Probability models that are useful in ecology 

· With this background we next do a quick survey of some probability distributions that have proven useful in analyzing ecological data. This is a small subset of the hundreds of probability distributions that have been cataloged by mathematicians, many of which have been applied to ecological data, but not in the journals ecologists typically read. Our object here is to just assemble for later reference detailed information about a number of probability models. 

· The models we consider are the following. 

· Continuous: normal, lognormal, gamma, beta

· Discrete: Bernoulli, binomial, multinomial, Poisson, negative binomial

· When we turn to Bayesian analysis we will occasionally find the need for some additional distributions for use as prior distributions for the parameters in our regression models. Examples of these include the uniform, Dirichlet, and inverse Wishart distributions. We'll discuss these further when the need arises. 

Continuous probability models

Normal distribution
· A continuous distribution. 

· It has two parameters, denoted μ and σ2, which also happen to be the mean and variance of the distribution. 

· We write [image: image1.png]X ~Normal (1, 6




.

· One hallmark of the normal distribution is that the mean and variance are independent. There is no relationship between them. Knowing one tells us nothing about the value of the other. This characteristic makes the normal distribution unusual. 

· The normal distribution is symmetric.

· The normal distribution is unbounded both above and below. Hence the normal distribution is defined for all real numbers.

· Its importance stems from the Central limit theorem. 

· In words—if what we observe in nature is the result of adding up lots of independent things, then the distribution of this sum tends to look normal the more things we add up.

· As a result sample means tend to have a normal distribution when the sample size is big enough because in calculating a mean we add things up. 

· Even if the response is a discrete random variable, like a count, a normal distribution may be an adequate approximation for its distribution if we’re dealing with a large sample and the values we've obtained are far removed from any boundary conditions. On the other hand count data with lots of zero values cannot possibly have a normal distribution or be transformed to approximate normality. 

· R normal functions: dnorm, pnorm, qnorm, rnorm. These are described in detail in the next section. 

The R probability functions 
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Fig. 3 The four probability functions for the normal distribution 

· There are four basic probability functions for each probability distribution in R. R's probability functions begins with one of four prefixes: d, p, q, or r followed by a root name that identifies the probability distribution. For the normal distribution the root name is "norm". The meaning of these prefixes is as follows. 

· d is for "density" and the corresponding function returns the value from the probability density function (continuous) or probability mass function (discrete). 

· p is for "probability" and the corresponding function returns a value from the cumulative distribution function. 

· q is for "quantile" and the corresponding function returns a value from the inverse cumulative distribution function.

· r is for "random and the corresponding function returns a value drawn randomly from the given distribution.

· To better understand what these functions do we'll focus on the four probability functions for the normal distribution: dnorm, pnorm, qnorm, and rnorm. Fig. 3 illustrates the defining relationships among these four functions. 

· dnorm is the normal probability density function. Without any further arguments it returns the density of the standard normal distribution. If you plot dnorm(x) over a range of x-values you obtain the usual bell-shaped curve of the normal distribution. In Fig. 3, the value of dnorm(2) is indicated by the height of the vertical red line segment. It's the just the y-coordinate of the normal curve when x = 2. Keep in mind that density values are not probabilities. To obtain probabilities one needs to integrate the density function over an interval. Alternatively if we consider a very small interval, say one of width Δx, and if f(x) is a probability density function, then it is the case that

[image: image3.png]Plr<X <x+Av) = f(0)Ax




· pnorm is the cumulative distribution function for the normal distribution. By definition pnorm(x) = P(X ≤ x) and is the area under the normal density curve to the left of x. Fig. 3 shows pnorm(2), the area under the normal density curve to the left of x = 2. As is indicated on the figure, this area is 0.977. So the probability that a standard normal random variate takes on a value less than or equal to 2 is 0.977 

· qnorm is the quantile function of the standard normal distribution. If qnorm(x) = k then k is the value such that P(X ≤ k) = x . qnorm is the inverse function for pnorm. From Fig. 3 we have, qnorm(0.977) = qnorm(pnorm(2)) = 2. 
· rnorm generates random values from a standard normal distribution. The required argument is a number specifying the number of normal variates to produce. Fig. 3 illustrates rnorm(20), the locations of 20 random realizations from the standard normal distribution, jittered slightly to prevent overlap. 

