.316 201.2
1947 1.112 133.6
1948 1.425 221.5
1949 1.229 96.5
1950 1.077 212.1
1951 0.912 112.8
1952 0.975 104.9
1953 0.885 80.7
1954 0.842 81.2
1955 1.079 160.2
1956 0.697 111.3
1957 0.977 152.6
1958 1.111 119.6
1959 0.748 183.1
1960 0.927 180.3
1961 0.891 138.7
1962 0.831 137.9
1963 1.086 88.1
1964 0.916 116.7
1965 0.859 105.2
1966 0.803 98.3
1967 0.968 149.6
1968 0.745 203.2
1969 0.881 185.2
1970 0.836 210.6
1971 1.043 164.6
1972 1.122 64.0
1973 0.802 60.2
1974 0.945 149.2
1975 0.755 76.6
1976 1.043 57.3
1977 1.083 168.2
1978 0.937 157.4
1979 0.820 93.7
1980 1.209 163.0
1981 1.387 172.0
1982 1.035 89.7
1983 1.240 164.2
1984 1.451 239.9
1985 1.152 140.7
1986 0.969 162.2
1987 0.948 177.9
1988 0.918 241.9
1989 0.778 190.8
1990 0.945 177.6
1991 1.023 199.2
1992 1.221 105.2

a Data provided by D. Spittlehouse, Research Branch.
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