

Use a t-test with test statistic

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-d_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

which has a t-distribution with v degrees of freedom where v is obtained from

$$
v=\frac{\left(s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}\right)^{2}}{\frac{\left(s_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(s_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}} \text { rounded to the nearest integer. }{ }^{\dagger}
$$

'This is Satterthwaite's solution to what has become known as the Behrens-Fisher problem. Other solutions exist.