Lognormal distribution
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Fig. 4 A sample of lognormal distributions 

· X has a lognormal distribution if log X has a normal distribution.

· A lognormal distribution has two parameters μ and σ2, which are the mean and variance of logX, not X. 

· We write [image: image5.png]X ~ Lognormal (1, 0°




.

· A quadratic relationship exists between the mean and variance of this distribution. The variance is proportional to the square of the mean, i.e.,[image: image6.png]Variance = g(ut) = ku



 for some constant k. 

· A lognormal distribution is typically skewed to the right (Fig. 4).

· A lognormal distribution is unbounded on the right. If X has a lognormal distribution then X > 0. Zero values and negative values are not possible for this distribution.

· Most of the properties of the lognormal distribution can be derived by transforming a corresponding normal distribution and vice versa. 

· The importance of the lognormal distribution also stems from the Central limit theorem. 

· From our discussion of the normal distribution and the Central limit theorem, if we add up a lot of independent logged things then their sum will tend to look normally distributed. 

· But [image: image7.png]log X, +logX, +
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. Thus it follows from the Central limit theorem that [image: image8.png]


is normally distributed as the number of terms gets large. 

· That in turn means [image: image9.png]


is lognormally distributed as the number of terms gets large. 

· In words—if what we observe results from multiplying a lot of independent things together, then the distribution of this product tends to look lognormal as the number of things being multiplied together gets large.

· R lognormal functions: dlnorm, plnorm, qlnorm, rlnorm. 

[image: image10.png]Lensity

06 08 10

04

02

00

‘Gamma distributions

—u-y
Zazz
_u—AE

-1





Fig. 5 A sample of gamma distributions 

Gamma distribution 

· A continuous distribution. 

· Like the lognormal the gamma distribution is unbounded on the right, defined for only positive X, and tends to yield skewed distributions (Fig. 5). 

· Like the lognormal, its variance is proportional to the square of the mean. [image: image11.png]Variance = g(ut) = ku



. Thus the mean-variance relationship cannot be used to distinguish these two distributions.

· It also has two parameters typically referred to as the shape and the scale. These are denoted a and b, or α and β. Thus we write [image: image12.png]X ~ Gamma(a. b)



or [image: image13.png]X ~ Gamma(ez, )



.

· We may have a need for the formula of the gamma distribution later in the course so I give it here.
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Here [image: image15.png]


is the gamma function, a generalization of the factorial function to continuous arguments. Greek letters are typically used to designate parameters in probability distributions, but it is not uncommon for the parameters of the Gamma distribution to be labeled a and b. 

· There are different conventions for what constitutes the scale parameter. Various texts and software packages either refer to β or the reciprocal of β as the scale parameter. R calls one version the rate parameter and the other version the scale parameter in its list of arguments for the gamma function. In the formula shown above α is the shape parameter and β corresponds to R's rate parameter.

· R gamma functions: dgamma, pgamma, qgamma, rgamma.

· R tries to please everyone by listing three arguments for its gamma functions: shape, rate, and scale where rate and scale are reciprocals of each other. The shape parameter must be specified but you should only specify one of rate or scale, not both. 
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Fig. 6 A sample of beta distributions 

Beta distribution

· A continuous distribution. 

· It is bounded on both sides. In this respect it resembles the binomial distribution. The standard beta distribution is constrained so that its domain is the interval (0, 1).

· The beta distribution has two parameters a and b both referred to as shape parameters (shape1 and shape2 in R).

· As Fig. 6 reveals the beta distribution can take on a vast variety of shapes. 

· The formula for the beta density is the following.

