Quick R

http://www.statmethods.net/index.html
7Data Types

7Vectors

7Matrices

7Arrays

7Dataframes

8Lists

8Factors

9Useful Functions

9Importing Data

9From A Comma Delimited Text File

9From Excel

10From SPSS

10From SAS

10From Stata

10From systat

10Keyboard Input

11ccess to Database Management Systems (DBMS)

11ODBC Interface

11Other Interfaces

12Exporting Data

12To A Tab Delimited Text File

12To an Excel Spreadsheet

12To SPSS

12To SAS

12To Stata

12Getting Information on a Dataset

13Variable Labels

13Value Labels

14Missing Data

14Testing for Missing Values

14Recoding Values to Missing

14Excluding Missing Values from Analyses

15Advanced Handling of Missing Data

15Date Values

16Date Conversion

16Learning More

16Creating new variables

16Recoding variables

17Renaming variables

17Operators

17Arithmetic Operators

18Logical Operators

18Built-in Functions

18Numeric Functions

19Character Functions

20Statistical Probability Functions

21Other Statistical Functions

22Other Useful Functions

22Control Structures

22if-else

22for

22while

22switch

22ifelse

23Example

23User-written Functions

24Sorting Data

24Merging Data

24Adding Columns

25Adding Rows

25Aggregating Data

25Reshaping Data

25Transpose

25Reshape Package

27Subsetting Data

27Selecting (Keeping) Variables

27Excluding (DROPPING) Variables

28Selecting Observerations

28Selection using the Subset Function

28Random Samples

28Going Further

28Data Type Conversion

29Examples

29Dates

29Descriptive Statistics

30Summary Statistics by Group

30Frequencies and Crosstabs

31Generating Frequency Tables

32Tests of Independence

33Measures of Association

33Visualizing results

33Converting Frequency Tables to an "Original" Flat file

33Correlations

34Other Types of Correlations

34Visualizing Correlations

35t-tests

35Visualizing Results

35Nonparametric Tests of Group Differences

36Visualizing Results

36Multiple (Linear) Regression

36Fitting the Model

36Diagnostic Plots

37Comparing Models

37Cross Validation

38Variable Selection

39Relative Importance

40Graphic Enhancements

41Going Further

41Regression Diagnostics

41Outliers

42Influential Observations

44Non-normality

45Non-constant Error Variance

46Multi-collinearity

46Nonlinearity

47Non-independence of Errors

47Additional Diagnostic Help

48Going Further

48ANOVA

49Multiple Comparisons

49Visualizing Results

51MANOVA

52Going Further

52Assessing Classical Test Assumptions

52Outliers

53Univariate Normality

54Multivariate Normality

55Homogeneity of Variances

57Homogeneity of Covariance Matrices

57Resampling Statistics

57Independent Two- and K-Sample Location Tests

57symmetry of a response for repeated measurements

57Independence of Two Numeric Variables

58Independence in Contingency Tables

58Power Analysis

58Overview

58Power Analysis in R

59t-tests

60ANOVA

60Correlations

60Linear Models

61Tests of Proportions

61Chi-square Tests

62some Examples

62Creating Power or Sample Size Plots

64Using with() and by()

64With

64By

64Generalized Linear Models

65Logistic Regression

66Poisson Regression

66Survival Analysis

67Discriminant Function Analysis

67Linear Discriminant Function

68Quadratic Discriminant Function

68Visualizing the Results

72Test Assumptions

72Bootstrapping

72Nonparametric Bootstrapping

76Going Further

77Learning More

77Matrix Algebra

77Matrix facilites

78Matlab Emulation

78Going Further

79Creating a Graph

79Saving Graphs

80Viewing Several Graphs

80Graphical Parameters

81Histograms and Density Plots

81Histograms

82Kernal Density Plots

82Comparing Groups VIA Kernal Density

83Dot Plots

85Going Further

85Bar Plots

86Simple Bar Plot

86Stacked Bar Plot

87Grouped Bar Plot

87Notes

87Line Charts

92Pie Charts

92Simple Pie Chart

92Pie Chart with Annotated Percentages

923D Pie Chart

93Creating Annotated Pies from a Dataframe

93Boxplots

94Other Options

95Violin Plots

95Bagplot - A 2D Boxplot Extension

96Scatterplots

96Simple Scatterplot

98Scatterplot Matrices

102High Density Scatterplots

1043D Scatterplots

109Graphical Parameters

110Text and Symbol Size

110Plotting Symbols

111Lines

111colors

113fonts

114Margins and Graph Size

114Going Further

114Axes and Text

114Titles

115Text Annotations

116Axes

119Reference Lines

119Legend

120Combining Plots

122creating a figure arrangement with fine control

123Trellis Graphs

128Customizing Trellis Graphs

129Going Further

129Probability Plots

129Probability Plots for Teaching and Demonstration

132Fitting Distributions

134Visualizing Categorical Data

134Mosaic Plots

134Association Plots

135Going Further

135Correlograms

139Changing the colors in a correlogram

140Interactive Graphics

140GGobi

141iPlots

142Interacting with Plots (Indentifying Points)

142Other Interactive Graphs

Data Types

R has a wide variety of data types including scalars, vectors (numerical, character, logical), matrices, dataframes, and lists.

Vectors

a <- c(1,2,5.3,6,-2,4) # numeric vector
b <- c("one","two","three") # character vector
c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) #logical vector
Refer to elements of a vector using subscripts.

a[c(2,4)] # 2nd and 4th elements of vector
Matrices

All columns in a matrix must have the same mode(numeric, character, etc.) and the same length. The general format is

mymatrix <- matrix(vector, nrow=r, ncol=c, byrow=FALSE,
 dimnames=list(char_vector_rownames, char_vector_colnames))
byrow=TRUE indicates that the matrix should be filled by rows. byrow=FALSE indicates that the matrix should be filled by columns (the default). dimnames provides optional labels for the columns and rows.

generates 5 x 4 numeric matrix
y<-matrix(1:20, nrow=5,ncol=4)

another example
cells <- c(1,26,24,68)
rnames <- c("R1", "R2")
cnames <- c("C1", "C2")
mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=TRUE,
 dimnames=list(rnames, cnames))
Identify rows, columns or elements using subscripts.

x[,4] # 4th column of matrix
x[3,] # 3rd row of matrix
x[2:4,1:3] # rows 2,3,4 of columns 1,2,3
Arrays

Arrays are similar to matrices but can have more than two dimensions. See help(array) for details.

Dataframes

A dataframe is more general than a matrix, in that different columns can have different modes (numeric, character, factor, etc.). This is similar to SAS and SPSS datasets.

d <- c(1,2,3,4)
e <- c("red", "white", "red", NA)
f <- c(TRUE,TRUE,TRUE,FALSE)
mydata <- data.frame(d,e,f)
names(mydata) <- c("ID","Color","Passed") # variable names
There are a variety of ways to identify the elements of a dataframe .

myframe[3:5] # columns 3,4,5 of dataframe
myframe[c("ID","Age")] # columns ID and Age from dataframe
myframe$X1 # variable x1 in the dataframe
Lists

An ordered collection of objects (components). A list allows you to gather a variety of (possibly unrelated) objects under one name.

example of a list with 4 components -
a string, a numeric vector, a matrix, and a scaler
w <- list(name="Fred", mynumbers=a, mymatrix=y, age=5.3)

example of a list containing two lists
v <- c(list1,list2)
Intentify elements of a list using the [[]] convention.

mylist[[2]] # 2nd component of the list
mylist[["mynumbers"]] # component named mynumbers in list
Factors

Tell R that a variable is nominal by making it a factor. The factor stores the nominal values as a vector of integers in the range [1... k] (where k is the number of unique values in the nominal variable), and an internal vector of character strings (the original values) mapped to these integers.

variable gender with 20 "male" entries and
30 "female" entries
gender <- c(rep("male",20), rep("female", 30))
gender <- factor(gender)
stores gender as 20 1s and 30 2s and associates
1=female, 2=male internally (alphabetically)
R now treats gender as a nominal variable
summary(gender)
An ordered factor is used to represent an ordinal variable.

variable rating coded as "large", "medium", "small'
rating <- ordered(rating)
recodes rating to 1,2,3 and associates
1=large, 2=medium, 3=small internally
R now treats rating as ordinal
R will treat factors as nominal variables and ordered factors as ordinal variables in statistical proceedures and graphical analyses. You can use options in the factor() and ordered() functions to control the mapping of integers to strings (overiding the alphabetical ordering). You can also use factors to create value labels. For more on factors see the UCLA page.

Useful Functions

length(object) # number of elements or components
str(object) # structure of an object
class(object) # class or type of an object
names(object) # names

c(object,object,...) # combine objects into a vector
cbind(object, object, ...) # combine objects as columns
rbind(object, object, ...) # combine objects as rows

object # prints the object

ls() # list current objects
rm(object) # delete an object

newobject <- edit(object) # edit copy and save as newobject
fix(object) # edit in place
Importing Data

Importing data into R is fairly simple. For Stata and Systat, use the foreign package. For SPSS and SAS I would recommend the Hmisc package for ease and functionality. See the Quick-R section on packages, for information on obtaining and installing the these packages. Example of importing data are provided below.

From A Comma Delimited Text File

first row contains variable names, comma is separator
assign the variable id to row names
note the / instead of \ on mswindows systems

mydata <- read.table("c:/mydata.csv", header=TRUE,
 sep=",", row.names="id")
From Excel

The best way to read an Excel file is to export it to a comma delimited file and import it using the method above. On windows systems you can use the RODBC package to access Excel files. The first row should contain variable/column names.

first row contains variable names
we will read in workSheet mysheet
library(RODBC)
channel <- odbcConnectExcel("c:/myexel.xls")
mydata <- sqlFetch(channel, "mysheet")
odbcClose(channel)
From SPSS

save SPSS dataset in trasport format
get file='c:\mydata.sav'.
export outfile='c:\mydata.por'.

in R
library(Hmisc)
mydata <- spss.get("c:/mydata.por", use.value.labels=TRUE)
last option converts value labels to R factors
From SAS

save SAS dataset in trasport format
libname out xport 'c:\mydata.xpt';
data out.mydata;
set sasuser.mydata;
run;

in R
library(Hmisc)
mydata <- sasxport.get("c:/mydata.xpt")
character variables are converted to R factors
From Stata

input Stata file
library(foreign)
mydata <- read.dta("c:/mydata.dta")
From systat

input Systat file
library(foreign)
mydata <- read.systat("c:/mydata.dta")

Keyboard Input

Usually you will obtain a dataframe by importing it from SAS, SPSS, Excel, Stata, a database, or an ASCII file. To create it interactively, you can do something like the following.

create a dataframe from scratch
age <- c(25, 30, 56)
gender <- c("male", "female", "male")
weight <- c(160, 110, 220)
mydata <- data.frame(age,gender,weight)
You can also use R's built in spreadsheet to enter the data interactively, as in the following example.

enter data using editor
mydata <- data.frame(age=numeric(0), gender=character(0), weight=numeric(0))
mydata <- edit(mydata)
note that without the assignment in the line above,
the edits are not saved!
ccess to Database Management Systems (DBMS)

ODBC Interface

The RODBC package provides access to databases (including Microsoft Access and Microsoft SQL Server) through an ODBC interface.

The primary functions are given below.

	Function
	Description

	odbcConnect(dsn, uid="", pwd="")
	Open a connection to an ODBC database

	sqlFetch(channel, sqtable)
	Read a table from an ODBC database into a dataframe

	sqlQuery(channel, query)
	Submit a query to an ODBC database and return the results

	sqlSave(channel, mydf, tablename = sqtable, append = FALSE)
	Write or update (append=True) a dataframe to a table in the ODBC database

	sqlDrop(channel, sqtable)
	Remove a table from the ODBC database

	close(channel)
	Close the connection

RODBC Example
import 2 tables (Crime and Punishment) from a DBMS
into R dataframes (and call them crimedat and pundat)

library(RODBC)
myconn <-odbcConnect("mydsn", uid="Rob", pwd="aardvark")
crimedat <- sqlFetch(myconn, Crime)
pundat <- sqlQuery(myconn, "select * from Punishment")
close(myconn)
Other Interfaces

The RMySQL package provides an interface to MySQL.

The ROracle package provides an interface for Oracle.

The RJDBC package provides access to databases through a JDBC interface.

Exporting Data

There are numerous methods for exporting R objects into other formats . For SPSS, SAS and Stata. you will need to load the foreign packages. For Excel, you will need the xlsReadWrite package.

To A Tab Delimited Text File

write.table(mydata, "c:/mydata.txt", sep="\t")
To an Excel Spreadsheet

library(xlsReadWrite)
write.xls(mydata, "c:/mydata.xls")
To SPSS

write out text datafile and
an SPSS program to read it
library(foreign)
write.foreign(mydata, "c:/mydata.txt", "c:/mydata.sps", package="SPSS")
To SAS

write out text datafile and
an SAS program to read it
library(foreign)
write.foreign(mydata, "c:/mydata.txt", "c:/mydata.sas", package="SAS")
To Stata

export dataframe to Stata binary format
library(foreign)
write.dta(mydata, "c:/mydata.dta")

Getting Information on a Dataset

There are a number of functions for listing the contents of an object or dataset.

list objects in the working environment
ls()
list the variables in mydata
names(mydata)
list the structure of mydata
str(mydata)
list levels of factor v1 in mydata
levels(mydata$v1)
dimensions of an object
dim(object)
class of an object (numeric, matrix, dataframe, etc)
class(object)
print mydata
mydata
print first 10 rows of mydata
head(mydata, n=10)
print last 5 rows of mydata
tail(mydata, n=5)

Variable Labels

R's ability to handle variable labels is somewhat unsatisfying.

If you use the Hmisc package, you can take advantage of some labeling features.

library(Hmisc)
label(mydata$myvar) <- "Variable label for variable myvar"
describe(mydata)
Unfortunately the label is only in effect for functions provided by the Hmisc package, such as describe(). Your other option is to use the variable label as the variable name and then refer to the variable by position index.

names(mydata)[3] <- "This is the label for variable 3"
mydata[3] # list the variable
Value Labels

To understand value labels in R, you need to understand the data structure factor.

You can use the factor function to create your own value lables.

variable v1 is coded 1, 2 or 3
we want to attach value labels 1=red, 2=blue, 3=green

mydata$v1 <- factor(mydata$v1,
levels = c(1,2,3),
labels = c("red", "blue", "green"))
variable y is coded 1, 3 or 5
we want to attach value labels 1=Low, 3=Medium, 5=High

mydata$v1 <- ordered(mydata$y,
levels = c(1,3, 5),
labels = c("Low", "Medium", "High"))
Use the factor() function for nominal data and the ordered() function for ordinal data. R statistical and graphic functions will then treat the data appriopriately.
Note: factor and ordered are used the same way, with the same arguments. The former creates factors and the later creates ordered factors.

Missing Data

In R, missing values are represented by the symbol NA (not available) . Impossible values (e.g., dividing by zero) are represented by the symbol NaN (not a number). Unlike SAS, R uses the same symbol for character and numeric data.

Testing for Missing Values

is.na(x) # returns TRUE of x is missing
y <- c(1,2,3,NA)
is.na(y) # returns a vector (F F F T)
Recoding Values to Missing

recode 99 to missing for variable v1
select rows where v1 is 99 and recode column v1
mydata[v1==99,"v1"] <- NA
Excluding Missing Values from Analyses

Arithmetic functions on missing values yield missing values.

x <- c(1,2,NA,3)
mean(x) # returns NA
mean(x, na.rm=TRUE) # returns 2
The function complete.cases() returns a logical vector indicating which cases are complete.

list rows of data that have missing values
mydata[!complete.cases(mydata),]
The function na.omit() returns the object with listwise deletion of missing values.

create new dataset without missing data
newdata <- na.omit(mydata)
Advanced Handling of Missing Data

Most modeling functions in R offer options for dealing with missing values. You can go beyond pairwise of listwise deletion of missing values through methods such as multiple imputation. Good implementations that can be accessed through R include Amelia II, Mice, and mitools.

Date Values

Dates are represented as the number of days since 1970-01-01, with negative values for earlier dates.

use as.Date() to convert strings to dates
mydates <- as.Date(c("2007-06-22", "2004-02-13"))
number of days between 6/22/07 and 2/13/04
days <- mydates[1] - mydates[2]
Sys.Date() returns today's date.
Date() returns the current date and time.

The following symbols can be used with the format() function to print dates.

	Symbol
	Meaning
	Example

	%d
	day as a number (0-31)
	01-31

	%a
%A
	abbreviated weekday
unabbreviated weekday
	Mon
Monday

	%m
	month (00-12)
	00-12

	%b
%B
	abbreviated month
unabbreviated month
	Jan
January

	%y
%Y
	2-digit year
4-digit year
	07
2007

Here is an example.

print today's date
today <- Sys.Date()
format(today, format="%B %d %Y")
"June 20 2007"
Date Conversion

Character to Date

You can use the as.Date() function to convert character data to dates. The format is as.Date(x, "format"), where x is the character data and format gives the appropriate format.

convert date info in format 'mm/dd/yyyy'
strDates <- c("01/05/1965", "08/16/1975")
dates <- as.Date(strDates, "%m/%d%Y")
The default format is yyyy-mm-dd
mydates <- as.Date(c("2007-06-22", "2004-02-13"))
Date to Character

You can convert dates to character data using the as.Character() function.

convert dates to character data
strDates <- as.character(dates)
Learning More

See help(as.Date) and help(strftime) for details on converting character data to dates. See help(ISOdatetime) for more information about formatting date/times.

Creating new variables

Use the assignment operator <- to create new variables. A wide array of operators and functions are available here.

Three examples for doing the same computations

mydata$sum <- mydata$x1 + mydata$x2
mydata$mean <- (mydata$x1 + mydata$x2)/2

attach(mydata)
mydata$sum <- x1 + x2
mydata$mean <- (x1 + x2)/2
detach(mydata)

mydata <- transform(mydata,
sum = x1 + x2,
mean = (x1 + x2)/2
)
Recoding variables

In order to recode data, you will probably use one or more of R's control structures.

create 2 age categories
mydata$agecat <- ifelse(mydata$age > 70,
c("older"), c("younger"))

another example: create 3 age categories
attach(mydata)
mydata$agecat[age > 75] <- "Elder"
mydata$agecat[age > 45 & age <= 75] <- "Middle Aged"
mydata$agecat[age <= 45] <- "Young"
detach(mydata)
Renaming variables

You can rename variables programmatically or interactively.

rename interactively
fix(mydata) # results are saved on close

rename programmatically
library(reshape)
mydata <- rename(mydata, c(oldname="newname"))

you can re-enter all the variable names in order
changing the ones you need to change.the limitation
is that you need to enter all of them!
names(mydata) <- c("x1","age","y", "ses")
Operators

R's binary and logical operators will look very familiar to programmers. Note that binary operators work on vectors and matrices as well as scalars.