[image: image17.png]



The reciprocal of the ratio of gamma functions that appears in front as the normalizing constant is generally called the beta function and is denoted B(α, β).

· The beta distribution is often used in conjunction with the binomial distribution particularly in Bayesian models where it plays the role of a prior distribution for p. 

· It also can be used to give rise to a beta-binomial model. Here the probability of success p is assumed to arise from a beta distribution and then, given the value of p, the observed number of successes has a binomial distribution with parameters n and this value of p. The significance of this approach is that it allows p to vary randomly between subjects and is a way of modeling what's called binomial overdispersion. 

· R beta functions: dbeta, pbeta, qbeta, rbeta.

Discrete probability models

Bernoulli distribution
· The Bernoulli distribution is almost the simplest probability model imaginable. (An even simpler model is a point mass distribution in which all the probability is assigned to a single point. A point mass distribution is only useful in combination with other distributions as part of a mixture.)

· A Bernoulli random variable is discrete.

· There are only two possible outcomes: 0 and 1, failure and success. Thus we are dealing with purely nominal data. Since there are only two categories, we also refer to these as binary data.

· The idealized exemplar of the Bernoulli distribution is an experiment in which we record the outcome of the single flip of a coin.

· The Bernoulli distribution has one parameter p, the probability of success, with 0 ≤ p ≤ 1. 

· The notation we will use is [image: image18.png]X ~Bemnoulli( p)



, to be read "X is distributed Bernoulli with parameter p." 

· The mean of the Bernoulli distribution is p.
· The variance of the Bernoulli distribution is p(1 – p).

· An example of its use in ecology is in developing habitat suitability models of the spatial distribution of endangered species. We record the presence-absence of the species in a habitat (using perhaps a set of randomly located quadrats). We then try to relate the observed species distribution to characteristics of the habitat. Each individual species occurrence is treated as the realization of a Bernoulli random variable whose parameter p is modeled as a function of habitat characteristics.

· Note: The Bernoulli distribution may not be familiar to you by name, but if you take a sum of n independent Bernoulli random variables each with the same probability p of success, one obtains a binomial distribution with parameters n and p. Thus a Bernoulli distribution is a binomial distribution in which the parameter n = 1. We'll discuss the binomial distribution next time. 

Binomial distribution
· A binomial random variable is discrete.

· It records the number of successes out of n trials

· The idealized exemplar of the binomial distribution is an experiment in which we record the number of heads obtained when a coin is flipped n times.

· The set of possible values a binomial random variable can take is bounded on both sides—below by 0, above by n
· Formally a binomial random variable arises from a binomial experiment, an experiment consisting of a sequence of n independent Bernoulli trials. If [image: image19.png]


are independent and identically distributed Bernoulli random variables each with parameter p, then

[image: image20.png]



is said to have a binomial distribution with parameters n and p. We write this as [image: image21.png]X ~ Binomial(n. p)



. 

· Expanding on this definition a bit, a binomial experiment must satisfy four assumptions. 

1. Each trial is a Bernoulli trial, meaning only one of two outcomes with probabilities p and 1 – p can occur. Thus the individual trials have a Bernoulli distribution. 

2. The number of trials is fixed ahead of time at n.
3. The probability p is the same on each Bernoulli trial.

4. The Bernoulli trials are independent: Recall that for independent events A and B, [image: image22.png]P(ANB)=P(A)P(B)




.

· To contrast the binomial distribution with the Bernoulli, we refer to data arising from a binomial distribution as grouped binary data.

· Mean: [image: image23.png]E(X)=np



.
· Variance: [image: image24.png]np(n—np) u(n—p)
- - n
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. 

· Observe from this last expression that the variance is a function of the mean, i.e., [image: image25.png]Variance = g( )



. If you plot the variance of the binomial distribution against the mean you obtain a parabola opening downward with a maximum at [image: image26.png]


(hence when p = 0.5).

· Thus a characteristic of a binomial random variable is that the mean and variance are related.

· Example: seed germination experiment. 

· An experiment is carried out in which 100 seeds are planted in a pot and the number of seeds that germinate is recorded. This is done repeatedly for pots subjected to various light regimes, burial depths, etc. 

· Clearly the first two assumptions of the binomial model hold here. 

· The outcome on individual trials (the fate of an individual seed in the pot) is dichotomous (germinated or not). 

· The number of trials (number of seeds per pot) was fixed ahead of time at 100. 

· The remaining two assumptions (constant p and independence) would need to be verified. We'll discuss how to do this when we look at regression models for binomial random variables. 

· R binomial functions are denoted: dbinom, pbinom, qbinom, rbinom. In R the parameters n and p correspond to the argument names size and prob respectively. 

· There is no special Bernoulli function in R. Just use the binomial functions with size = 1 (n = 1).

· WinBUGS has both Bernoulli and binomial mass functions: dbern and dbin. 

Derivation of the formula for the binomial probability mass function 
· Suppose we have five independent Bernoulli trials with the same probability p of success on each trial. 

· If we observe the event: [image: image27.png]


, i.e., three successes and two failures in the order shown, then by independence this event has probability [image: image28.png]pl=pyppl=py=p'd-py



 . 

· But in a binomial experiment we don’t observe the actual sequence of outcomes, just the number of successes, in this case 3. There are many other ways to get 3 successes, just rearrange the order of S and F in the sequence SFSSF, so the probability we have calculated here is too small.

· How many other distinct arrangements (permutations) of three Ss and two Fs are there? 

· If all permutations are distinguishable, as in ABCDE, then elementary counting theory tells us there are 5! = 120 different arrangements.

· Replace B and E in this permutation by F yielding AFCDF so that now the second and fifth outcomes are indistinguishable. In the original sequence ABCDE and AECDB would be recognizable as different arrangements, but now they would be indistinguishable. With five distinct letters every time you write down a different arrangement of the five letters you immediately get another arrangement just by swapping the B and E. So when B and E are identical, 5! over counts the number of arrangements by a factor of 2.

· Now suppose we replace A, C, and D by S, SBSSDS. In the original sequence you could write down one arrangement and then immediately get 3! = 6 more by swapping the letters A, C, and D in all possible ways. Thus when A, C, and D are indistinguishable 5! over counts the number of possible arrangements by another factor of 6.

· Thus to answer the original question, the number of distinct arrangements of three Ss and two Fs is

[image: image29.png]



where the last two symbols are two common notations for this quantity. Carrying out the arithmetic of this calculation we find that there are ten distinct arrangements of three Ss and two Fs.

· The first notation, [image: image30.png]


, is called a binomial coefficient and is read "5 choose 3". 

· The C in the second notation denotes "combination" and thus [image: image31.png]


is the number of combinations of five things taken three at a time. 

· Putting this altogether, if [image: image32.png]X ~ Binomial




then

[image: image33.png]


.

· For a generic binomial random variable, [image: image34.png]X ~ Binomial(n. p)



, in which the total number of trials is denoted n, we have 

[image: image35.png]


.

Multinomial distribution
· A multinomial random variable is discrete and generalizes the binomial to more than two categories. The categories are typically not ordered or equally spaced (although the could be); they are purely nominal.

· A multinomial random variable records the number of events falling in k different categories out of n trials. Each category has a probability associated with it. 

· Notation: [image: image36.png]X ~ Multinomial (n, p,. p,




where [image: image37.png]P r
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· R multinomial functions: dmultinom, pmultinom, qmultinom, rmultinom.

· The WinBUGS probability mass function for the multinomial is dmulti. 

Discrete Probability Models for Count Data 
Poisson distribution
· A Poisson random variable is discrete. A typical use would be as a model for count data.

· The Poisson distribution is bounded on one side. It is bounded below by 0, but is theoretically unbounded above. This distinguishes it from the binomial distribution.