Arithmetic Operators

	Operator
	Description

	+
	addition

	-
	subtraction

	*
	multiplication

	/
	division

	^ or **
	exponentiation

	x %% y
	modulus (x mod y) 5%%2 is 1

	x %/% y
	integer division 5%/%2 is 2

Logical Operators

	Operator
	Description

	<
	less than

	<=
	less than or equal to

	>
	greater than

	>=
	greater than or equal to

	==
	exactly equal to

	!=
	not equal to

	!x
	Not x

	x | y
	x OR y

	x & y
	x AND y

	isTRUE(x)
	test if X is TRUE

 # An example
x <- c(1:10)
x[(x>8) | (x<5)]
yeilds 1 2 3 4 9 10

How it works
x <- c(1:10)
x
1 2 3 4 5 6 7 8 9 10
x > 8
F F F F F F F F T T
x < 5
T T T T F F F F F F
x > 8 | x < 5
T T T T F F F F T T
x[c(T,T,T,T,F,F,F,F,T,T)]
1 2 3 4 9 10
Built-in Functions

Almost everything in R is done through functions. Here I'm only refering to numeric and character functions that are commonly used in creating or recoding variables.

Numeric Functions

	Function
	Description

	abs(x)
	absolute value

	sqrt(x)
	square root

	ceiling(x)
	ceiling(3.475) is 4

	floor(x)
	floor(3.475) is 3

	trunc(x)
	trunc(5.99) is 5

	round(x, digits=n)
	round(3.475, digits=2) is 3.48

	signif(x, digits=n)
	signif(3.475, digits=2) is 3.5

	cos(x), sin(x), tan(x)
	also acos(x), cosh(x), acosh(x), etc.

	log(x)
	natural logarithm

	log10(x)
	common logarithm

	exp(x)
	e^x

Character Functions

	Function
	Description

	substr(x, start=n1, stop=n2)
	Extract or replace substrings in a character vector.
x <- "abcdef"
substr(x, 2, 4) is "bcd"
substr(x, 2, 4) <- "22222" is "a222ef"

	grep(pattern, x , ignore.case=FALSE, fixed=FALSE)
	Search for pattern in x. If fixed =FALSE then pattern is a regular expression. If fixed=TRUE then pattern is a text string. Returns matching indices.
grep("A", c("b","A","c"), fixed=TRUE) returns 2

	sub(pattern, replacement, x, ignore.case =FALSE, fixed=FALSE)
	Find pattern in x and replace with replacement text. If fixed=FALSE then pattern is a regular expression.
If fixed = T then pattern is a text string.
sub("\\s",".","Hello There") returns "Hello.There"

	strsplit(x, split)
	Split the elements of character vector x at split.
strsplit("abc", "") returns 3 element vector "a","b","c"

	paste(..., sep="")
	Concatenate strings after using sep string to seperate them.
paste("x",1:3,sep="") returns c("x1","x2" "x3")
paste("x",1:3,sep="M") returns c("xM1","xM2" "xM3")
paste("Today is", date())

	toupper(x)
	Uppercase

	tolower(x)
	Lowercase

Statistical Probability Functions

The following table describes functions related to probaility distributions. For random number generators below, you can use set.seed(1234) or some other integer to create reproducible pseudo-random numbers.

	Function
	Description

	dnorm(x)
	normal density function (by default m=0 sd=1)
plot standard normal curve
x <- pretty(c(-3,3), 30)
y <- dnorm(x)
plot(x, y, type='l', xlab="Normal Deviate", ylab="Density", yaxs="i")

	pnorm(q)
	cumulative normal probability for q
(area under the normal curve to the right of q)
pnorm(1.96) is 0.975

	qnorm(p)
	normal quantile.
value at the p percentile of normal distribution
qnorm(.9) is 1.28 # 90th percentile

	rnorm(n, m=0,sd=1)
	n random normal deviates with mean m
and standard deviation sd.
#50 random normal variates with mean=50, sd=10
x <- rnorm(50, m=50, sd=10)

	dbinom(x, size, prob)
pbinom(q, size, prob)
qbinom(p, size, prob)
rbinom(n, size, prob)
	binomial distribution where size is the sample size
and prob is the probability of a heads (pi)
prob of 0 to 5 heads of fair coin out of 10 flips
dbinom(0:5, 10, .5)
prob of 5 or less heads of fair coin out of 10 flips
pbinom(5, 10, .5)

	dpois(x, lamda)
ppois(q, lamda)
qpois(p, lamda)
rpois(n, lamda)
	poisson distribution with m=std=lamda
#probability of 0,1, or 2 events with lamda=4
dpois(0:2, 4)
probability of at least 3 events with lamda=4
1- ppois(2,4)

	dunif(x, min=0, max=1)
punif(q, min=0, max=1)
qunif(p, min=0, max=1)
runif(n, min=0, max=1)
	uniform distribution, follows the same pattern
as the normal distribution above.
#10 uniform random variates
x <- runif(10)

Other Statistical Functions

Other useful statistical functions are provided in the following table. Each has the option na.rm to strip missing values before calculations. Otherwise the presence of missing values will lead to a missing result. Object can be a numeric vector or dataframe.

	Function
	Description

	mean(x, trim=0,
na.rm=FALSE)
	mean of object x
trimmed mean, removing any missing values and
5 percent of highest and lowest scores
mx <- mean(x,trim=.05,na.rm=TRUE)

	sd(x)
	standard deviation of object(x). also look at var(x) for variance and mad(x) for median absolute deviation.

	median(x)
	median

	quantile(x, probs)
	quantiles where x is the numeric vector whose quantiles are desired and probs is a numeric vector with probabilities in [0,1].
30th and 84th percentiles of x
y <- quantile(x, c(.3,.84))

	range(x)
	range

	sum(x)
	sum

	diff(x, lag=1)
	lagged differences, with lag indicating which lag to use

	min(x)
	minimum

	max(x)
	maximum

	scale(x, center=TRUE, scale=TRUE)
	column center or standardize a matrix.

Other Useful Functions

	Function
	Description

	seq(from , to, by)
	generate a sequence
indices <- seq(1,10,2)
#indices is c(1, 3, 5, 7, 9)

	rep(x, ntimes)
	repeat x n times
y <- rep(1:3, 2)
y is c(1, 2, 3, 1, 2, 3)

	cut(x, n)
	divide continuous variable in factor with n levels
y <- cut(x, 5)

Note that while the examples on this page apply functions to individual variables, many can be applied to vectors and matrices as well.

Control Structures

R has the standard control structures you would expect. expr can be multiple (compound) statements by enclosing them in braces { }. It is more efficient to use built-in functions rather than control structures whenever possible.

if-else

if (cond) expr
if (cond) expr1 else expr2
for

for (var in seq) expr
while

while (cond) expr
switch

switch(expr, ...)
ifelse

ifelse(test,yes,no)
Example

transpose of a matrix
a poor alternative to built-in t() function

mytrans <- function(x) {
 if (!is.matrix(x)) {
 warning("argument is not a matrix: returning NA")
 return(NA_real_)
 }
 y <- matrix(1, nrow=ncol(x), ncol=nrow(x))
 for (i in 1:nrow(x)) {
 for (j in 1:ncol(x)) {
 y[j,i] <- x[i,j]
 }
 }
return(y)
}

try it
z <- matrix(1:10, nrow=5, ncol=2)
tz <- mytrans(z)
User-written Functions

One of the great strengths of R is the user's ability to add functions. In fact, many of the functions in R are actually functions of functions. The structure of a function is given below.

myfunction <- function(arg1, arg2, ...){
statements
return(object)
}
Objects in the function are local to the function. The object returned can be any data type. Here is an example.

function example - get measures of central tendency
and spread for a numeric vector x. The user has a
choice of measures and whether the results are printed.

mysummary <- function(x,npar=TRUE,print=TRUE) {
 if (!npar) {
 center <- mean(x); spread <- sd(x)
 } else {
 center <- median(x); spread <- mad(x)
 }
 if (print & !npar) {
 cat("Mean=", center, "\n", "SD=", spread, "\n")
 } else if (print & npar) {
 cat("Median=", center, "\n", "MAD=", spread, "\n")
 }
 result <- list(center=center,spread=spread)
 return(result)
}

invoking the function
set.seed(1234)
x <- rpois(500, 4)
y <- mysummary(x)
Median= 4
MAD= 1.4826
y$center is the median (4)
y$spread is the median absolute deviation (1.4826)

y <- mysummary(x, npar=FALSE, print=FALSE)
no output
y$center is the mean (4.052)
y$spread is the standard deviation (2.01927)
It can be instructive to look at the code of a function. In R, you can view a function's code by typing the function name without the (). If this method fails, look at the following R Wiki link for hints on viewing function sourcecode.

Finally, you may want to store your own functions, and have them available in every session. You can customize the R enviroment to load your functions at start-up.

Sorting Data

To sort a dataframe in R, use the order() function. By default, sorting is ASCENDING. Prepend the sorting variable by a minus sign to indicate DESCENDING order. Here are some examples.

sorting examples using built-in mtcars dataset

sort by mpg
newdata <- mtcars[order(mpg),]

sort by mpg and cyl
newdata <- mtcars[order(mpg, cyl),]

#sort by mpg (ascending) and cyl (descending)
newdata <- mtcars[order(mpg, -cyl),]
Merging Data

Adding Columns

To merge two dataframes (datasets) horizontally, use the merge function. In most cases, you join two dataframes by one or more common key variables (i.e., an inner join).

merge two dataframes by ID
total <- merge(dataframeA,dataframeB,by="ID")
merge two dataframes by ID and Country
total <- merge(dataframeA,dataframeB,by=c("ID","Country"))

Adding Rows

To join two dataframes (datasets) vertically, use the rbind function. The two dataframes must have the same variables, but they do not have to be in the same order.

total <- rbind(dataframeA, dataframeB)
If dataframeA has variables that dataframeB does not, then either:

1. Delete the extra variables in dataframeA or

2. Create the additional variables in dataframeB and set them to NA (missing)

before joining them with rbind.

Aggregating Data

It is relatively easy to collapse data in R using one or more BY variables and a defined function.

aggregate dataframe mtcars by cyl and vs, returning means
for numeric variables
attach(mtcars)
aggdata <-aggregate(mtcars, by=list(cyl,vs),
 FUN=mean, na.rm=TRUE)
print(aggdata)
When using the aggregate() function, the by variables must be in a list (even if there is only one). The function can be built-in or user provided.

See also:
· summarize() in the Hmisc package

· summaryBy() in the doBy package

Reshaping Data

R provides a variety of methods for reshaping data prior to analysis.

Transpose

Use the t() function to transpose a matrix or a dataframe. In the later case, rownames become variable (column) names.

example using built-in dataset
mtcars
t(mtcars)
Reshape Package

Hadley Wickham has created a comprehensive package called reshape to massage data. Both an introduction and article are available. There is even a video!

Basically, you "melt" data so that each row is a unique id-variable combination. Then you "cast" the melted data into any shape you would like. Here is a very simple example.

mydata
	id
	time
	x1
	x2

	1
	1
	5
	6

	1
	2
	3
	5

	2
	1
	6
	1

	2
	2
	2
	4

example of melt function
library(reshape)
mdata <- melt(mydata, id=c("id","time"))
newdata
	id
	time
	variable
	value

	1
	1
	x1
	5

	1
	2
	x1
	3

	2
	1
	x1
	6

	2
	2
	x1
	2

	1
	1
	x2
	6

	1
	2
	x2
	5

	2
	1
	x2
	1

	2
	2
	x2
	4

cast the melted data
cast(data, formula, function)
subjmeans <- cast(mdata, id~variable, mean)
timemeans <- cast(mdata, time~variable, mean)
subjmeans
	id
	x1
	x2

	1
	4
	5.5

	2
	4
	2.5

timemeans
	time
	x1
	x2

	1
	5.5
	3.5

	2
	2.5
	4.5

There is much more that you can do with the melt() and cast() functions. See the documentation for more details.

Subsetting Data

R has powerful indexing features for accessing object elements. These features can be used to select and exclude variables and observations. The following code snippets demonstrate ways to keep or delete variables and observations and to take random samples from a dataset.

Selecting (Keeping) Variables

select variables v1, v2, v3
myvars <- c("v1", "v2", "v3")
newdata <- mydata[myvars]

another method
myvars <- paste("v", 1:3, sep="")
newdata <- mydata[myvars]

select 1st and 5th thru 10th variables
newdata <- mydata[c(1,5:10)]
Excluding (DROPPING) Variables

exclude variables v1, v2, v3
myvars <- names(myvars) %in% c("v1", "v2", "v3")
newdata <- mydata[!myvars]

exclude 3rd and 5th variable
newdata <- mydata[c(-3,-5)]

delete variables v3 and v5
mydata$v3 <- mydata$v5 <- NULL
Selecting Observerations

first 5 observerations
newdata <- mydata[1:5,]

based on variable values
newdata <- mydata[which(mydata$gender=='F'
& mydata$age > 65),]

or
attach(newdata)
newdata <- mydata[which(gender=='F' & age > 65),]
detach(newdata)
Selection using the Subset Function

The subset() function is the easiest way to select variables and observeration. In the following example, we select all rows that have a value of age greater than or equal to 20 or age less then 10. We keep the ID and Weight columns.

using subset function
newdata <- subset(mydata, age >= 20 | age < 10,
select=c(ID, Weight))
In the next example, we select all men over the age of 25 and we keep variables weight through income (weight, income and all columns between them).

using subset function (part 2)
newdata <- subset(mydata, sex=="m" & age > 25,
select=weight:income)
Random Samples

Use the sample() function to take a random sample of size n from a dataset.

take a random sample of size 50 from a dataset mydata
sample without replacement
mysample <- mydata[sample(1:nrow(mydata), 50,
 replace=FALSE),]
Going Further

R has extensive facilities for sampling, including drawing and calibrating survey samples (see the sample package), analyzing complex survey data (see the survey package and it's homepage) and bootstrapping.

Data Type Conversion

Type conversions in R work as you would expect. For example, adding a character string to a numeric vector converts all the elements in the vector to character.

Use is.foo to test for data type foo. Returns TRUE or FALSE
Use as.foo to explicitly convert it.

is.numeric(), is.character(), is.vector(), is.matrix(), is.data.frame()
as.numeric(), as.character(), as.vector(), as.matrix(), as.data.frame)
Examples

	
	to one long
vector
	to
matrix
	to
dataframe

	from
vector
	c(x,y)
	cbind(x,y)
rbind(x,y)
	data.frame(x,y)

	from
matrix
	as.vector(mymatrix)
	
	as.data.frame(mymatrix)

	from
dataframe
	
	as.matrix(myframe)
	

Dates

You can convert dates to and from character or numeric data. See date values for more information.

Descriptive Statistics

R provides a wide range of functions for obtaining summary statistics. One method of obtaining descriptive statistics is to use the sapply() function with a specified summary statistic.

get means for variables in dataframe mydata
excluding missing values
sapply(mydata, mean, na.rm=TRUE)
Possible functions used in sapply include mean, sd, var, min, max, med, range, and quantile.

There are also numerous R functions designed to provide a range of descriptive statistics at once. For example

mean,median,25th and 75th quartiles,min,max
summary(mydata)

Tukey min,lower-hinge, median,upper-hinge,max
fivenum(x)
Using the Hmisc package

library(Hmisc)
describe(mydata)
n, nmiss, unique, mean, 5,10,25,50,75,90,95th percentiles
5 lowest and 5 highest scores
Using the pastecs package

library(pastecs)
stat.desc(mydata)
nbr.val, nbr.null, nbr.na, min max, range, sum,
median, mean, SE.mean, CI.mean, var, std.dev, coef.var
Using the psych package

library(psych)
describe(mydata)
item name ,item number, nvalid, mean, sd,
median, mad, min, max, skew, kurtosis, se
Summary Statistics by Group

A simple way of generating summary statistics by grouping variable is available in the psych package.

library(psych)
describe.by(mydata, group,...)
The doBy package provides much of the functionality of SAS PROC SUMMARY. It defines the desired table using a model formula and a function. Here is a simple example.

library(doBy)
summaryBy(mpg + wt ~ cyl + vs, data = mtcars,
 FUN = function(x) { c(m = mean(x), s = sd(x)) })
produces mpg.m wt.m mpg.s wt.s for each
combination of the levels of cyl and vs
See also: aggregating data.

Frequencies and Crosstabs

This section describes the creation of frequency and contingency tables from categorical variables, along with tests of independence, measures of association, and methods for graphically displaying results.

Generating Frequency Tables

R provides many methods for creating frequency and contingency tables. Three are described below. In the following examples, assume that A, B, and C represent categorical variables.

table

You can generate frequency tables using the table() function, tables of proportions using the prop.table() function, and marginal frequencies using margin.table().

2-Way Frequency Table
attach(mydata)
mytable <- table(A,B) # A will be rows, B will be columns
mytable # print table

margin.table(mytable, 1) # A frequencies (summed over B)
margin.table(mytable, 2) # B frequencies (summed over A)

prop.table(mytable) # cell percentages
prop.table(mytable, 1) # row percentages
prop.table(mytable, 2) # column percentages
table() can also generate multidimensional tables based on 3 or more categorical variables. In this case, use the ftable() function to print the results more attractively.

3-Way Frequency Table
mytable <- table(A, B, C)
ftable(mytable)
Table ignores missing values. To include NA as a category in counts, include the table option exclude=NULL if the variable is a vector. If the variable is a factor you have to create a new factor using newfactor <- factor(oldfactor, exclude=NULL).

xtabs

The xtabs() function allows you to create crosstabulations using formula style input.

3-Way Frequency Table
mytable <- xtabs(~A+B+c, data=mydata)
ftable(mytable) # print table
summary(mytable) # chi-square test of indepedence
If a variable is included on the left side of the formula, it is assumed to be a vector of frequencies (useful if the data have already been tabulated).

Crosstable

The CrossTable() function in the gmodels package produces crosstabulations modeled after PROC FREQ in SAS or CROSSTABS in SPSS. It has a wealth of options.