· Example: Number of cases of Lyme disease in a North Carolina county in a year.

· Assumptions of the Poisson distribution 

· Homogeneity assumption: Events occur at a constant rate λ such that on average for any length of time t we would expect to see λt events.

· Independence assumption: For any two non-overlapping intervals the number of observed events is independent. 

· If the interval is very small, then the probability of observing two or more events in that interval is essentially zero.

· The Poisson distribution is a one-parameter distribution. The parameter is usually denoted with the symbol λ, the rate.

· The mean of the Poisson distribution is equal to the rate, λ. The variance of the Poisson distribution is also equal to λ. Thus in the Poisson distribution the variance is equal to the mean. So we have if [image: image38.png]Poisson(2)



then 

Mean: [image: image39.png]



Variance: [image: image40.png]Var(X)=2




· Observe that the variance is a function of the mean, i.e., [image: image41.png]Variance = g(u)=u



. Thus when the mean gets larger, the variance gets larger at exactly the same rate.

Probability mass function for the Poisson
· Let [image: image42.png]~ Poisson(2)




where Nt is the number of events occurring in a time interval of length t, then the probability of observing k events in that interval is 

[image: image43.png]p(y, =) <)
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· The Poisson distribution can be applied to both time and space. In a Poisson model of two-dimensional space, events occur again at a constant rate such that the number of events observed in an area A is expected on average to be λA. In this case the probability mass function is

[image: image44.png]PN, = 1)=C #(2A)




· For spatial distributions the Poisson distribution plays a role in defining what’s called CSR—complete spatial randomness. 

· If we imagine moving a window of fixed size over a landscape then due to the homogeneity assumption, no matter where we move the window the picture should look essentially the same. We will on average see the same number of events in each window. This rules out clumping. If the distribution were aggregated then some snapshots from our moving window would show many events, while others would show none. Note: in a clumped distribution the variance will be greater than the mean. 

· Due to independence the spatial distribution under CSR will not appear very regular. For a regular equally-spaced distribution to occur nearby events would have to interfere with each other to cause the regular spacing. The independence of events in non-overlapping regions means that interference of this sort is not possible. In a regular distribution the variance is smaller than the mean. 

· Sometimes we fix the time interval or the area for all observations. If all the quadrats are the same size then we don't need to know what A is. In such cases we suppress t and A in our formula for the probability mass function and write instead

[image: image45.png]



· Unlike some probability distributions that are used largely because they resemble distributions seen in nature, but otherwise have no particular theoretical motivation, the use of the Poisson distribution can be motivated by theory. The Poisson distribution arises in practice in two distinct ways. 

1. Using the three assumptions listed above one can derive the formula for the probability mass function directly from first principles. The process involves setting up differential equations that describe the probability of seeing a new event in the next time interval. If you would like to see how this is done see this document from a probability for engineers course taught at Duke. This is an important result because if a Poisson model does not fit our data it can help us understand why not. We can examine the assumptions and try to determine which one(s) is(are) being violated.

2. Another way the Poisson probability model arises in practice is as an approximation to the binomial distribution. Suppose we have binomial data in which p, the probability of success is very small, and n, the number of trials, is very large. In this case the Poisson distribution is a good approximation to the binomial where λ = np. Formally it can be shown that if you start with the probability mass function for a binomial distribution and let n → ∞ and p → 0 in such a way that np remains constant, you obtain the probability mass function of the Poisson distribution. Here's a document from a physics course taught at the University of Oregon that illustrates the proof of this fact. 

· The R Poisson probability functions are dpois, ppois, qpois, rpois.

Negative Binomial Distribution 

· A negative binomial (NB) random variable is discrete. A typical use would be as a model for count data.

· Like the Poisson distribution the negative binomial distribution is bounded on one side. It is bounded below by 0, but is theoretically unbounded above.