2-Way Cross Tabulation
library(gmodels)
CrossTable(mydata$myrowvar, mydata$mycolvar)
There are options to report percentages (row, column, cell), specify decimal places, produce Chi-square, Fisher, and McNemar tests of independence, report expected and residual values (pearson, standardized, adjusted standardized), include missing values as valid, annotate with row and column titles, and format as SAS or SPSS style output!
See help(CrossTable) for details.

Tests of Independence

Chi-Square Test

For 2-way tables you can use chisq.test(mytable) to test independence of the row and column variable. By default, the p-value is calculated from the asymptotic chi-squared distribution of the test statistic. Optionally, the p-value can be derived via Monte Carlo simultation.

Fisher Exact Test

fisher.test(x) provides an exact test of independence. x is a two dimensional contingency table in matrix form.

Mantel-Haenszel test

Use the mantelhaen.test(x) function to perform a Cochran-Mantel-Haenszel chi-squared test of the null hypothesis that two nominal variables are conditionally independent in each stratum, assuming that there is no three-way interaction. x is a 3 dimensional contingency table, where the last dimension refers to the strata.

Loglinear Models

You can use the loglm() function in the MASS package to produce log-linear models. For example, let's assume we have a 3-way contingency table based on variables A, B, and C.

library(MASS)
mytable <- xtabs(~A+B+C, data=mydata)
We can perform the following tests:

Mutual Independence: A, B, and C are pairwise independent. loglm(~A+B+C, mytable)
Partial Independence: A is partially independent of B and C (i.e., A is independent of the composite variable BC).

loglin(~A+B+C+B*C, mytable)
Conditional Independence: A is independent of B, given C.

loglm(~A+B+C+A*C+B*C, mytable)No Three-Way Interaction
loglm(~A+B+C+A*B+A*C+B*C, mytable)
Martin Theus and Stephan Lauer have written an excellent article on Visualizing Loglinear Models, using mosaic plots. There is also great tutorial example by Kevin Quinn on analyzing loglinear models via glm.

Measures of Association

The assocstats(mytable) function in the vcd package calculates the phi coefficient, contingency coefficient, and Cramer's V for an rxc table. The kappa(mytable) function in the vcd package calculates Cohen's kappa and weighted kappa for a confusion matrix. See Richard Darlington's article on Measures of Association in Crosstab Tables for an excellent review of these statistics.

Visualizing results

Use bar and pie charts for visualizing frequencies in one dimension.

Use the vcd package for visualizing relationships among categorical data (e.g. mosaic and association plots).

Use the ca package for correspondence analysis (visually exploring relationships between rows and columns in contingency tables).

Converting Frequency Tables to an "Original" Flat file

Finally, there may be times that you wil need the original "flat file" dataframe rather than the frequency table. Marc Schwartz has provided code on the Rhelp mailing list for converting a table back into a dataframe.

Correlations

You can use the cor() function to produce correlations and the cov() function to produces covariances.

A simplified format is cor(x, use=, method=) where

	Option
	Description

	x
	Matrix or dataframe

	use
	Specifies the handling of missing data. Options are all.obs (assumes no missing data - missing data will produce an error), complete.obs (listwise deletion), and pairwise.complete.obs (pairwise deletion)

	method
	Specifies the type of correlation. Options are pearson, spearman or kendall.

Correlations/covariances among numeric variables in
dataframe mtcars. Use listwise deletion of missing data.
cor(mtcars, use="complete.obs", method="kendall")
cov(mtcars, use="complete.obs")
Unfortunately, neither cor() or cov() produce tests of significance, although you can use the cor.test() function to test a single correlation coefficient.

The rcorr() function in the Hmisc package produces correlations/covariances and significance levels for pearson and spearman correlations. However, input must be a matrix and pairwise deletion is used.

Correlations with significance levels
library(Hmisc)
rcorr(x, type="pearson") # type can be pearson or spearman

#mtcars is a dataframe
rcorr(as.matrix(mtcars))
You can use the format cor(X, Y) or rcorr(X, Y) to generate correlations between the columns of X and the columns of Y. This similar to the VAR and WITH commands in SAS PROC CORR.

Correlation matrix from mtcars
with mpg, cyl, and disp as rows
and hp, drat, and wt as columns
x <- mtcars[1:3}
y <- mtcars[4:6]
cor(x, y)
Other Types of Correlations

polychoric correlation
x is a contingency table of counts
library(polychor)
polychor(x)

heterogeneous correlations in one matrix
pearson (numeric-numeric),
polyserial (numeric-ordinal),
and polychoric (ordinal-ordinal)
x is a dataframe with ordered factors
and numeric variables
library(polychor)
hetcor(x)

partial correlations
library(ggm)
data(mydata)
pcor(c("a", "b", "x", "y", "z"), var(mydata))
partial corr between a and b controlling for x, y, z
Visualizing Correlations

Use corrgram() to plot correlograms .

Use the pairs() or splom() to create scatterplot matrices.

A great example of a plotted correlation matrix can be found in the R Graph Gallery.

t-tests

The t.test() function produces a variety of t-tests. Unlike most statistical packages, the default assumes unequal variance and applies the Welsh df modification.# independent 2-group t-test
t.test(y~x) # where y is numeric and x is a binary factor
independent 2-group t-test
t.test(y1,y2) # where y1 and y2 are numeric
paired t-test
t.test(y1,y2,paired=TRUE) # where y1 & y2 are numeric
one samle t-test
t.test(y,mu=3) # Ho: mu=3
You can use the var.equal = TRUE option to specify equal variances and a pooled variance estimate. You can use the alternative="less" or alternative="greater" option to specify a one tailed test.

Nonparametric and resampling alternatives to t-tests are available.

Visualizing Results

Use box plots or density plots to visualize group differences.

Nonparametric Tests of Group Differences

R provides functions for carrying out Mann-Whitney U, Wilcoxon Signed Rank, Kruskal Wallis, and Friedman tests.# independent 2-group Mann-Whitney U Test
wilcox.test(y~A)
where y is numeric and A is A binary factor
independent 2-group Mann-Whitney U Test
wilcox.test(y,x) # where y and x are numeric
dependent 2-group Wilcoxon Signed Rank Test
wilcox.test(y1,y2,paired=TRUE) # where y1 and y2 are numeric
Kruskal Wallis Test One Way Anova by Ranks
kruskal.test(y~A) # where y1 is numeric and A is a factor
Randomized Block Design - Friedman Test
friedman.test(y~A|B)
where y are the data values, A is a grouping factor
and B is a blocking factor
For the wilcox.test you can use the alternative="less" or alternative="greater" option to specify a one tailed test.

Parametric and resampling alternatives are available.

The package npmc provides nonparametric multiple comparisons.

library(npmc)
npmc(x)
where x is a dataframe containing variable 'var'
(response variable) and 'class' (grouping variable)
Visualizing Results

Use box plots or density plots to visual group differences.

Multiple (Linear) Regression

R provides comprehensive support for multiple linear regression. The topics below are provided in order of increasing complexity.

Fitting the Model

Multiple Linear Regression Example
fit <- lm(y ~ x1 + x2 + x3, data=mydata)
summary(fit) # show results
Other useful functions
coefficients(fit) # model coefficients
confint(fit, level=0.95) # CIs for model parameters
fitted(fit) # predicted values
residuals(fit) # residuals
anova(fit) # anova table
vcov(fit) # covariance matrix for model parameters
influence(fit) # regression diagnostics
Diagnostic Plots

Diagnostic plots provide checks for heteroscedasticity, normality, and influential observerations.

diagnostic plots
layout(matrix(c(1,2,3,4),2,2)) # optional 4 graphs/page
plot(fit)
[image: image1.png]Residuals

Standardized residuals

Residuals vs Fitted

Scale-Location

Togeamzsalzo

Chryster mperial

tandardized residualsl

15

10

| ooheyster mperial

B

1% e w LA o
4 o g ° 4 °
0w
T T T T T el T T T T
w15 2w 2% 3 LG B SR
Fited values Fited values
Normal G-Q Residuals vs Leverage
Toets B o Toyotm Conlg .
4 (i NN Bcrysr e '
2 . e o 04
o --- Cook's distance
T T T T T L
2 A 0 1 2 00 01 02 03 04 05

Theoretical Quantiles

Leverage

For a more comprehensive evaluation of model fit see regression diagnostics.

Comparing Models

You can compare nested models with the anova() function. The following code provides a simultaneous test that x3 and x4 add to linear prediction above and beyond x1 and x2.

compare models
fit1 <- lm(y ~ x1 + x2 + x3 + x4, data=mydata)
fit2 <- lm(y ~ x1 + x2)
anova(fit1, fit2)
Cross Validation

You can do K-Fold cross-validation using the cv.lm() function in the DAAG package.

K-fold cross-validation
library(DAAG)
cv.lm(df=mydata, fit, m=3) # 3 fold cross-validation
Sum the MSE for each fold, divide by the number of observations, and take the square root to get the cross-validated standard error of estimate.

You can assess R2 shrinkage via K-fold cross-validation. Using the crossval() function from the bootstrap package, do the following:

Assessing R2 shrinkage using 10-Fold Cross-Validation

fit <- lm(y~x1+x2+x3,data=mydata)

library(bootstrap)
define functions
theta.fit <- function(x,y){lsfit(x,y)}
theta.predict <- function(fit,x){cbind(1,x)%*%fit$coef}
matrix of predictors
X <- as.matrix(mydata[c("x1","x2","x3")])
vector of predicted values
y <- as.matrix(mydata[c("y")])

results <- crossval(X,y,theta.fit,theta.predict,ngroup=10)
cor(y, fit$fitted.values)**2 # raw R2
cor(y,results$cv.fit)**2 # cross-validated R2
Variable Selection

Selecting a subset of predictor variables from a larger set (e.g., stepwise selection) is a controversial topic. You can perform stepwise selection (forward, backward, both) using the stepAIC() function from the MASS package. stepAIC() performs stepwise model selection by exact AIC.

Stepwise Regression
library(MASS)
fit <- lm(y~x1+x2+x3,data=mydata)
step <- stepAIC(fit, direction="both")
step$anova # display results
Alternatively, you can perform all-subsets regression using the leaps() function from the leaps package. In the following code nbest indicates the number of subsets of each size to report. Here, the ten best models will be reported for each subset size (1 predictor, 2 predictors, etc.).

All Subsets Regression
library(leaps)
attach(mydata)
leaps<-regsubsets(y~x1+x2+x3+x4,data=mydata,nbest=10)
view results
summary(leaps)
plot a table of models showing variables in each model.
models are ordered by the selection statistic.
plot(leaps,scale="r2")
plot statistic by subset size
library(car)
subsets(leaps, statistic="rsq") [image: image2.png]All Subsets Regression with Leaps

0384
0384
083
083
078
078
078
076
075
075
074
073
072
08
046

disp
hp |
drat o
wt =

(Intercept) |

[image: image3.png]Statistic: rsq

08

07

08

05

All Subsets Regression with Leaps

h-dr-w ds-h-dr-w
hewe ds-h-w
ds-w
dr-we
w
s
ds-dr
ds
h
ds: disp
h hp
dr: drat
WWE
dr
:
10 15 20 25 30 35 40

Subset Size

Other options for plot() are bic, Cp, and adjr2. Other options for plotting with
subset() are bic, cp, adjr2, and rss.

Relative Importance

The relaimpo package provides measures of relative importance for each of the predictors in the model. See help(calc.relimp) for details on the four measures of relative importance provided.

Calculate Relative Importance for Each Predictor
library(relaimpo)
calc.relimp(fit,type=c("lmg","last","first","pratt"),
 rela=TRUE)

Bootstrap Measures of Relative Importance (1000 samples)
boot <- boot.relimp(fit, b = 1000, type = c("lmg",
 "last", "first", "pratt"), rank = TRUE,
 diff = TRUE, rela = TRUE)
booteval.relimp(boot) # print result
plot(booteval.relimp(boot,sort=TRUE)) # plot result
[image: image4.png]% of R

% of R

0 20 40 60 80

-0

0 20 40 60 80

-0

Relative importances for mpg
with 95% bootstrap confidence intervals

Method LMG Method Last

] x5 F

R T T 2 & |

i ! = i e Y
wt disp hp drat wt hp drat disp

Method First Method Pratt

] <o

] -t i i

7 =1 s |
wt disp hp drat wt hp drat disp

R?= 83.76%, metrics are normalized to sum 100%.

Graphic Enhancements

The car package offers a wide variety of plots for regression, including added variable plots, and enhanced diagnostic and scatter plots.

Going Further

Nonlinear Regression

The nls package provides functions for nonlinear regression. See John Fox's Nonlinear Regression and Nonlinear Least Squares for an overview. Huet and colleagues' Statistical Tools for Nonlinear Regression: A Practical Guide with S-PLUS and R Examples is a valuable reference book.

Robust Regression

There are many functions in R to aid with robust regression. For example, you can perform robust regression with the rlm() function in the MASS package. John Fox's (who else?) Robust Regression provides a good starting overview. The UCLA Statistical Computing website has Robust Regression Examples.

The robust package provides a comprehensive library of robust methods, including regression. The robustbase package also provides basic robust statistics including model selection methods. And David Olive has provided an detailed online review of Applied Robust Statistics with sample R code.

Regression Diagnostics

An excellent review of regression diagnostics is provided in John Fox's aptly named Overview of Regression Diagnostics. Dr. Fox's car package provides advanced utilities for regression modeling.

Assume that we are fitting a multiple linear regression
on the MTCARS data
library(car)
fit <- lm(mpg~disp+hp+wt+drat, data=mtcars)
This example is for exposition only. We will ignore the fact that this may not be a great way of modeling the this particular set of data!

Outliers

Assessing Outliers
outlier.test(fit) # Bonferonni p-value for most extreme obs
qq.plot(fit, main="QQ Plot") #qq plot for studentized resid
layout(matrix(c(1,2,3,4,5,6),2,3)) # optional layout
leverage.plots(fit, ask=FALSE) # leverage plots
[image: image5.png]mpg | others

mpg | others

Leverage Plot Leverage Plot Leverage Plot

i PR Fisl 1255 Fial 1580
1 Toyota Corola Chrystr et Chrysier mperia
o o Sy | K
1 . £] s B
o 2 4 sa4324001 2 40 00 05 10 15
(ntercert) | ctrers i ctrers et | thers
Leverage Plot Leverage Plot
R o [Toracae B
ryste Imperial Fiat 128
. H . .
R FICE S A
1 — g <,
w3 a1 01 03 2 4 0 1 2

disp | others Wi athers

Influential Observations

Influential Observations
added variable plots
av.plots(fit, one.page=TRUE, ask=FALSE)
Cook's D plot
identify D values > 4/(n-k-1)
cutoff <- 4/((nrow(mtcars)-length(fit$coefficients)-2))
plot(fit, which=4, cook.levels=cutoff)
Influence Plot
influencePlot(fit, main="Influence Plot",
 sub="Circle size is proportial to Cook's Distance")
[image: image6.png]Cook's distance

04

03

02

01

00

Cook's distance

Chrysler Imperial

Toyota Corolla

Maserati Bora|

T T T T
10 15 20 25

Obs. nurnber
Imimpg ~ disp + hp + wt + drat)

30

[image: image7.png]mpg | others

mpg | others

Added-Variable Plot Added-Variable Plot Added-Variable Plot
L @ Fiat 128" w ft128%
Topta Gt Gy rosr
Fist 128 . °
D | . RN
1. o SN
o o oo o 0 @ o 0w w0
vtercen e aaplthrs olars
Added-Variable Plot
. R .
AN s
LR G 5 2
oo €
a5 oo o5 a5 oo s

Wi athers arat | others.

[image: image8.png]Influence Plot

Maserati

slenpisey paziUepns

05

04

03

02

01

Hat-Values
Circle size is proportial to Cook's Distance

Non-normality

Normality of Residuals
qq plot for studentized resid
qq.plot(fit, main="QQ Plot")
distribution of studentized residuals
library(MASS)
sresid <- studres(fit)
hist(sresid, freq=FALSE,
 main="Distribution of Studentized Residuals")
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
[image: image9.png]q-q Plot

Fiat 128 =

Chrysler mperial o/

Lotus Eurepa
© Maserati

Studentized Residualsifit)

t Quantiles

[image: image10.png]Density

05

04

03

02

01

00

Distribution of Studentized Residuals

/

sresid

Non-constant Error Variance

Evaluate homoscedasticity
non-constant error variance test
ncv.test(fit)
plot studentized residuals vs. fitted values
spread.level.plot(fit)
[image: image11.png]Absolute Studentized Residuals

20

10

05

02

Spread-Level Plot for fit

Fitted Values

25 30

Multi-collinearity

Evaluate Collinearity
vif(fit) # variance inflation factors
sqrt(vif(fit)) > 2 # problem?

Nonlinearity

Evaluate Nonlinearity
component + residual plot
cr.plots(fit, one.page=TRUE, ask=FALSE)
Ceres plots
ceres.plots(fit, one.page=TRUE, ask=FALSE)
[image: image12.png]Component+Residual(mpg)

Component+Residual(mpg)

10

Component+Residual Plot

Component+Residual Plot

Component+Residual(mpg)

10 200 30 40

disp

Component+Residual Plot

50 10 150 200 250 300
hp

Component+Residual Plot

Component+Residual(mpg)

30 35 40 45 50

drat

[image: image13.png]Ceres Plot

Ceres Plot

150 200 250 300

100

50

20 ;0 4m

100

(Bduenpisay 53430

hp

disp

Ceres Plot

Ceres Plot

(Bduenpisay 53430

drat

Non-independence of Errors

Test for Autocorrelated Errors
durbin.watson(fit)
Additional Diagnostic Help

The gvlma() function in the gvlma package, performs a global validation of linear model assumptions as well separate evaluations of skewness, kurtosis, and heteroscedasticity.

Global test of model assumptions
library(gvlma)
gvmodel <- gvlma(fit)
summary(gvmodel)
Going Further

If you would like to delve deeper into regression diagnostics, two books written by John Fox can help: Applied regression analyses, linear models, and related methods and An R and S-Plus companion to applied regression.

ANOVA

If you have been analyzing ANOVA designs in traditional statistical packages, you are likely to find R's approach less coherent and user-friendly. A good online presentation on ANOVA in R is available from Katholieke Universiteit Leuven.

1. Fit a Model

In the following examples lower case letters are numeric variables and upper case letters are factors.

One Way Anova (Completely Randomized Design)
fit <- aov(y ~ A, data=mydataframe)
Randomized Block Design (B is the blocking factor)
fit <- aov(y ~ A + B, data=mydataframe)
Two Way Factorial Design
fit <- aov(y ~ A + B + A:B, data=mydataframe)
fit <- aov(y ~ A*B, data=mydataframe) # same thing
Analysis of Covariance
fit <- aov(y ~ A + x, data=mydataframe)
For within subjects designs, the dataframe has to be rearranged so that each measurement on a subject is a separate observation. See R and Analysis of Variance.
One Within Factor
fit <- aov(y~A+Error(Subject/A),data=mydataframe)
Two Within Factors W1 W2, Two Between Factors B1 B2
fit <- aov(y~(W1*W2*B1*B2)+Error(Subject/(W1*W2))+(B1*B2),
 data=mydataframe)

2. Look at Diagnostic Plots

Diagnostic plots provide checks for heteroscedasticity, normality, and influential observerations.layout(matrix(c(1,2,3,4),2,2)) # optional layout
plot(fit) # diagnostic plots
For details on the evaluation of test requirements, see (M)ANOVA Assumptions.

3. Evaluate Model Effects

WARNING: R provides Type I sequential SS, not the default Type III marginal SS reported by SAS and SPSS. In a nonorthogonal design with more than one term on the right hand side of the equation order will matter (i.e., A+B and B+A will produce different results)! We will need use the drop1() function to produce the familiar Type III results. It will compare each term with the full model. Alternatively, we can use anova(fit.model1, fit.model2) to compare nested models directly.

summary(fit) # display Type I ANOVA table
drop1(fit,~.,test="F") # type III SS and F Tests
Nonparametric and resampling alternatives are available.

Multiple Comparisons

You can get Tukey HSD tests using the function below. By default, it calculates post hoc comparisons on each factor in the model. You can specify specific factors as an option. Again, remember that results are based on Type I SS!
Tukey Honestly Significant Differences
TukeyHSD(fit) # where fit comes from aov()
Visualizing Results

Use box plots and line plots to visualize group differences. There are also two functions specifically designed for visualizing mean differences in ANOVA layouts. interaction.plot() in the base stats package produces plots for two-way interactions. plotmeans() in the gplots package produces mean plots for single factors, and includes confidence intervals.

Two-way Interaction Plot
attach(mtcars)
gears <- factor(gears)
cyl <- factor(cyl)
interaction.plot(cyl, gear, mpg, type="b", col=c(1:3),
 leg.bty="o", leg.bg="beige", lwd=2, pch=c(18,24,22),
 xlab="Number of Cylinders",
 ylab="Mean Miles Per Gallon",
 main="Interaction Plot")
[image: image14.jpg]Mean Miles Per Gallon

28

26

24

22

20

18

16

Interaction Plot

gear

= 5

b &

6

Number of Cylinders

 # Plot Means with Error Bars
library(gplots)
attach(mtcars)
cyl <- factor(cyl)
plotmeans(mpg~cyl,xlab="Number of Cylinders",
 ylab="Miles Per Gallon, main="Mean Plot\nwith 95% CI")
[image: image15.jpg]Miles Per Gallon

30

25

20

15

Mean Plot
with 95% CI

Number of Cylinders

MANOVA

If there is more than one dependent (outcome) variable, you can test them simultaneously using a multivariate analysis of variance (MANOVA). In the following example, let Y be a matrix whose columns are the dependent variables.

2x2 Factorial MANOVA with 3 Dependent Variables.
Y <- cbind(y1,y2,y3)
fit <- manova(Y ~ A*B)
summary(fit, test="Pillai")
Other test options are "Wilks", "Hotelling-Lawley", and "Roy". Use summary.aov() to get univariate statistics. TukeyHSD() and plot() will not work with a MANOVA fit. Run each dependent variable separately to obtain them. Like ANOVA, MANOVA results in R are based on Type I SS. To obtain Type III SS, vary the order of variables in the model and rerun the analyses. For example, fit y~A*B for the TypeIII B effect and y~B*A for the Type III A effect.

Going Further

R has excellent facilities for fitting linear and generalized linear mixed-effects models. The lastest implimentation is in package lme4. See the R News Article on Fitting Mixed Linear Models in R for details.

Assessing Classical Test Assumptions

In classical parametric procedures we often assume normality and constant variance for the model error term. Methods of exploring these assumptions in an ANOVA/ANCOVA/MANOVA framework are discussed here. Regression diagnostics are covered under multiple linear regression.

Outliers

Since outliers can severly affect normality and homogeneity of variance, methods for detecting disparate observerations are described first.

The aq.plot() function in the mvoutlier package allows you to identfy multivariate outliers by plotting the ordered squared robust Mahalanobis distances of the observations against the empirical distribution function of the MD2i. Input consists of a matrix or dataframe. The function produces 4 graphs and returns a boolean vector identifying the outliers.

Detect Outliers in the MTCARS Data
library(mvoutlier)
outliers <-
aq.plot(mtcars[c("mpg","disp","hp","drat","wt","qsec")])
outliers # show list of outliers
[image: image16.png]q00 80

150

q00 80

150

2 =
]
g, [
] g2 -
RIS s s
Ferraritino 2 g
Ford ParieralL £+ S
1 z° E
H H
] 1
Maserati Bora o <
T T T T SH—T T
-200 -100 o 100 o 10 20 30 40 50 60
Ordered squared robust distance
Outliers based on 97.5% quantile Outliers based on adjusted quantile
Homet 4 Drive, Merc 2400
Fiotiny Fessninar Vi onas
fconttt & | conrtrt w
fsernperal fsernperal ezt
HemokEE Lotus Europa WEHSE Lotus Europa
Reose ‘ LR
Ferraritino Ferraritino
Ford artera L Ford arteraL
Maserati Bora - Maserati Bora
7 T T T 7 T T T
-200 -100 o 100 -200 -100 o 100

Univariate Normality

You can evaluate the normality of a variable using a Q-Q plot.

Q-Q Plot for variable MPG
attach(mtcars)
qqnorm(mpg)
qqline(mpg)
[image: image17.jpg]Sample Quantiles

30

25

20

15

10

Normal Q-Q Plot

Theoretical Quantiles

 Significant departures from the line suggest violations of normality.

You can also perform a Shapiro-Wilk test of normality with the shapiro.test(x) function, where x is a numeric vector. Additional functions for testing normality are available in nortest package.

Multivariate Normality

MANOVA assumes multivariate normality. The function mshapiro.test() in the mvnormtest package produces the Shapiro-Wilk test for multivariate normality. Input must be a numeric matrix.

Test Multivariate Normality
mshapiro.test(M)
If we have p x 1 multivariate normal random vector [image: image18.png]X ~ N(p.X)

then the squared Mahalanobis distance between x and μ is going to be chi-square distributed with p degrees of freedom. We can use this fact to construct a Q-Q plot to assess multivariate normality.

Graphical Assessment of Multivariate Normality
x <- as.matrix(mydata) # n x p numeric matrix
center <- colMeans(x) # centroid
n <- nrow(x); p <- ncol(x); cov <- cov(x);
d <- mahalanobis(x,center,cov) # distances
qqplot(qchisq(ppoints(n),df=p),d,
 main="QQ Plot Assessing Multivariate Normality",
 ylab="Mahalanobis D2")
abline(a=0,b=1)
[image: image19.jpg]Mahalanobis D2

16

10

QQ Plot Assessing Multivariate Normality

T T
5 10

qhisq(ppoints(n), df = p)

Homogeneity of Variances

The bartlett.test() function provides a parametric K-sample test of the equality of variances. The fligner.test() function provides a non-parametric test of the same. In the following examples y is a numeric variable and G is the grouping variable.

Bartlett Test of Homogeneity of Variances
bartlett.test(y~G, data=mydata)

Figner-Killeen Test of Homogeneity of Variances
fligner.test(y~G, data=mydata)
The plot.hov() function in the HH package provides a graphic test of homogeneity of variances based on Brown-Forsyth. In the following example, y is numeric and G is a grouping factor. Note that G must be of type factor.

Homogeneity of Variance Plot
library(HH)
hov(y~G, data=mydata)
plot.hov(y~G,data=mydata)
[image: image20.jpg]abs(y-med(y))

y-med(y)

gear

Homogeneity of Covariance Matrices

MANOVA and LDF assume homogeneity of variance-covariance matrices. The assumption is usually tested with Box's M. Unfortunately the test is very sensitive to violations of normality, leading to rejection in most typical cases. Box's M is not included in R, but code is available.

Resampling Statistics

The coin package provides the ability to perform a wide variety of re-randomization or permutation based statistical tests. These tests do not assume random sampling from well-defined populations. They can be a reasonable alternative to classical procedures when test assumptions can not be met. See coin: A Computational Framework for Conditional Inference for details.

In the examples below, lower case letters represent numerical variables and upper case letters represent categorical factors. Monte-Carlo simulation are available for all tests. Exact tests are available for 2 group procedures.

Independent Two- and K-Sample Location Tests

Exact Wilcoxon Mann Whitney Rank Sum Test
where y is numeric and A is a binary factor
library(coin)
wilcox_test(y~A, data=mydata, distribution="exact")
One-Way Permutation Test based on 9999 Monte-Carlo
resamplings. y is numeric and A is a categorical factor
library(coin)
oneway_test(y~A, data=mydata,
 distribution=approximate(B=9999))
symmetry of a response for repeated measurements

Exact Wilcoxon Signed Rank Test
where y1 and y2 are repeated measures
library(coin)
wilcoxsign_test(y1~y2, data=mydata, distribution="exact")
Freidman Test based on 9999 Monte-Carlo resamplings.
y is numeric, A is a grouping factor, and B is a
blocking factor.
library(coin)
friedman_test(y~A|B, data=mydata,
 distribution=approximate(B=9999))
Independence of Two Numeric Variables

Spearman Test of Independence based on 9999 Monte-Carlo
resamplings. x and y are numeric variables.
library(coin)
spearman_test(y~x, data=mydata,
 distribution=approximate(B=9999))
Independence in Contingency Tables

Independence in 2-way Contingency Table based on
9999 Monte-Carlo resamplings. A and B are factors.
library(coin)
chisq_test(A~B, data=mydata,
 distribution=approximate(B=9999))
Cochran-Mantel-Haenzsel Test of 3-way Contingency Table
based on 9999 Monte-Carlo resamplings. A, B, are factors
and C is a stratefying factor.
library(coin)
mh_test(A~B|C, data=mydata,
 distribution=approximate(B=9999))
Linear by Linear Association Test based on 9999
Monte-Carlo resamplings. A and B are ordered factors.
library(coin)
lbl_test(A~B, data=mydata,
 distribution=approximate(B=9999))
Many other univariate and multivariate tests are possible using the functions in the coin package. See A Lego System for Conditional Inference for more details.

Power Analysis

Overview

Power analysis is an important aspect of experimental design. It allows us to determine the sample size required to detect an effect of a given size with a given degree of confidence. Conversely, it allows us to determine the probability of detecting an effect of a given size with a given level of confidence, under sample size constraints. If the probability is unacceptably low, we would be wise to alter or abandon the experiment.

The following four quantities have an intimate relationship:

1. sample size

2. effect size

3. significance level = P(Type I error) = probability of finding an effect that is not there

4. power = 1 - P(Type II error) = probability of finding an effect that is there

Given any three, we can determine the fourth.

Power Analysis in R

The pwr package develped by Stéphane Champely, impliments power analysis as outlined by Cohen (!988). Some of the more important functions are listed below.

	function
	power calculations for

	pwr.2p.test
	two proportions (equal n)

	pwr.2p2n.test
	two proportions (unequal n)

	pwr.anova.test
	balanced one way ANOVA

	pwr.chisq.test
	chi-square test

	pwr.f2.test
	general linear model

	pwr.p.test
	proportion (one sample)

	pwr.r.test
	correlation

	pwr.t.test
	t-tests (one sample, 2 sample, paired)

	pwr.t2n.test
	t-test (two samples with unequal n)

For each of these functions, you enter three of the four quantities (effect size, sample size, significance level, power) and the fourth is calculated.
The significance level defaults to 0.05. Therefore, to calculate the significance level, given an effect size, sample size, and power, use the option "sig.level=NULL".

Specifying an effect size can be a daunting task. ES formulas and Cohen's suggestions (based on social science research) are provided below. Cohen's suggestions should only be seen as very rough guidelines. Your own subject matter experience should be brought to bear.

t-tests

For t-tests, use the following functions:

pwr.t.test(n = , d = , sig.level = , power = , type = c("two.sample", "one.sample", "paired"))
where n is the sample size, d is the effect size, and type indicates a two-sample t-test, one-sample t-test or paired t-test. If you have unequal sample sizes, use

pwr.t2n.test(n1 = , n2= , d = , sig.level =, power =)
where n1 and n2 are the sample sizes.

For t-tests, the effect size is assessed as

[image: image21.png]b= o]

=mean of group 1
mean of group 2
common error variance

Cohen suggests that d values of 0.2, 0.5, and 0.8 represent small, medium, and large effect sizes respectively.

You can specify alternative="two.sided", "less", or "greater" to indicate a two-tailed, or one-tailed test. A two tailed test is the default.

ANOVA

For a one-way analysis of variance use

pwr.anova.test(k = , n = , f = , sig.level = , power =)
where k is the number of groups and n is the common sample size in each group.

For a one-way ANOVA effect size is measured by f where

[image: image22.png]= mumber of observations in growp i
N = tofal nmber of observations

s =mean of group |

4= grand mean

= exror variance within groups

Cohen suggests that f values of 0.1, 0.25, and 0.4 represent small, medium, and large effect sizes respectively.

Correlations

For correlation coefficients use

pwr.r.test(n = , r = , sig.level = , power =)
where n is the sample size and r is the correlation. We use the population correlation coefficient as the effect size measure. Cohen suggests that r values of 0.1, 0.3, and 0.5 represent small, medium, and large effect sizes respectively.

Linear Models

For linear models (e.g., multiple regression) use

pwr.f2.test(u =, v = , f2 = , sig.level = , power =)
where u and v are the numerator and denominator degrees of freedom. We use f2 as the effect size measure.

[image: image23.png]where R? = population squared
multiple correlation

[image: image24.png]7

R~ Ry
-3,

where

R = variance accounted for in the
population by variable set &

Riug = variance accounted for in the
population by variable set 4 and B

together

The first formula is appropriate when we are evaluating the impact of a set of predictors on an outcome. The second formula is appropriate when we are evaluating the impact of one set of predictors above and beyond a second set of predictors (or covariates). Cohen suggests f2 values of 0.02, 0.15, and 0.35 represent small, medium, and large effect sizes.

Tests of Proportions

When comparing two proportions use

pwr.2p.test(h = , n = , sig.level =, power =)
where h is the effect size and n is the common sample size in each group.

[image: image25.png]h=2arcsinlyfpy - 2 arcsinlypy |

Cohen suggests that h values of 0.2, 0.5, and 0.8 represent small, medium, and large effect sizes respectively.

For unequal n's use

pwr.2p2n.test(h = , n1 = , n2 = , sig.level = , power =)
To test a single proportion use

pwr.p.test(h = , n = , sig.level = power =)
For both two sample and one sample proportion tests, you can specify alternative="two.sided", "less", or "greater" to indicate a two-tailed, or one-tailed test. A two tailed test is the default.

Chi-square Tests

For chi-square tests use

pwr.chisq.test(w =, N = , df = , sig.level =, power =)
where w is the effect size, N is the total sample size, and df is the degrees of freedom. The effect size w is defined as

[image: image26.png]where 0, = cell prabability in th cell under Hy
p1;=cell probabiliy in ith cell under H

Cohen suggests that w values of 0.1, 0.1, and 0.5 represent small, medium, and large effect sizes respectively.

some Examples

library(pwr)

For a one-way ANOVA comparing 5 groups, calculate the
sample size needed in each group to obtain a power of
0.80, when the effect size is moderate (0.25) and a
significance level of 0.05 is employed.

pwr.anova.test(k=5,f=.25,sig.level=.05,power=.8)

What is the power of a one-tailed t-test, with a
significance level of 0.01, 25 people in each group,
and an effect size equal to 0.75?

pwr.t.test(n=25,d=0.75,sig.level=.01,alternative="greater")

Using a two-tailed test proportions, and assuming a
significance level of 0.01 and a common sample size of
30 for each proportion, what effect size can be detected
with a power of .75?

pwr.2p.test(n=30,sig.level=0.01,power=0.75)
Creating Power or Sample Size Plots

The functions in the pwr package can be used to generate power and sample size graphs.

Plot sample size curves for detecting correlations of
various sizes.

library(pwr)

range of correlations
r <- seq(.1,.5,.01)
nr <- length(r)

power values
p <- seq(.4,.9,.1)
np <- length(p)

obtain sample sizes
samsize <- array(numeric(nr*np), dim=c(nr,np))
for (i in 1:np){
 for (j in 1:nr){
 result <- pwr.r.test(n = NULL, r = r[j],
 sig.level = .05, power = p[i],
 alternative = "two.sided")
 samsize[j,i] <- ceiling(result$n)
 }
}

set up graph
xrange <- range(r)
yrange <- round(range(samsize))
colors <- rainbow(length(p))
plot(xrange, yrange, type="n",
 xlab="Correlation Coefficient (r)",
 ylab="Sample Size (n)")

add power curves
for (i in 1:np){
 lines(r, samsize[,i], type="l", lwd=2, col=colors[i])
}

add annotation (grid lines, title, legend)
abline(v=0, h=seq(0,yrange[2],50), lty=2, col="grey89")
abline(h=0, v=seq(xrange[1],xrange[2],.02), lty=2,
 col="grey89")
title("Sample Size Estimation for Correlation Studies\n
 Sig=0.05 (Two-tailed)")
legend("topright", title="Power", as.character(p),
 fill=colors)
[image: image27.png]Sample Size (n)

Sample Size Estimation for Correlation Studies

Sig=0.05 (Two-tailed)

600 800 1000
L L

400
L

200

NN
k\ﬁ\\\\

T

———————a——

T T T
02 03 04

Correlation Coefficient (1)

T
05

Using with() and by()

There are two functions that can help write simpler and more efficient code.