· The probability mass function of the negative binomial distribution comes in two distinct versions. The first one is the one that appears in every introductory probability textbook; the second is the one that appears in books and articles in ecology. Although the ecological definition is just a reparameterization of the mathematical definition, the reparameterization has a profound impact on the way the negative binomial distribution gets used. We'll begin with the mathematical definition.

· Suppose we have a sequence of independent Bernoulli trials in which the probability of a success on any given trial is a constant p. Let Xr denote the number of failures that are endured before r successes are achieved. Then Xr is said to have a negative binomial distribution with parameter p (and r). 

· The negative binomial is a two-parameter distribution, but like the ordinary binomial one of the parameters, in this case r, is usually treated as known.

· From an ecological standpoint the mathematical definition is rather bizarre and except for modeling the number of rejections one has to suffer before getting a manuscript submission accepted for publication, it's hard to see how this distribution could possibly be useful. Stay tuned!

Probability Mass Function
· Let Xr be a negative binomial random variable with parameter p. Using the definition given above let's calculate [image: image46.png]P(X, =x)



, the probability of experiencing x failures before r successes are observed. 

· Note: The change in notation from k to x is deliberate. Unfortunately in a number of ecological textbooks the symbol k means something very specific for the negative binomial distribution so I don't want to use it in a generic sense here.

· If we experience x failures and r successes, then it must be the case that we had a total of x + r Bernoulli trials. Furthermore, we know that the last Bernoulli trial resulted in a success, the rth success, because that's when the experiment stops. 
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· What we don't know is where in the first x + r – 1 Bernoulli trials the x failures and r – 1 successes occurred. Since the probability of a success is a constant p on each of these trials, we're back in the binomial probability setting where the number of trials is x + r – 1. Thus we have the following.
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· So we're done. Note: it's a nontrivial exercise to show that this is a true probability distribution, i.e., 
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Mean and Variance 
· I'll just state the results.
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Ecological Parameterization of the Negative Binomial 

· The ecological definition of the negative binomial is essentially a reparameterization of the definition we have here. 

· Step 1: The first step in the reparameterization is to express p in terms of the mean μ and use this expression to replace p. Using the formula for the mean of the negative binomial distribution above, I solve for p. 
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From which it immediately follows that

[image: image52.png]



Plugging these two expressions into the expression for the probability mass function above yields the following.

[image: image53.png]



· Step 2: This step is purely cosmetic. Replace the symbol r. There is no universal convention as to what symbol should be used as the replacement. Venables and Ripley (2002) use θ. Krebs (1999) uses k. SAS makes the substitution [image: image54.png]a=1



. I will use the symbol θ.
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· Step 3: Write the binomial coefficient using factorials.
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· Step 4: Rewrite the factorials using gamma functions. This step requires a little bit of explanation.

Gamma Function 
· The gamma function is defined as follows.

[image: image57.png]l(o.)fjh e tdy, o> 0




Although the integrand contains two variables, x and α, x is the variable of integration and will disappear once the integral is evaluated. So the gamma function is solely a function of α. 

· The integral defining the gamma function is called an improper integral because infinity appears as an endpoint of integration. Formally such an improper intergral is defined as a limit.
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It turns out this limit is defined for all [image: image59.png]o0



. 

· Let's calculate the integral for various choices of α. Start with [image: image60.png]


.

[image: image61.png]r(1)=] e’de=lim

e dx = lim (e





because
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· Now if [image: image63.png]


, but still an integer, the integral in the gamma function will be a polynomial times an exponential function. The standard approach for integrating such integrands is to use integration by parts. Integration by parts is essentially a reduction of order technique—after a finite number of steps the degree of the polynomial is reduced to 0 and the integral that remains to be computed is the same one we calculated for [image: image64.png]


(but it is multiplied by a number of constants). 