With

The with() function applys an expression to a dataset. It is similar to DATA= in SAS.

with(data, expression)
example applying a t-test to dataframe mydata
with(mydata, t.test(y1,y2)
By

The by() function applys a function to each level of a factor or factors. It is similar to BY processing in SAS.

by(data, factorlist, function)
example apply a t-test separately for men and women
by(mydata, gender, t.test(y1,y2))
Generalized Linear Models

Generalized linear models are fit using the glm() function. The form of the glm function is

glm(formula, family=familytype(link=linkfunction), data=)
	Family
	Default Link Function

	binomial
	(link = "logit")

	gaussian
	(link = "identity")

	Gamma
	(link = "inverse")

	inverse.gaussian
	(link = "1/mu^2")

	poisson
	(link = "log")

	quasi
	(link = "identity", variance = "constant")

	quasibinomial
	(link = "logit")

	quasipoisson
	(link = "log")

See help(glm) for other modeling options. See help(family) for other allowable link functions for each family. Three subtypes of generalized linear models will be covered here: logistic regression, poisson regression, and survival analysis.

Logistic Regression

Logistic regression is useful when you are predicting a binary outcome from a set of continuous predictor variables. It is frequently preferred over discriminant function analysis because of its less restrictive assumptions.

Logistic Regression
where F is a binary factor and
x1-x3 are continuous predictors
fit <- glm(F~x1+x2+x3,data=mydata,family=binomial())
summary(fit) # display results
confint(fit) # 95% CI for the coefficients
exp(coef(fit)) # exponentiated coefficients
exp(confint(fit)) # 95% CI for exponentiated coefficients
predict(fit, type="response") # predicted values
residuals(fit, type="deviance") # residuals
You can use anova(fit1,fit2, test="Chisq") to compare nested models. Additionally, cdplot(F~x, data=mydata) will display the conditional density plot of the binary outcome F on the continuous x variable.

[image: image28.jpg]QOutcome

20

Age (years)

25

30

Poisson Regression

Poisson regression is useful when predicting an outcome variable representing counts from a set of continuous predictor variables.

Poisson Regression
where count is a count and
x1-x3 are continuous predictors
fit <- glm(count ~ x1+x2+x3, data=mydata, family=poisson())
summary(fit) display results
If you have overdispersion (see if residual deviance is much larger than degrees of freedom), you may want to use quasipoisson() instead of poisson().

Survival Analysis

Survival analysis (also called event history analysis or reliability analysis) covers a set of techniques for modeling the time to an event. Data may be right censored - the event may not have occured by the end of the study or we may have incomplete information on an observation but know that up to a certain time the event had not occured (e.g. the participant dropped out of study in week 10 but was alive at that time).

While generalized linear models are typically analyzed using the glm() function, survival analyis is typically carried out using functions from the survival package . The survival package can handle one and two sample problems, parametric accelerated failure models, and the Cox proportional hazards model.

Data are typically entered in the format start time, stop time, and status (1=event occured, 0=event did not occur). Alternatively, the data may be in the format time to event and status (1=event occured, 0=event did not occur). A status=0 indicates that the observation is right cencored. Data are bundled into a Surv object via the Surv() function prior to further analyses.

survfit() is used to estimate a survival distribution for one or more groups.
survdiff() tests for differences in survival distributions between two or more groups.
coxph() models the hazard function on a set of predictor variables.

Mayo Clinic Lung Cancer Data
library(survival)

learn about the dataset
help(lung)

create a Surv object
survobj <- with(lung, Surv(time,status))

Plot survival distribution of the total sample
Kaplan-Meier estimator
fit0 <- survfit(survobj, data=lung)
summary(fit0)
plot(fit, xlab="Survival Time in Days",
 ylab="% Surviving", yscale=100,
 main="Survival Distribution (Overall)")

Compare the survival distributions of men and women
fit1 <- survfit(survobj~sex,data=lung)

plot the survival distributions by sex
plot(fit1, xlab="Survival Time in Days",
 ylab="% Surviving", yscale=100, col=c("red","blue"),
 main="Survival Distributions by Gender")
 legend("topright", title="Gender", c("Male", "Female"),
 fill=c("red", "blue"))

test for difference between male and female
survival curves (logrank test)
survdiff(survobj~sex, data=lung)

predict male survival from age and medical scores
MaleMod <- coxph(survobj~age+ph.ecog+ph.karno+pat.karno,
 data=lung, subset=sex==1)

display results
MaleMod

evaluate the proportional hazards assumption cox.zph(MaleMod) [image: image29.png]% Surviving

Survival Distribution (Overall)

T T T T T
0 200 400 600 800 1000

Survival Time in Days

[image: image30.png]% Surviving

100

80

60

40

20

Survival Distributions by Gender

200

T T
400 600

Survival Time in Days

Gender
B Male
B Female
L
T T
800 1000

See Thomas Lumley's R news article on the survival package for more information. Other good sources include Mai Zhou's Use R Software to do Survival Analysis and Simulation and M. J. Crawley's chapter on Survival Analysis.

Discriminant Function Analysis

The MASS package contains functions for performing linear and quadratic
discriminant function analysis. Unless prior probabilities are specificed, each assumes proportional prior probabilities (i.e., prior probabilities are based on sample sizes). In the examples below, lower case letters are numeric variables and upper case letters are categorical factors.

Linear Discriminant Function

Linear Discriminant Analysis with Jacknifed Prediction
library(MASS)
fit <- lda(G ~ x1 + x2 + x3, data=mydata,
 na.action="na.omit", CV=TRUE)
fit # show results
The code above performs an LDA, using listwise deletion of missing data. CV=TRUE generates jacknifed (i.e., leave one out) predictions. The code below assesses the accuracy of the prediction.

Assess the accuracy of the prediction
percent correct for each category of G
ct <- table(mydataG, fitclass)
diag(prop.table(ct, 1))
total percent correct
sum(diag(prop.table(ct)))
lda() prints discriminant functions based on centered (not standardized) variables. The "proportion of trace" that is printed is the proportion of between-class variance that is explained by successive discriminant functions. No significance tests are produced. Refer to the section on MANOVA for such tests.

Quadratic Discriminant Function

To obtain a quadratic discriminant function use qda() instead of lda(). Quadratic discriminant function does not assume homogeneity of variance-covariance matrices.

Quadratic Discriminant Analysis with 3 groups applying
resubstitution prediction and equal prior probabilities.
library(MASS)
fit <- qda(G ~ x1 + x2 + x3 + x4, data=na.omit(mydata),
 prior=c(1,1,1)/3))
Note the alternate way of specifying listwise deletion of missing data. Re-subsitution (using the same data to derive the functions and evaluate their prediction accuracy) is the default method unless CV=TRUE is specified. Re-substitution will be overly optimistic.

Visualizing the Results

You can plot each observation in the space of the first 2 linear discriminant functions using the following code. Points are identified with the group ID.

Scatter plot using the 1st two discriminant dimensions
plot(fit) # fit from lda
[image: image31.jpg]LD2

LDA for MTCARS DATA

<
4
~
.4
4
4
4 6
o
4
4 s s
" s
6
4 ® L]
L 6
o
T T T T
4 2 0 2

LD1
ol-mpgsdisphpantediat

The following code displays histograms and density plots for the observations in each group on the first linear discriminant dimension. There is one panel for each group and they all appear lined up on the same graph.

Panels of histograms and overlayed density plots
for 1st discriminant function
plot(fit, dimen=1, type="both") # fit from lda
[image: image32.jpg]04 08

00

04 08

00

04 08

00

1st LDA: cyl~mpg+disp+hp+wttdrat, data=mtcars

group ¢

group 6.

growps

The partimat() function in the klaR package can display the results of a linear or quadratic classifications 2 variables at a time.

Exploratory Graph for LDA or QDA
library(klaR)
partimat(G~x1+x2+x3,data=mydata,method="lda")
[image: image33.jpg]mpg

disp

L
20

200 s00 400

100

00

100

30 35 40 45

arat

mpg

P

Partition PI

ot for MTCARS Data

dsp

mpg

30 35 40 45

arat

35 40 45

arat

mpg

dsp

30 35 40 45

arat

 You can also produce a scatterplot matrix with color coding by group.

Scatterplot for 3 Group Problem
pairs(mydata[c("x1","x2","x3")], main="My Title ", pch=22,
 bg=c("red", "yellow", "blue")[unclass(mydata$G)])
[image: image34.jpg]Scatterplot Matrix for MTCARS Data

100

300

1015 20 25 30

10 15 20 25 30

150 260

40 50

30

Test Assumptions

See (M)ANOVA Assumptions for methods of evaluating multivariate normality and homogeneity of covariance matrices.

Bootstrapping

Nonparametric Bootstrapping

The boot package provides extensive facilities for bootstrapping and related resampling methods. You can bootstrap a single statistic (e.g. a median), or a vector (e.g., regression weights). This section will get you started with basic nonparametric bootstrapping.

The main bootstrapping function is boot() and has the following format:

bootobject <- boot(data= , statistic= , R=, ...) where

	parameter
	description

	data
	A vector, matrix, or dataframe

	statistic
	A function that produces the k statistics to be bootstrapped (k=1 if bootstrapping a single statistic).
The function should include an indices parameter that the boot() function can use to select cases for each replication (see examples below).

	R
	Number of bootstrap replicates

	...
	Additional parameters to be passed to the function that produces the statistic of interest

boot() calls the statistic function R times. Each time, it generates a set of random indices, with replacement, from the integers 1:nrow(data). These indices are used within the statistic function to select a sample. The statistics are calculated on the sample and the results are accumulated in the bootobject. The bootobject structure includes

	element
	description

	t0
	The observed values of k statistics applied to the orginal data.

	t
	An R x k matrix where each row is a bootstrap replicate of the k statistics.

You can access these as bootobject$t0 and bootobject$t.

Once you generate the bootstrap samples, print(bootobject) and plot(bootobject) can be used to examine the results. If the results look reasonable, you can use boot.ci() function to obtain confidence intervals for the statistic(s).

The format is

boot.ci(bootobject, conf=, type=) where

	parameter
	description

	bootobject
	The object returned by the boot function

	conf
	The desired confidence interval (default: conf=0.95)

	type
	The type of confidence interval returned. Possible values are "norm", "basic", "stud", "perc", "bca" and "all" (default: type="all")

Bootstrapping a Single Statistic (k=1)

The following example generates the bootstrapped 95% confidence interval for R-squared in the linear regression of miles per gallon (mpg) on car weight (wt) and displacement (disp). The data source is mtcars. The bootstrapped confidence interval is based on 1000 replications.

Bootstrap 95% CI for R-Squared
library(boot)
function to obtain R-Squared from the data
rsq <- function(formula, data, indices) {
 d <- data[indices,] # allows boot to select sample
 fit <- lm(formula, data=d)
 return(summary(fit)$r.square)
}
bootstrapping with 1000 replications
results <- boot(data=mtcars, statistic=rsq,
 R=1000, formula=mpg~wt+disp)

view results
results
plot(results)

get 95% confidence interval
boot.ci(results, type="bca")
[image: image35.png]Density

Histogram of t

08

07 08

08

v

060

I S S S
4 2 10 1 2 3

Quantiles of Standard Normal

Bootstrapping several Statistics (k>1)

In example above, the function rsq returned a number and boot.ci returned a single confidence interval. The statistics function you provide can also return a vector. In the next example we get the 95% CI for the three model regression coefficients (intercept, car weight, displacement). In this case we add an index parameter to plot() and boot.ci() to indicate which column in bootobject$t is to analyzed.

Bootstrap 95% CI for regression coefficients
library(boot)
function to obtain regression weights
bs <- function(formula, data, indices) {
 d <- data[indices,] # allows boot to select sample
 fit <- lm(formula, data=d)
 return(coef(fit))
}
bootstrapping with 1000 replications
results <- boot(data=mtcars, statistic=bs,
 R=1000, formula=mpg~wt+disp)

view results
results
plot(results, index=1) # intercept
plot(results, index=2) # wt
plot(results, index=3) # disp

get 95% confidence intervals
boot.ci(results, type="bca", index=1) # intercept
boot.ci(results, type="bca", index=2) # wt
boot.ci(results, type="bca", index=3) # disp [image: image36.png]Density

015

010

005

000

Histogram of t

30 35 40 45

v

40

35

30

4 2 10 1 2 3

Quantiles of Standard Normal

[image: image37.png]Density

03

02

01

00

Histogram of t

v

4 2 10 1 2 3

Quantiles of Standard Normal

[image: image38.png]Density

50

40

30

20

10

Histogram of t

d an
—T
<005 003 001 001

v

-004 -003 -002 -001 000 001

-005

4 2 10 1 2 3

Quantiles of Standard Normal

Going Further

The boot() function can generate both nonparametric and parametric resampling. For the nonparametric bootstrap, resampling methods include ordinary, balanced, antithetic and permutation. For the nonparametric bootstrap, stratified resampling is supported. Importance resampling weights can also be specified.

The boot.ci() function takes a bootobject and generates 5 different types of two-sided nonparametric confidence intervals. These include the first order normal approximation, the basic bootstrap interval, the studentized bootstrap interval, the bootstrap percentile interval, and the adjusted bootstrap percentile (BCa) interval.

Look at help(boot), help(boot.ci), and help(plot.boot) for more details.

Learning More

Good sources of information include Resampling Methods in R: The boot Package by Angelo Canty, Getting started with the boot package by Ajay Shah, Bootstrapping Regression Models by John Fox, and Bootstrap Methods and Their Applications by Davison and Hinkley.

Matrix Algebra

Most of the methods on this website actually describe the programming of matrices. It is built deeply into the R language. This section will simply cover operators and functions specifically suited to linear algebra. Before proceeding you many want to review the sections on Data Types and Operators.

Matrix facilites

In the following examples, A and B are matrices and x and b are a vectors.

	Operator or Function
	Description

	A * B
	Element-wise multiplication

	A %*% B
	Matrix multiplication

	A %o% B
	Outer product. AB'

	crossprod(A,B)
crossprod(A)
	A'B and A'A respectively.

	t(A)
	Transpose

	diag(x)
	Creates diagonal matrix with elements of x in the principal diagonal

	diag(A)
	Returns a vector containing the elements of the principal diagonal

	diag(k)
	If k is a scalar, this creates a k x k identity matrix. Go figure.

	solve(A, b)
	Returns vector x in the equation b = Ax (i.e., A-1b)

	solve(A)
	Inverse of A where A is a square matrix.

	ginv(A)
	Moore-Penrose Generalized Inverse of A.
ginv(A) requires loading the MASS package.

	y<-eigen(A)
	y$val are the eigenvalues of A
y$vec are the eigenvectors of A

	y<-svd(A)
	Single value decomposition of A.
y$d = vector containing the singular values of A
y$u = matrix with columns contain the left singular vectors of A
y$v = matrix with columns contain the right singular vectors of A

	R <- chol(A)
	Choleski factorization of A. Returns the upper triangular factor, such that R'R = A.

	y <- qr(A)
	QR decomposition of A.
y$qr has an upper triangle that contains the decomposition and a lower triangle that contains information on the Q decomposition.
y$rank is the rank of A.
y$qraux a vector which contains additional information on Q.
y$pivot contains information on the pivoting strategy used.

	cbind(A,B,...)
	Combine matrices(vectors) horizontally. Returns a matrix.

	rbind(A,B,...)
	Combine matrices(vectors) vertically. Returns a matrix.

	rowMeans(A)
	Returns vector of row means.

	rowSums(A)
	Returns vector of row sums.

	colMeans(A)
	Returns vector of column means.

	colSums(A)
	Returns vector of coumn means.

Matlab Emulation

The matlab package contains wrapper functions and variables used to replicate MATLAB function calls as best possible. This can help porting MATLAB applications and code to R.

Going Further

The Matrix package contains functions that extend R to support highly dense or sparse matrices. It provides efficient access to BLAS (Basic Linear Algebra Subroutines), Lapack (dense matrix), TAUCS (sparse matrix) and UMFPACK (sparse matrix) routines.

Creating a Graph

In R, graphs are typically created interactively.

Creating a Graph
attach(mtcars)
plot(wt, mpg)
abline(lm(mpg~wt))
title("Regression of MPG on Weight")
The plot() function opens a graph widow and plots weight vs. miles per gallon.
The next line of code adds a regression line to this graph. The final line adds a title.

[image: image39.png]mpg

30

25

20

15

10

Regression of MPG on Weight

Saving Graphs

You can save the graph in a variety of formats from the menu
File -> Save As.

You can also save the graph via code using one of the following functions.

	Function
	Output to

	pdf("mygraph.pdf")
	pdf file

	win.metafile("mygraph.wmf")
	windows metafile

	png("mygraph.png")
	png file

	jpeg("mygraph.jpg")
	jpeg file

	bmp("mygraph.bmp")
	bmp file

	postscript("mygraph.ps")
	postscript file

See input/output for details.

Viewing Several Graphs

Creating a new graph by issuing a high level plotting command (plot, hist, boxplot, etc.) will typically overwrite a previous graph. To avoid this, open a new graph window before creating a new graph. To open a new graph window use one of the functions below.

	Function
	Platform

	windows()
	Windows

	X11()
	Unix

	macintosh()
	Mac

You can have multiple graph windows open at one time. See help(dev.cur) for more details.

Alternatively, after opening the first graph window, choose History -> Recording from the graph window menu. Then you can use Previous and Next to step through the graphs you have created.

Graphical Parameters

You can specify fonts, colors, line styles, axes, reference lines, etc. by specifying graphical parameters. This allows a wide degree of customization. Graphical parameters, are coverd in the Advanced Graphs section. The Advanced Graphs section also includes a more detailed coverage of axis and text customization.

Histograms and Density Plots

Histograms

You can create histograms with the function hist(x) where x is a numeric vector of values to be plotted. The option freq=FALSE plots probability densities instead of frequencies. The option breaks= controls the number of bins.

Simple Histogram
hist(mtcars$mpg)

click to view

Colored Histogram with Different Number of Bins
hist(mtcars$mpg, breaks=12, col="red")

click to view

Add a Normal Curve (Thanks to Peter Dalgaard)
x <- mtcars$mpg
h<-hist(x, breaks=10, col="red", xlab="Miles Per Gallon",
 main="Histogram with Normal Curve")
xfit<-seq(min(x),max(x),length=40)
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)
[image: image42.jpg]Frequency

Histogram with Normal Curve

T T
20 25

Miles Per Gallon

30

Histograms can be a poor method for determining the shape of a distribution because it is so strongly affected by the number of bins used.

Kernal Density Plots

Kernal density plots are usually a much more effective way to view the distribution of a variable. Create the plot using plot(density(x)) where x is a numeric vector.

Kernal Density Plot
d <- density(mtcars$mpg) # returns the density data
plot(d) # plots the results

click to view

Filled Density Plot
d <- density(mtcars$mpg)
plot(d, main="Kernal Density of Miles Per Gallon")
polygon(d, col="red", border="blue")
[image: image44.jpg]Density

001 002 003 004 005 006 007

000

Kernal Density of Miles Per Gallon

T T
20 30

N=132 Bandwidth=2477

40

Comparing Groups VIA Kernal Density

The sm.density.compare() function in the sm package allows you to superimpose the kernal density plots of two or more groups. The format is sm.density.compare(x, factor) where x is a numeric vector and factor is the grouping variable.

Compare MPG distributions for cars with
4,6, or 8 cylinders
library(sm)
attach(mtcars)

create value labels
cyl.f <- factor(cyl, levels= c(4,6,8),
 labels = c("4 cylinder", "6 cylinder", "8 cylinder"))

plot densities
sm.density.compare(mpg, cyl, xlab="Miles Per Gallon")
title(main="MPG Distribution by Car Cylinders")

add legend via mouse click
colfill<-c(2:(2+length(levels(cyl.f))))
legend(locator(1), levels(cyl.f), fill=colfill)
[image: image45.png]Density

020

015

010

005

000

bution by Car Cylinders

B 4 cylinder

B 6 cylinder

® 8 cylinder

20 25

Miles Per Gallon

Dot Plots

Create dotplots with the dotchart(x, labels=) function, where x is a numeric vector and labels is a vector of labels for each point. You can add a groups= option to designate a factor specifying how the elements of x are grouped. If so, the option gcolor= controls the color of the groups label. cex controls the size of the labels.

Simple Dotplot
dotchart(mtcars$mpg,labels=row.names(mtcars),cex=.7,
 main="Gas Milage for Car Models",
 xlab="Miles Per Gallon")
[image: image46.jpg]Gas Milage for Car Models

Voivo 142 o
Waserati Bora 3

FerrariDino 3

Ford Pantera L o

Lotus Europa
Porsche 9142 3
FiatX1-9
Pontiac Firebird 3

Camaro 228 3

ANC Javein o

Dodge Chalenger .

Toyota Corona. .
Toyota Corolla
Honda Civie
Fiat 126
Chrysier Imperial .

Lincoln Contiental |

Cadilac Flestwood |

Werc 450SLC. 3

Werc 450SL 3

Werc 450SE .

Werc 280C 3

Werc 280 o

Werc 230 o

Werc 240D .
Duster 360 .

Valiant .

Hornet Sportabout .

Hornet 4 Drive B

Datsun 710 3
Wazda RX4 Wag .

Mazda RXs o

0 18 20 2

iles Per Galon

 # Dotplot: Grouped Sorted and Colored
Sort by mpg, group and color by cylinder
x <- mtcars[order(mtcars$mpg),] # sort by mpg
x$cyl <- factor(x$cyl) # it must be a factor
x$color[x$cyl==4] <- "red"
x$color[x$cyl==6] <- "blue"
x$color[x$cyl==8] <- "darkgreen"
dotchart(x$mpg,labels=row.names(x),cex=.7,groups= x$cyl,
 main="Gas Milage for Car Models\ngrouped by cylinder",
 xlab="Miles Per Gallon", gcolor="black", color=x$color)
[image: image47.png]Gas Milage for Car Models
‘grouped by cylinder

Toyota Corola
Fiat 125

Lotus Europa.
Honda Cvic
Fiat X1-9
Porsche 9142 3
Merc 2400 o

Merc 230 o

Datsun 710 o

‘Toyota Corona 3

Valvo 1426 .

Homet 4 Drive .
Wazda RX4 Wag °
Mazda RX4 .
FerrariDino o
Werc 280 B
Valiant o

Werc 280C B

Pontiac Firebird B
Hornet Sportabout 3
Merc 450SL .

Merc 450SE 3

Ford Pantera L 3

Dodge Challenger °

ANC Javein 3

Merc 450SLC o

MaseratiBora 3

Mies Per Gallon

Going Further

Advanced dotplots can be created with the dotplot2() function in the Hmisc package and with the panel.dotplot() function in the lattice package. For many good ideas, see William Jacoby's articles on dotplots.

Bar Plots

Create barplots with the barplot(height) function, where height is a vector or matrix. If height is a vector, the values determine the heights of the bars in the plot. If height is a matrix and the option beside=FALSE then each bar of the plot corresponds to a column of height, with the values in the column giving the heights of stacked “sub-bars”. If height is a matrix and beside=TRUE, then the values in each column are juxtaposed rather than stacked. Include option names.arg=(character vector) to label the bars. The option horiz=TRUE to createa a horizontal barplot.

Simple Bar Plot

Simple Bar Plot
counts <- table(mtcars$gear)
barplot(counts, main="Car Distribution",
 xlab="Number of Gears")

click to view

Simple Horizontal Bar Plot with Added Labels
counts <- table(mtcars$gear)
barplot(counts, main="Car Distribution", horiz=TRUE,
 names.arg=c("3 Gears", "4 Gears", "5 Gears"))

click to view

Stacked Bar Plot

Stacked Bar Plot with Colors and Legend
counts <- table(mtcars$vs, mtcars$gear)
barplot(counts, main="Car Distribution by Gears and VS",
 xlab="Number of Gears", col=c("darkblue","red"),
 legend = rownames(counts))
[image: image50.jpg]14

12

10

Car Distribution by Gears and VS

LA}
o

3 4 5

Number of Gears

Grouped Bar Plot

Grouped Bar Plot
counts <- table(mtcars$vs, mtcars$gear)
barplot(counts, main="Car Distribution by Gears and VS",
 xlab="Number of Gears", col=c("darkblue","red"),
 legend = rownames(counts), beside=TRUE)

click to view

Notes

Bar plots need not be based on counts or frequencies. You can create bar plots that represent means, medians, standard deviations, etc. Use the aggregate() function and pass the results to the barplot() function.

By default, the categorical axis line is suppressed. Include the option axis.lty=1 to draw it.

With many bars, bar labels may start to overlap. You can decrease the font size using the cex.names = option. Values smaller than one will shrink the size of the label. Additionally, you can use graphical parameters such as the following to help text spacing:

Fitting Labels
par(las=2) # make label text perpendicular to axis
par(mar=c(5,8,4,2)) # increase y-axis margin.

counts <- table(mtcars$gear)
barplot(counts, main="Car Distribution", horiz=TRUE, names.arg=c("3 Gears", "4 Gears", "5 Gears"), cex.names=0.8)

 click to view

Line Charts

Line charts are created with the function lines(x, y, type=) where x and y are numeric vectors of (x,y) points to connect. type= can take the following values:

	type
	description

	p
	points

	l
	lines

	o
	overplotted points and lines

	b, c
	points (empty if "c") joined by lines

	s, S
	stair steps

	h
	histogram-like vertical lines

	n
	does not produce any points or lines

The lines() function adds information to a graph. It can not produce a graph on its own. Usually it follows a plot(x, y) command that produces a graph.

By default, plot() plots the (x,y) points. Use the type="n" option in the plot() command, to create the graph with axes, titles, etc., but without plotting the points.

In the following code each of the type= options is applied to the same dataset. The plot() command sets up the graph, but does not plot the points.

x <- c(1:5); y <- x # create some data
par(pch=22, col="red") # plotting symbol and color
par(mfrow=c(2,4)) # all plots on one page
opts = c("p","l","o","b","c","s","S","h")
for(i in 1:length(opts)){
 heading = paste("type=",opts[i])
 plot(x, y, type="n", main=heading)
 lines(x, y, type=opts[i])
}
[image: image53.png]type=o

type=p

23 45

1

type=h

23 45

type=§.

1

23 45

1

type=s

23 45

type=c

23 45

1

23 45

1

23 45

1

23 45

 Next, we demonstrate each of the type= options when plot() sets up the graph and does plot the points.

x <- c(1:5); y <- x # create some data
par(pch=22, col="blue") # plotting symbol and color
par(mfrow=c(2,4)) # all plots on one page
opts = c("p","l","o","b","c","s","S","h")
for(i in 1:length(opts){
 heading = paste("type=",opts[i])
 plot(x, y, main=heading)
 lines(x, y, type=opts[i])
}
[image: image54.png]type=o

type=p

23 45

type=h

23 45

type=$

23 45

type=s

23 45

type=c

As you can see, the type="c" option only looks different from the type="b" option if the plotting of points is suppressed in the plot() command.

To demonstrate the creation of a more complex line chart, let's plot the growth of 5 orange trees over time. Each tree will have its own distinctive line. The data come from the dataset Orange.

Create Line Chart

convert factor to numeric for convenience
Orange$Tree <- as.numeric(Orange$Tree)
ntrees <- max(Orange$Tree)

get the range for the x and y axis
xrange <- range(Orange$age)
yrange <- range(Orange$circumference)

set up the plot
plot(xrange, yrange, type="n", xlab="Age (days)",
 ylab="Circumference (mm)")
colors <- rainbow(ntrees)
linetype <- c(1:ntrees)
plotchar <- seq(18,18+ntrees,1)

add lines
for (i in 1:ntrees) {
 tree <- subset(Orange, Tree==i)
 lines(tree$age, tree$circumference, type="b", lwd=1.5,
 lty=linetype[i], col=colors[i], pch=plotchar[i])
}

add a title and subtitle
title("Tree Growth", "example of line plot")

add a legend
legend(xrange[1], yrange[2], 1:ntrees, cex=0.8, col=colors,
 pch=plotchar, lty=linetype, title="Tree")
[image: image55.png]Circumference (mm)

200

150

100

50

Tree Growth

T T T
500 1000 1500

Age (days)
‘example of line plot

Pie Charts

Pie charts are not recommended in the R documentation, and their features are somewhat limited. The authors recommend bar or dot plots over pie charts because people are able to judge length more accurately than volume. Pie charts are created with the function pie(x, labels=) where x is a non-negative numeric vector indicating the area of each slice and labels= notes a character vector of names for the slices.

Simple Pie Chart

Simple Pie Chart
slices <- c(10, 12,4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France")
pie(slices, labels = lbls, main="Pie Chart of Countries")

click to view

Pie Chart with Annotated Percentages

Pie Chart with Percentages
slices <- c(10, 12, 4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France")
pct <- round(slices/sum(slices)*100)
lbls <- paste(lbls, pct) # add percents to labels
lbls <- paste(lbls,"%",sep="") # ad % to labels
pie(slices,labels = lbls, col=rainbow(length(lbls)),
 main="Pie Chart of Countries")

click to view

3D Pie Chart

The pie3D() function in the plotrix package provides 3D exploded pie charts.

3D Exploded Pie Chart
library(plotrix)
slices <- c(10, 12, 4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France")
pie3D(slices,labels=lbls,explode=0.1,
 main="Pie Chart of Countries ")

click to view

Creating Annotated Pies from a Dataframe

Pie Chart from Dataframe with Appended Sample Sizes
mytable <- table(iris$Species)
lbls <- paste(names(mytable), "\n", mytable, sep="")
pie(mytable, labels = lbls,
 main="Pie Chart of Species\n (with sample sizes)")

click to view

Boxplots

Boxplots can be created for individual variables or for variables by group. The format is boxplot(x, data=), where x is a formula and data= denotes the dataframe providing the data. An example of a formula is y~group where a separate boxplot for numeric variable y is generated for each value of group. Add varwidth=TRUE to make boxplot widths proportional to the square root of the samples sizes. Add horizontal=TRUE to reverse the axis orientation.

Boxplot of MPG by Car Cylinders
boxplot(mpg~cyl,data=mtcars, main="Car Milage Data",
 xlab="Number of Cylinders", ylab="Miles Per Gallon")
[image: image60.jpg]Miles Per Gallon

30

25

20

15

10

Car Milage Data

Number of Cylinders

T T T
4 6 8

Notched Boxplot of Tooth Growth Against 2 Crossed Factors
boxes colored for ease of interpretation
boxplot(len~supp*dose, data=ToothGrowth, notch=TRUE,
 col=(c("gold","darkgreen")),
 main="Tooth Growth", xlab="Suppliment and Dose")
[image: image61.jpg]35

30

25

20

15

10

Tooth Growth

T T T T T T
0J05 YCO05 [oNN] VCA1 0J2 YC2

Suppliment and Dose

In the notched boxplot, if two boxes' notches do not overlap this is ‘strong evidence’ their medians differ (Chambers et al., 1983, p. 62).

Colors recycle. In the example above, if I had listed 6 colors, each box would have its own color. Earl F. Glynn has created an easy to use list of colors is PDF format.

Other Options

The boxplot.matrix() function in the sfsmisc package draws a boxplot for each column (row) in a matrix. The boxplot.n() function in the gplots package annotates each boxplot with its sample size. The bplot() function in the Rlab package offers many more options controlling the positioning and labeling of boxes in the output.

Violin Plots

A violin plot is a combination of a boxplot and a kernal density plot. They can be created using the vioplot() function from vioplot package.

Violin Plots
library(vioplot)
x1 <- mtcars$mpg[mtcars$cyl==4]
x2 <- mtcars$mpg[mtcars$cyl==6]
x3 <- mtcars$mpg[mtcars$cyl==8]
vioplot(x1, x2, x3, names=c("4 cyl", "6 cyl", "8 cyl"),
 col="gold")
title("Violin Plots of Miles Per Gallon")
[image: image62.jpg]30

25

20

15

10

Violin Plots of Miles Per Gallon

acy

6oyl

8oyl

Bagplot - A 2D Boxplot Extension

The bagplot(x, y) function in the aplpack package provides a bivariate version of the univariate boxplot. The bag contains 50% of all points. The bivariate median is approximated. The fence separates points in the fence from points outside. Outliers are displayed.

Example of a Bagplot
library(aplpack)
attach(mtcars)
bagplot(wt,mpg, xlab="Car Weight", ylab="Miles Per Gallon",
 main="Bagplot Example")
[image: image63.jpg]Miles Per Gallon

30

25

20

15

10

Bagplot Example

Car Weight

Scatterplots

Simple Scatterplot

There are many ways to create a scatterplot in R. The basic function is plot(x, y), where x and y are numeric vectors denoting the (x,y) points to plot.

Simple Scatterplot
attach(mtcars)
plot(wt, mpg, main="Scatterplot Example",
 xlab="Car Weight ", ylab="Miles Per Gallon ", pch=19)

click to view

Add fit lines
abline(lm(mpg~wt), col="red") # regression line (y~x)
lines(lowess(wt,mpg), col="blue") # lowess line (x,y)
[image: image65.jpg]Miles Per Gallon

Scatterplot Example

Car Weight

The scatterplot() function in the car package offers many enhanced features, including fit lines, marginal box plots, conditioning on a factor, and interactive point identification. Each of these features is optional.

Enhanced Scatterplot of MPG vs. Weight
by Number of Car Cylinders
library(car)
scatterplot(mpg ~ wt | cyl, data=mtcars,
 xlab="Weight of Car", ylab="Miles Per Gallon",
 main="Enhanced Scatter Plot",
 labels=row.names(mtcars))
[image: image66.jpg]Enhanced Scatter Plot

.

0

E3

Miles Per Gallon

Eil

15

10

« Toyota Corolla
Fiat 128

Chrysler Imperial +

Weight of Car

Scatterplot Matrices

There are at least 4 useful functions for creating scatterplot matrices. Analysts must love scatterplot matrices!

Basic Scatterplot Matrix
pairs(~mpg+disp+drat+wt,data=mtcars,
 main="Simple Scatterplot Matrix")
[image: image67.jpg]Simple Scatterplot Matrix

15 . 2% @

0

100 200 300 400

00 20 w0 40 2 5 4
mpg %, o o % Tt
N <
[N cq”
disp g 7
ol Joe
Lt e Fog e drat PR
%ot o ot 8. °, B
oo i
" ooe R I wt
e B
s o o -

2 2 30 35 40 45 50

30 35 40 45 S0

The lattice package provides options to condition the scatterplot matrix on a factor.

Scatterplot Matrices from the lattice Package
library(lattice)
splom(mtcars[c(1,3,5,6)], groups=cyl, data=mtcars,
 panel=panel.superpose,
 key=list(title="Three Cylinder Options",
 columns=3,
 points=list(pch=super.sym$pch[1:3],
 col=super.sym$col[1:3]),
 text=list(c("4 Cylinder","6 Cylinder","8 Cylinder"))))
[image: image68.jpg]Three Cylinder Options

© 4Cyinder © 6Cylinder © 8 Cylinder
B ENRrE T
¢ Fs 4 5
0050 S oo § o a4
% % o0 %8 0 % oy W
% 000 & 20 F %2
E o o %o E
o o |8 e o
> olg % |2 s 24
B =5 T
40 45 5
B o 45 o
o U e ey o [P 07 e
o o 254 o
o w0 Fmo 5
o ot 30 35 40 30 ®
oo o o P ©
B T £y %
° 300 400 5] ° <
° I 400 ° °
®o 0 ® o o oo
8 L 4o oo 8
% MW oo W &
o 200 N
%00 28 N
% ° g, |100 200 300 4op Do boind
L ORI Kl 0" o|%e
L EE I o ol
[B [T B
™wmy e e 3 o3 B0
° %80 b LN 0gSo
15 4 80g o [0 % o, @ o
015 20
T 10 4 @] © kil

Scatter Plot Matrix

The car package can condition the scatterplot matrix on a factor, and optionally include lowess and linear best fit lines, and boxplot, densities, or histograms in the principal diagonal, as well as rug plots in the margins of the cells.

Scatterplot Matrices from the car Package
library(car)
scatterplot.matrix(~mpg+disp+drat+wt|cyl, data=mtcars,
 main="Three Cylinder Options")
[image: image69.png]Three Cylinder Options

100 200 300 400 2 3 4 s

100 200 300 400

30 35 40 45 S0

15 20 25 a3

0

30 35 40 45 50

The gclus package provides options to rearrange the variables so that those with higher correlations are closer to the principal diagonal. It can also color code the cells to reflect the size of the correlations.

Scatterplot Matrices from the glus Package
library(gclus)
dta <- mtcars[c(1,3,5,6)] # get data
dta.r <- abs(cor(dta)) # get correlations
dta.col <- dmat.color(dta.r) # get colors
reorder variables so those with highest correlation
are closest to the diagonal
dta.o <- order.single(dta.r)
cpairs(dta, dta.o, panel.colors=dta.col, gap=.5,
main="Variables Ordered and Colored by Correlation")
[image: image70.jpg]Variables Ordered and Colored by Correlation

100 20 w00 a0 015w o
L A r2
drat Fog e c e EORIT T I
0 8,° - ol s
wr Bo0, Fme ol Sen o Ls
% :
B disp
&7 i

° ' %08 o wt
;: g ” o . mpg

30 35 40 45 50

High Density Scatterplots

When there are many data points and significant overlap, scatterplots become less useful. There are several approaches that be used when this occurs. The hexbin(x, y) function in the hexbin package provides bivariate binning into hexagonal cells (it looks better than it sounds).

High Density Scatterplot with Binning
library(hexbin)
x <- rnorm(1000)
y <- rnorm(1000)
bin<-hexbin(x, y, xbins=50)
plot(bin, main="Hexagonal Binning")
[image: image71.jpg]Hexagonal Binning

Counts

~ © v T = o

Another option for a scatterplot with significant point overlap is the sunflowerplot. See help(sunflowerplot) for details.

Finally, you can save the scatterplot in PDF format and use color transparency to allow points that overlap to show through (this idea comes from B.S. Everrit in HSAUR).

High Density Scatterplot with Color Transparency
pdf("c:/scatterplot.pdf")
x <- rnorm(1000)
y <- rnorm(1000)
plot(x,y, main="PDF Scatterplot Example", col=rgb(0,100,0,50,maxColorValue=255), pch=16)
dev.off()
[image: image72.png]PDF Scatterplot Example

Note: You can use the col2rgb() function to get the rbg values for R colors. For example, col2rgb("darkgreen") yeilds r=0, g=100, b=0. Then add the alpha transparency level as the 4th number in the color vector. A value of zero means fully transparent. See help(rgb) for more information.

3D Scatterplots

You can create a 3D scatterplot with the scatterplot3d package. Use the function scatterplot3d(x, y, z).

3D Scatterplot
library(scatterplot3d)
attach(mtcars)
scatterplot3d(wt,disp,mpg, main="3D Scatterplot")
[image: image73.png]mpg

3

EY

2%

20

15

10

3D Scatterplot

disp

3D Scatterplot with Coloring and Vertical Drop Lines
library(scatterplot3d)
attach(mtcars)
scatterplot3d(wt,disp,mpg, pch=16, highlight.3d=TRUE,
 type="h", main="3D Scatterplot")
[image: image74.png]mpg

3

EY

2%

20

15

10

3D Scatterplot

disp

 # 3D Scatterplot with Coloring and Vertical Lines
and Regression Plane
library(scatterplot3d)
attach(mtcars)
s3d <-scatterplot3d(wt,disp,mpg, pch=16, highlight.3d=TRUE,
 type="h", main="3D Scatterplot")
fit <- lm(mpg ~ wt+disp)
s3d$plane3d(fit)
[image: image75.png]mpg

3

EY

2%

20

15

10

3D Scatterplot

disp

Spinning 3D Scatterplots

You can also create an interactive 3D scatterplot using the plot3D(x, y, z) function in the rgl package. It creates a spinning 3D scatterplot that can be rotated with the mouse. The first three arguments are the x, y, and z numeric vectors representing points. col= and size= control the color and size of the points respectively.

Spinning 3d Scatterplot
library(rgl)

plot3d(wt, disp, mpg, col="red", size=3)
[image: image76.png]mpg

You can perform a similar function with the scatter3d(x, y, z) in the Rcmdr package.

Another Spinning 3d Scatterplot
library(Rcmdr)
attach(mtcars)
scatter3d(wt, disp, mpg)
 [image: image77.png]TIRGL device 4 [Focus]

di

mpg.

Graphical Parameters

You can customize many features of your graphs (fonts, colors, axes, titles) through graphic options.

One way is to specify these options in through the par() function. If you set parameter values here, the changes will be in effect for the rest of the session or until you change them again. The format is par(optionname=value, optionname=value, ...)
Set a graphical parameter using par()

par() # view current settings
opar <- par() # make a copy of current settings
par(col.lab="red") # red x and y labels
hist(mtcars$mpg) # create a plot with these new settings
par(opar) # restore original settings
A second way to specify graphical parameters is by providing the optionname=value pairs directly to a high level plotting function. In this case, the options are only in effect for that specific graph.

Set a graphical parameter within the plotting function
hist(mtcars$mpg, col.lab="red")
See the help for a specific high level plotting function (e.g. plot, hist, boxplot) to determine which graphical parameters can be set this way.

The remainder of this section describes some of the more important graphical parameters that you can set.

Text and Symbol Size

The following options can be used to control text and symbol size in graphs.

	option
	description

	cex
	number indicating the amount by which plotting text and symbols should be scaled relative to the default. 1=default, 1.5 is 50% larger, 0.5 is 50% smaller, etc.

	cex.axis
	magnification of axis annotation relative to cex

	cex.lab
	magnification of x and y labels relative to cex

	cex.main
	magnification of titles relative to cex

	cex.sub
	magnification of subtitles relative to cex

Plotting Symbols

Use the pch= option to specify symbols to use when plotting points. For symbols 21 through 25, specify border color (col=) and fill color (bg=).

[image: image78.png]24
at+
4%

5O

6%
8=
ok
94
04

1EE

plot symbols : pch =

1268

135

1462

150

15®

17A

15

120

ae

20

28

2

2l

57

%

0

°0O

°0

s

%
i

Lines

You can change lines using the following options. This is particularly useful for reference lines, axes, and fit lines.

	option
	description

	lty
	line type. see the chart below.

	lwd
	line width relative to the default (default=1). 2 is twice as wide.

[image: image79.png]Line Types: Ity=

colors

Options that specify colors include the following.

	option
	description

	col
	Default plotting color. Some functions (e.g. lines) accept a vector of values that are recycled.

	col.axis
	color for axis annotation

	col.lab
	color for x and y labels

	col.main
	color for titles

	col.sub
	color for subtitles

	fg
	plot foreground color (axes, boxes - also sets col= to same)

	bg
	plot background color

You can specify colors in R by index, name, hexadecimal, or RGB.
For example col=1, col="white", and col="#FFFFFF" are equivalent.

The following chart was produced with code developed by Earl F. Glynn. See his Color Chart for all the details you would ever need about using colors in R. There are wonderful color schemes at graphviz.

[image: image80.png]155 186 161162 163 104 185 16 170 171 172
10 11 150 67 168 160 100 101 104 105 190 107

)

You can also create a vector of n contiguous colors using the functions rainbow(n), heat.colors(n), terrain.colors(n), topo.colors(n), and cm.colors(n).

colors() returns all available color names.

fonts

You can easily set font size and style, but font family is a bit more complicated.

	option
	description

	font
	Integer specifying font to use for text.
1=plain, 2=bold, 3=italic, 4=bold italic, 5=symbol

	font.axis
	font for axis annotation

	font.lab
	font for x and y labels

	font.main
	font for titles

	font.sub
	font for subtitles

	ps
	font point size (roughly 1/72 inch)
text size=ps*cex

	family
	font family for drawing text. Standard values are "serif", "sans", "mono", "symbol". Mapping is device dependent.

In windows, mono is mapped to "TT Courier New", serif is mapped to"TT Times New Roman", sans is mapped to "TT Arial", mono is mapped to "TT Courier New", and symbol is mapped to "TT Symbol" (TT=True Type). You can add your own mappings.

Type family examples - creating new mappings
plot(1:10,1:10,type="n")
windowsFonts(
 A=windowsFont("Arial Black"),
 B=windowsFont("Bookman Old Style"),
 C=windowsFont("Comic Sans MS"),
 D=windowsFont("Symbol")
)
text(3,3,"Hello World Default")
text(4,4,family="A","Hello World from Arial Black")
text(5,5,family="B","Hello World from Bookman Old Style")
text(6,6,family="C","Hello World from Comic Sans MS")
text(7,7,family="D", "Hello World from Symbol")

click to view

Margins and Graph Size

You can control the margin size using the following parameters.

	option
	description

	mar
	numerical vector indicating margin size c(bottom, left, top, right) in lines. default = c(5, 4, 4, 2) + 0.1

	mai
	numerical vector indicating margin size c(bottom, left, top, right) in inches

	pin
	plot dimensions (width, height) in inches

For complete information on margins, see Earl F. Glynn's margin tutorial.

Going Further

See help(par) for more information on graphical parameters. The customization of plotting axes and text annotations are covered next section.

Axes and Text

Many high level plotting functions (plot, hist, boxplot, etc.) allow you to include axis and text options (as well as other graphical paramters). For example

Specify axis options within plot()
plot(x, y, main="title", sub="subtitle",
 xlab="X-axis label", ylab="y-axix label",
 xlim=c(xmin, xmax), ylim=c(ymin, ymax))
For finer control or for modularization, you can use the functions described below.

Titles

Use the title() function to add labels to a plot.

title(main="main title", sub="sub-title",
 xlab="x-axis label", ylab="y-axis label")
Many other graphical parameters (such as text size, font, rotation, and color) can also be specified in the title() function.

Add a red title and a blue subtitle. Make x and y
labels 25% smaller than the default and green.
title(main="My Title", col.main="red",
 sub="My Sub-title", col.sub="blue",
 xlab="My X label", ylab="My Y label",
 col.lab="green", cex.lab=0.75)
Text Annotations

Text can be added to graphs using the text() and mtext() functions. text() places text within the graph while mtext() places text in one of the four margins.

text(location, "text to place", pos, ...)
mtext("text to place", side, line=n, ...)
Common options are described below.

	option
	description

	location
	location can be an x,y coordinate. Alternatively, the text can be placed interactively via mouse by specifying location as locator(1).

	pos
	position relative to location. 1=below, 2=left, 3=above, 4=right. If you specify pos, you can specify offset= in percent of character width.

	side
	which margin to place text. 1=bottom, 2=left, 3=top, 4=right. you can specify line= to indicate the line in the margin starting with 0 and moving out. you can also specify adj=0 for left/bottom alignment or adj=1 for top/right alignment.

Other common options are cex, col, and font (for size, color, and font style respectively).

Labeling points

You can use the text() function (see above) for labeling point as well as for adding other text annotations. Specify location as a set of x, y coordinates and specify the text to place as a vector of labels. The x, y, and label vectors should all be the same length.

Example of labeling points
attach(mtcars)
plot(wt, mpg, main="Milage vs. Car Weight",
 xlab="Weight", ylab="Mileage", pch=18, col="blue")
text(wt, mpg, row.names(mtcars), cex=0.6, pos=4, col="red")
[image: image82.png]Mileage

30

25

20

15

10

Mileage vs. Car Weight

* Toyora conls

Py

* wungmpc

© g

© Porsohe 9142

© biro 2400

© Daaun 710 * tro 70

* Toyota Somms 14260 Homet 4 Drive
& s R Ry

* Fermai Dine
& Voro 250 Pontia Fistind
Vot Spanzboin

& iy
I
P
» Duster 360 ™
+ cons
2 3 4

Weight

Math Annotations

You can add mathematically formulas to a graph using TEX-like rules. See help(plotmath) for details and examples.

Axes

You can create custom axes using the axis() function.

axis(side, at=, labels=, pos=, lty=, col=, las=, tck=, ...)
where

	option
	description

	side
	an integer indicating the side of the graph to draw the axis (1=bottom, 2=left, 3=top, 4=right)

	at
	a numeric vector indicating where tic marks should be drawn

	labels
	a character vector of labels to be placed at the tickmarks
(if NULL, the at values will be used)

	pos
	the coordinate at which the axis line is to be drawn.
(i.e., the value on the other axis where it crosses)

	lty
	line type

	col
	the line and tick mark color

	las
	labels are parallel (=0) or perpendicular(=2) to axis

	tck
	length of tick mark as fraction of plotting region (negative number is outside graph, positive number is inside, 0 suppresses ticks, 1 creates gridlines) default is -0.01

	(...)
	other graphical parameters

If you are going to create a custom axis, you should suppress the axis automatically generated by your high level plotting function. The option axes=FALSE suppresses both x and y axes. xaxt="n" and yaxt="n" suppress the x and y axis respectively. Here is a (somewhat overblown) example.

A Silly Axis Example

specify the data
x <- c(1:10); y <- x; z <- 10/x

create extra margin room on the right for an axis
par(mar=c(5, 4, 4, 8) + 0.1)

plot x vs. y
plot(x, y,type="b", pch=21, col="red",
 yaxt="n", lty=3, xlab="", ylab="")

add x vs. 1/x
lines(x, z, type="b", pch=22, col="blue", lty=2)

draw an axis on the left
axis(2, at=x,labels=x, col.axis="red", las=2)

draw an axis on the right, with smaller text and ticks
axis(4, at=z,labels=round(z,digits=2),
 col.axis="blue", las=2, cex.axis=0.7, tck=-.01)

add a title for the right axis
mtext("y=1/x", side=4, line=3, cex.lab=1,las=2, col="blue")

add a main title and bottom and left axis labels
title("An Example of Creative Axes", xlab="X values",
 ylab="Y=X")
[image: image83.png]Example of Creative Axes

Minor Tick Marks

The minor.tick() function in the Hmisc package adds minor tick marks.

Add minor tick marks
library(Hmisc)
minor.tick(nx=n, ny=n, tick.ratio=n)
nx is the number of minor tick marks to place between x-axis major tick marks.
ny does the same for the y-axis. tick.ratio is the size of the minor tick mark relative to the major tick mark. The length of the major tick mark is retrieved from par("tck").

Reference Lines

Add reference lines to a graph using the abline() function.

abline(h=yvalues, v=xvalues)
Other graphical parameters (such as line type, color, and width) can also be specified in the abline() function.

add solid horizontal lines at y=1,5,7
abline(h=c(1,5,7))
add dashed blue verical lines at x = 1,3,5,7,9
abline(v=seq(1,10,2),lty=2,col="blue")
Note: You can also use the grid() function to add reference lines.

Legend

Add a legend with the legend() function.

legend(location, title, legend, ...)
Common options are described below.

	option
	description

	location
	There are several ways to indicate the location of the legend. You can give an x,y coordinate for the upper left hand corner of the legend. You can use locator(1), in which case you use the mouse to indicate the location of the legend. You can also use the keywords "bottom", "bottomleft", "left", "topleft", "top", "topright", "right", "bottomright", or "center". If you use a keyword, you may want to use inset= to specify an amount to move the legend into the graph (as fraction of plot region).

	title
	A character string for the legend title (optional)

	legend
	A character vector with the labels

	...
	Other options. If the legend labels colored lines, specify col= and a vector of colors. If the legend labels point symbols, specify pch= and a vector of point symbols. If the legend labels line width or line style, use lwd= or lty= and a vector of widths or styles. To create colored boxes for the legend (common in bar, box, or pie charts), use fill= and a vector of colors.

Other common legend options include bty for box type, bg for background color, cex for size, and text.col for text color. Setting horiz=TRUE sets the legend horizontally rather than vertically.

Legend Example
attach(mtcars)
boxplot(mpg~cyl, main="Milage by Car Weight",
 yaxt="n", xlab="Milage", horizontal=TRUE,
 col=terrain.colors(3))
legend("topright", inset=.05, title="Number of Cylinders",
 c("4","6","8"), fill=terrain.colors(3), horiz=TRUE)
[image: image84.png]Mileage by Car Type

Number of Cylinders
®m 40608

Mileage

For more on legends, see help(legend). The examples in the help are particularly informative.

Combining Plots

R makes it easy to combine multiple plots into one overall graph, using either the
par() or layout() function.

With the par() function, you can include the option mfrow=c(nrows, ncols) to create a matrix of nrows x ncols plots that are filled in by row. mfcol=c(nrows, ncols) fills in the matrix by columns.

4 figures arranged in 2 rows and 2 columns
attach(mtcars)
par(mfrow=c(2,2))
plot(wt,mpg, main="Scatterplot of wt vs. mpg")
plot(wt,disp, main="Scatterplot of wt vs disp")
hist(wt, main="Histogram of wt")
boxplot(wt, main="Boxplot of wt")

click to view

3 figures arranged in 3 rows and 1 column
attach(mtcars)
par(mfrow=c(3,1))
hist(wt)
hist(mpg)
hist(disp)

click to view

The layout() function has the form layout(mat) where
mat is a matrix object specifying the location of the N figures to plot.

One figure in row 1 and two figures in row 2
attach(mtcars)
layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE))
hist(wt)
hist(mpg)
hist(disp)

click to view

Optionally, you can include widths= and heights= options in the layout() function to control the size of each figure more precisely. These options have the form
widths= a vector of values for the widths of columns
heights= a vector of values for the heights of rows.

Relative widths are specified with numeric values. Absolute widths (in centimetres) are specified with the lcm() function.

One figure in row 1 and two figures in row 2
row 1 is 1/3 the height of row 2
column 2 is 1/4 the width of the column 1
attach(mtcars)
layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE),
 widths=c(3,1), heights=c(1,2))
hist(wt)
hist(mpg)
hist(disp)

click to view

See help(layout) for more details.

creating a figure arrangement with fine control

In the following example, two box plots are added to scatterplot to create an enhanced graph.

Add boxplots to a scatterplot
par(fig=c(0,0.8,0,0.8), new=TRUE)
plot(mtcars$wt, mtcars$mpg, xlab="Miles Per Gallon",
 ylab="Car Weight")
par(fig=c(0,0.8,0.55,1), new=TRUE)
boxplot(mtcars$wt, horizontal=TRUE, axes=FALSE)
par(fig=c(0.65,1,0,0.8),new=TRUE)
boxplot(mtcars$mpg, axes=FALSE)
mtext("Enhanced Scatterplot", side=3, outer=TRUE, line=-3)
[image: image89.jpg]Enhanced Scatterplot

T T T
0g 74 0z g

WBleM 12D

3

oL

Miles Per Gallon

To understand this graph, think of the full graph area as going from (0,0) in the lower left corner to (1,1) in the upper right corner. The format of the fig= parameter is a numerical vector of the form c(x1, x2, y1, y2). The first fig= sets up the scatterplot going from 0 to 0.8 on the x axis and 0 to 0.8 on the y axis. The top boxplot goes from 0 to 0.8 on the x axis and 0.55 to 1 on the y axis. I chose 0.55 rather than 0.8 so that the top figure will be pulled closer to the scatter plot. The right hand boxplot goes from 0.65 to 1 on the x axis and 0 to 0.8 on the y axis. Again, I chose a value to pull the right hand boxplot closer to the scatterplot. You have to experiment to get it just right.

fig= starts a new plot, so to add to an existing plot use new=TRUE.

You can use this to combine several plots in any arrangement into one graph.

Trellis Graphs

Trellis graphs are avialable throught the lattice package. A trellis graph displays a variable or the relationship between variables, conditioned on one or more other variables. Trellis graphs are available for a wide variety of plot types.

The typical format is

graph_type(formula, data=)
where graph_type is selected from the listed below. formula specifies the variable(s) to display and any conditioning variables . For example ~x|A means display numeric variable x for each level of factor A. y~x | A*B means display the relationship between numeric variables y and x separately for every combination of factor A and B levels. ~x means display numeric variable x alone.

	graph_type
	description
	formula examples

	barchart
	bar chart
	x~A or A~x

	bwplot
	boxplot
	x~A or A~x

	cloud
	3D scatterplot
	z~x*y|A

	contourplot
	3D contour plot
	z~x*y

	densityplot
	kernal density plot
	~x|A*B

	dotplot
	dotplot
	~x|A

	histogram
	histogram
	~x

	levelplot
	3D level plot
	z~y*x

	parallel
	parallel coordinates plot
	dataframe

	splom
	scatterplot matrix
	dataframe

	stripplot
	strip plots
	A~x or x~A

	xyplot
	scatterplot
	y~x|A

	wireframe
	3D wireframe graph
	z~y*x

Here are some examples. They use the car data (mileage, weight, number of gears, number of cylinders, etc.) from the mtcars dataframe.

Trellis Examples
library(lattice)
attach(mtcars)

create factors with value labels
gear.f<-factor(gear,levels=c(3,4,5),
 labels=c("3gears","4gears","5gears"))
cyl.f <-factor(cyl,levels=c(4,6,8),
 labels=c("4cyl","6cyl","8cyl"))

kernal density plot
densityplot(~mpg,
 main="Density Plot",
 xlab="Miles per Gallon")

kernal density plots by factor level
densityplot(~mpg|cyl.f,
 main="Density Plot by Number of Cylinders",
 xlab="Miles per Gallon")

kernal density plots by factor level (alternate layout)
densityplot(~mpg|cyl.f,
 main="Density Plot by Numer of Cylinders",
 xlab="Miles per Gallon",
 layout=c(1,3))

boxplots for each combination of two factors
bwplot(cyl.f~mpg|gear.f,
 ylab="Cylinders", xlab="Miles per Gallon",
 main="Mileage by Cylinders and Gears",
 layout=(c(1,3))

scatterplots for each combination of two factors
xyplot(mpg~wt|cyl.f*gear.f,
 main="Scatterplots by Cylinders and Gears",
 ylab="Miles per Gallon", xlab="Car Weight")

3d scatterplot by factor level
cloud(mpg~wt*qsec|cyl.f,
 main="3D Scatterplot by Cylinders")

dotplot for each combination of two factors
dotplot(cyl.f~mpg|gear.f,
 main="Dotplot Plot by Number of Gears and Cylinders",
 xlab="Miles Per Gallon")
scatterplot matrix
splom(mtcars[c(1,3,4,5,6)], main="MTCARS Data")
[image: image90.png]Density

025
020
015
010
005

00

025
020
015
010
005

00

Density Plot by Numer of Cylinders

-0z

Foz

Fois

Foio

Foos

oo

8oyl
© owPo 0 o0
Byl
® o0 0o
Acyl

Miles per Gallon

[image: image91.png]Cylinders

Beyl

6oyl

eyl

Beyl

6oyl

eyl

Beyl

6oyl

eyl

Mileage by Cylinders and Gears

- Sgears
1
Agears
=
. -
T T | + T T T
10 15 20 P 30 ES)

Miles per Gallon

[image: image92.png]Density

025

020

015

010

005

00

Density Plot by Number of Cylinders

8oyl
F02s
Foz
Fois
Foio
Foos
8 oo m Fom
Acyl Byl
68000 800 0w
T T T T T
10 Eil Eil 0

Miles per Gallon

[image: image93.png]Density

008

004

002

00

Density Plot

© oo 0% & 8 ° o

T
Eil

Miles per Gallon

[image: image94.png]Miles per Gallon

E3
0
E3
Eil
15
10

E3
0
E3
Eil
15
10

Scatterplots by Cylinders and Gears

2 3 4 5
T T R L
Sgears 5gears 5gears
EEY] 6oyl Bcyl |
4gears 4gears 4gears
eyl Byl Seyl
e
Fa
o F2%
°° g Fo
15
F 0
3gears 3gears 3gears
EEY] 6oyl Bcyl |
YN ok
T T i
) 34

Car Weight

[image: image95.png]3D Scatterplot by Cylinders

[image: image96.png]Beyl

6oyl

eyl

Beyl

6oyl

eyl

Dotplot Plot by Number of Gears and Cylinders

Sgears

3gears

4gears

T T
Eil E3

Miles Per Gallon

[image: image97.png]MTCARS Data

BE E) = & T
Fs 4
3. 00 o o fa
PRI A S I w
P s o oo
° 3 SRR
g FEr T T
o o o Fas 404580
s T Q@‘;@ o T[40 e 40T e,
o . 2. sl)
o bo @ fo 0%y 303540 30 o e g
g B L g
300 20500
&, a0 oo
o ¢ oo [20 hp 2007 o 0ee
. 150 -| @
2 oo ;32 o 1001500 100 ° e
o L1 oo ol
s, T %,
N L 4gp 300400 & N N
o ? R owe
&, [g @ % o
20
93050 o o o
RN 5., [100.200 300 45 & %
o 800 |0 20 @ o[%05
E 17 3 g
(2 24> o
I e o;
ST AP
4 9 o ° o
o ® 3 %8
P ® ®

Scatter Plot Matrix

Note, as in graph 1, that you specifying a conditioning variable is optional. The difference between graphs 2 & 3 is the use of the layout option to contol the placement of panels.

Customizing Trellis Graphs

Unlike other R graphs, the trellis graphs described here are not effected by many of the options set in the par() function. To view the options that can be changed, look at help(xyplot). It is frequently easiest to set these options within the high level plotting functions described above. Additionally, you can write functions that modify the rendering of panels. Here is an example.

Customized Trellis Example
library(lattice)
panel.smoother <- function(x, y) {
 panel.xyplot(x, y) # show points
 panel.loess(x, y) # show smoothed line
}
attach(mtcars)
hp <- cut(hp,3) # divide horse power into three bands
xyplot(mpg~wt|hp, scales=list(cex=.8, col="red"),
 panel=panel.smoother,
 xlab="Weight", ylab="Miles per Gallon",
 main="MGP vs Weight by Horse Power")
[image: image98.png]Miles per Gallon

MGP vs Weight by Horse Power

(241,335]
q 35
Bl Fa
Bl 25
q F
q E 15
Bl ko
(51.7,146] (146,241]
35 |
Ei
25 o
20 - o .
s °
15 <o o
10 oo
T T
3 4

Going Further

Trellis graphs are a comprehensive graphical system in their own right. To learn more, see the Trellis Graphics homepage and the Trellis User's Guide. Dr. Ihaka has created a wonderful set of slides on the subject. An excellent early consideration of the subject can be found in W.S. Cleavland's classic book Visualizing Data. Finally, Deepanyan Sarkar's forthcoming book Lattice: Multivariate Data Visualization with R is likely to become the definitive R reference on the subject.

Probability Plots

This section describes creating probability plots in R for both didactic purposes and for data analyses.

Probability Plots for Teaching and Demonstration

When I was a college professor teaching statistics, I used to have to draw normal distributions by hand. They always came out looking like bunny rabbits. What can I say?

R makes it easy to draw probability distributions and demonstrate statistical concepts. Some of the more common probability distributions available in R are given below.

	distribution
	R name
	distribution
	R name

	Beta
	beta
	Lognormal
	lnorm

	Binomial
	binom
	Negative Binomial
	nbinom

	Cauchy
	cauchy
	Normal
	norm

	Chisquare
	chisq
	Poisson
	pois

	Exponential
	exp
	Student t
	t

	F
	f
	Uniform
	unif

	Gamma
	gamma
	Tukey
	tukey

	Geometric
	geom
	Weibull
	weib

	Hypergeometric
	hyper
	Wilcoxon
	wilcox

	Logistic
	logis
	
	

For a comprehensive list, see Statistical Distributions on the R wiki. The functions available for each distribution follow this format:

	name
	description

	dname()
	density or probability function

	pname()
	cumulative density function

	qname()
	quantile function

	rname()
	random deviates

For example, pnorm(0) =0.05 (the area under the standard normal curve to the left of zero). qnorm(0.9) = 1.28 (1.28 is the 90th percentile of the standard normal distribution). rnorm(100) generates 100 random deviates from a standard normal distribution.

Each function has parameters specific to that distribution. For example, rnorm(100, m=50, sd=10) generates 100 random deviates from a normal distribution with mean 50 and standard deviation 10.

You can use these functions to demonstrate various aspects of probability distributions. Two common examples are given below.

Display the Student's t distributions with various
degrees of freedom and compare to the normal distribution

x <- seq(-4, 4, length=100)
hx <- dnorm(x)

degf <- c(1, 3, 8, 30)
colors <- c("red", "blue", "darkgreen", "gold", "black")
labels <- c("df=1", "df=3", "df=8", "df=30", "normal")

plot(x, hx, type="l", lty=2, xlab="x value",
 ylab="Density", main="Comparison of t Distributions")

for (i in 1:4){
 lines(x, dt(x,degf[i]), lwd=2, col=colors[i])
}

legend("topright", inset=.05, title="Distributions",
 labels, lwd=2, lty=c(1, 1, 1, 1, 2), col=colors)
[image: image99.png]Density

04

03

02

01

00

Comparison of t Distributions

Distributions

— = normal

X value

Children's IQ scores are normally distributed with a
mean of 100 and a standard deviation of 15. What
proportion of children are expected to have an IQ between
80 and 120?

mean=100; sd=15
lb=80; ub=120

x <- seq(-4,4,length=100)*sd + mean
hx <- dnorm(x,mean,sd)

plot(x, hx, type="n", xlab="IQ Values", ylab="Density",
 main="Normal Distribution", axes=FALSE)

i <- x >= lb & x <= ub
lines(x, hx)
polygon(c(lb,x[i],ub), c(0,hx[i],0), col="red")

area <- pnorm(ub, mean, sd) - pnorm(lb, mean, sd)
result <- paste("P(",lb,"< IQ <",ub,") =",
 signif(area, digits=3))
mtext(result,2)
[image: image100.png]Density

40

60

P(80<1Q=120)=0818

80

100 120

1Q Values

140

160

For a comprehensive view of probability plotting in R, see Vincent Zonekynd's Probability Distributions.

Fitting Distributions

There are several methods of fitting distributions in R. Here are some options.

You can use the qqnorm() function to create a Quantile-Quantile plot evaluating the fit of sample data to the normal distribution. More generally, the qqplot() function creates a Quantile-Quantile plot for any theoretical distribution.

Q-Q plots
par(mfrow=c(1,2))

create sample data
x <- rt(100, df=3)

normal fit
qqnorm(x); qqline(x)

t(3Df) fit
qqplot(rt(1000,df=3), x, main="t(3) Q-Q Plot",
 ylab="Sample Quantiles")
abline(0,1)
[image: image101.png]Sample Quantiles

Normal Q-Q Plot

Theoretical Quantiles

Sample Quantiles

t(3) Q-Q Plot

(1000, df = 3)

The fitdistr() function in the MASS package provides maximum-likelihood fitting of univariate distributions. The format is fitdistr(x, densityfunction) where x is the sample data and densityfunction is one of the following: "beta", "cauchy", "chi-squared", "exponential", "f", "gamma", "geometric", "log-normal", "lognormal", "logistic", "negative binomial", "normal", "Poisson", "t" or "weibull".

Estimate parameters assuming log-Normal distribution

create some sample data
x <- rlnorm(100)

estimate paramters
library(MASS)
fitdistr(x, "lognormal")
Finally R has a wide range of goodness of fit tests for evaluating if it is reasonable to assume that a random sample comes from a specified theoretical distribution. These include chi-square, Kolmogorov-Smirnov, and Anderson-Darling.

For more details on fitting distributions, see Vito Ricci's Fitting Distributions with R. For general (non R) advice, see Bill Huber's Fitting Distributions to Data.

Visualizing Categorical Data

The vcd package provides a variety of methods for visualizing multivariate categorical data, inspired by Michael Friendly's wonderful "Visualizing Categorical Data". Extended mosaic and association plots are described here. Each provides a method of visualing complex data and evaluating deviations from a specified independence model. For more details, see The Strucplot Framework.
Mosaic Plots

For extended mosaic plots, use mosaic(x, condvar=, data=) where x is a table or formula, condvar= is an optional conditioning variable, and data= specifies a dataframe or a table. Include shade=TRUE to color the figure, and legend=TRUE to display a legend for the Pearson residuals.

Mosaic Plot Example
library(vcd)
mosaic(HairEyeColor, shade=TRUE, legend=TRUE)
Association Plots

To produce an extended association plot use assoc(x, row_vars, col_vars) where x is a contingency table, row_vars is a vector of integers giving the indices of the variables to be used for the rows, and col_vars is a vector of integers giving the indices of the variables to be used for the columns of the association plot.

Association Plot Example
library(vcd)
assoc(HairEyeColor, shade=TRUE)
[image: image102.png]Eye
Blue

Green

Hazel

Brown

761

Pearson

esiduals
-yl

&5

slel olewed

Aelg

400

el olewe

umoig

200
000

xeg
slejEwe

pey
areH

slel

slela

puoig

Going Further

Both functions are complex and offer multiple input and output options. See help(mosaic) and help(assoc) for more details.

Correlograms

Correlograms help us visualize the data in correlation matrices. For details, see Corrgrams: Exploratory displays for correlation matrices.

In R, correlograms are implimented through the corrgram(x, order = , panel=, lower.panel=, upper.panel=, text.panel=, diag.panel=) function in the corrgram package.

Options

x is a dataframe with one observation per row.

order=TRUE will cause the variables to be ordered using principal component analysis of the correlation matrix.

panel= refers to the off-diagonal panels. You can use lower.panel= and upper.panel= to choose different options below and above the main diagonal respectively. text.panel= and diag.panel= refer to the main diagnonal. Allowable parameters are given below.

off diagonal panels
panel.pie (the filled portion of the pie indicates the magnitude of the correlation)
panel.shade (the depth of the shading indicates the magnitude of the correlation)
panel.ellipse (confidence ellipse and smoothed line)
panel.pts (scatterplot)

main diagonal panels
panel.minmax (min and max values of the variable)
panel.txt (variable name).

First Correlogram Example
library(corrgram)
corrgram(mtcars, order=TRUE, lower.panel=panel.shade,
 upper.panel=panel.pie, text.panel=panel.txt,
 main="Car Milage Data in PC2/PC1 Order")
[image: image103.png]ar Milage Data in PC2/PC1 Order

..ﬁ%%%%%%%

2 - 94 &b ¢
- @DQOO

IIIIIII o

Second Correlogram Example
library(corrgram)
corrgram(mtcars, order=TRUE, lower.panel=panel.ellipse,
 upper.panel=panel.pts, text.panel=panel.txt,
 diag.panel=panel.minmax,
 main="Car Milage Data in PC2/PC1 Order")
[image: image104.png]Car Milage Data in PC2/PC1 Order

s
gear -

[
3

gdmf ﬁ” 4
=7 "“’gi b
-
O e v | iy
S ieRs
— disp g 1t
SNV R8
SRNEN g2 i
EARERN oI

O W@ %%Nf

Third Correlogram Example
library(corrgram)
corrgram(mtcars, order=NULL, lower.panel=panel.shade,
 upper.panel=NULL, text.panel=panel.txt,
 main="Car Milage Data (unsorted)")
[image: image105.png]Car Milage Data (unsorted)

Changing the colors in a correlogram

You can control the colors in a correlogram by specifying 4 colors in the colorRampPalette() function within the col.corrgram() function. Here is an example.

Changing Colors in a Correlogram
library(corrgram)
col.corrgram <- function(ncol){
 colorRampPalette(c("darkgoldenrod4", "burlywood1",
 "darkkhaki", "darkgreen"))(ncol)}
corrgram(mtcars, order=TRUE, lower.panel=panel.shade,
 upper.panel=panel.pie, text.panel=panel.txt,
 main="Correlogram of Car Mileage Data (PC2/PC1 Order)")
[image: image106.png]Mileage Data (PC2/PC1 Order)

gear eg@

% -

-

e

T - 90 ¢6éC)
2 @@@O@

=G

Interactive Graphics

There are a several ways to interact with R graphics in real time. Three methods are described below.

GGobi

GGobi is an open source visualization program for exploring high-dimensional data. It is freely available for MS Windows, Linux, and Mac platforms. It supports linked interactive scatterplots, barcharts, parallel coordinate plots and tours, with both brushing and identification. A good tutorial is included with the GGobi manual. You can download the software here.

Once GGobi is installed, you can use the ggobi() function in the package rggobi to run GGobi from within R . This gives you interactive graphics access to all of your R data! See An Introduction to RGGOBI.

Interact with R data using GGobi
library(rggobi)
g <- ggobi(mydata)
[image: image107.jpg]

iPlots

The iplots package provide interactive mosaic plots, bar plots, box plots, parallel plots, scatter plots and histograms that can be linked and color brushed. iplots is implimented through the Java GUI for R. For more information, see the iplots website.

Install iplots
install.packages("iplots",dep=TRUE)

Create some linked plots
library(iplots)
cyl.f <- factor(mtcars$cyl)
gear.f <- factor(mtcars$factor)
attach(mtcars)
ihist(mpg) # histogram
ibar(carb) # barchart
iplot(mpg, wt) # scatter plot
ibox(mtcars[c("qsec","disp","hp")]) # boxplots
ipcp(mtcars[c("mpg","wt","hp")]) # parallel coordinates
imosaic(cyl.f,gear.f) # mosaic plot
On windows platforms, hold down the cntrl key and move the mouse over each graph to get identifying information from points, bars, etc.

[image: image108.jpg]B x| B

B3 Barchart (carb)
B Barchart (carb) File Edit View File Edit View Window

File Edit View Window Window

Edit View Window

click to view

Interacting with Plots (Indentifying Points)

R offers two functions for identifying points and coordinate locations in plots. With identify(), clicking the mouse over points in a graph will display the row number or (optionally) the rowname for the point. This continues until you select stop . With locator() you can add points or lines to the plot using the mouse. The function returns a list of the (x,y) coordinates. Again, this continues until you select stop.

Interacting with a scatterplot
attach(mydata)
plot(x, y) # scatterplot
identify(x, y, labels=row.names(mydata)) # identify points
coords <- locator(type="l") # add lines
coords # display list
Other Interactive Graphs

See scatterplots for a description of rotating 3D scatterplots in R.

1