· After one round of integration by parts is applied to the gamma function we obtain the following.
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where in the last step I recognize that the integral is just the gamma function in which α has been replaced by [image: image66.png]


. This is an example of a recurrence relation; it allows us to calculate one term in a sequence using the value of a previous term. We can use this recurrence relation to build up a catalog of values for the gamma function.
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· So when α is a positive integer, the gamma function is just the factorial function. But [image: image68.png]


is defined for all positive α. For example, it can be shown that

[image: image69.png]



and then using our recurrence relation we can evaluate others, such as

[image: image70.png]



· Step 4 (continued): So using the gamma function we can rewrite the negative binomial probability mass function as follows.
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where I've chosen to leave x! alone just to remind us that x is the value whose probability we are computing.

· So what's been accomplished in all this? It would seem not very much, but that's not true. The formula we're left with bears little resemblance to the one with which we started. In particular, all reference to r, the number of successes, has been lost having been replaced by the symbol θ. Having come this far, ecologists then take the next logical step. Since the gamma function does not require integer arguments, why not let θ be any positive number? And so θ is treated solely as a fitting parameter, it's original meaning having been lost (but see below). 

· Engineers sometimes follow the convention of reserving the term "negative binomial distribution" for only the first parameterization we've described, the one in which the parameter r takes on only positive integer values. In contrast they refer to the ecologist's parameterization with the positive continuous parameter θ as the Polya distribution. 

· As if this were not confusing enough the engineer's "true" negative binomial distribution is sometimes called the Pascal distribution. Thus in this approach the two parameterizations we've described are called the Pascal and Polya distributions respectively, and the term negative binomial distribution is not used at all.

· Thus what we're left with is a pure, two-parameter distribution, i.e., [image: image72.png]oBin(u, 6)



, where the only restriction on μ and θ is that they are positive.

· With this last change, the original interpretation of the negative binomial distribution has more or less been lost and it is best perhaps to think of the negative binomial as a probability distribution that can be flexibly fit to discrete data. 

The Variance of the Negative Binomial Distribution in Terms of μ and θ 

· It turns out that a Poisson random variable can be viewed as a special case of a negative binomial random variable when the parameter θ is allowed to become infinite. This is further evidence of the flexibility of the negative binomial distribution over the Poisson distribution given that there are infinitely many other choices for θ. So in a sense θ is a measure of deviation from a Poisson distribution. For that reason θ is sometimes called the inverse index of aggregation (Krebs 1999)—inverse because small values of θ correspond to more clumping than is typically seen in the Poisson distribution. It is also called the size parameter (documentation for R), but most commonly of all, it is called the dispersion parameter (or overdispersion parameter).

· The relationship between the negative binomial distribution and the Poisson can also be described in terms of the variances of the two distributions. To see this I express the variance of the negative binomial distribution using the parameters of the ecologist's parameterization.
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· Observe that the variance is quadratic in the mean. Since [image: image75.png]


, this represents a parabola opening up that crosses the μ-axis at the origin and at the point [image: image76.png]


. 

· θ controls how fast the parabola climbs. As [image: image77.png]


, [image: image78.png]Var(X) > u



, and we have the variance of a Poisson random variable. For large θ, the parabola is very flat while for small θ the parabola is narrow. Thus θ can be used to describe a whole range of heteroscedastic behavior.

· Note: In the parameterization of the negative binomial distribution used by SAS, [image: image79.png]


. Thus the Poisson distribution corresponds to α = 0 and values of α > 0 correspond to overdispersion. 

Mechanisms that Give Rise to a Negative Binomial Distribution 

Negative binomial as a model of a nonhomogeneous Poisson process 
· The extreme flexibility of the negative binomial distribution in fitting heteroscedastic discrete data would be enough to recommend it but it turns out that it can also be motivated on purely ecological grounds. Recall that two of the assumptions of the homogeneous Poisson process, homogeneity and independence, are unlikely to hold for most ecological data. It turns out that if either one of these assumptions is relaxed, then under certain circumstances the distribution that we observe, rather than being Poisson, turns out to be negative binomial. I next try to make this connection more precise.

· In a homogeneous Poisson process the rate constant [image: image80.png]


is the same for all observational units. In a nonhomogeneous Poisson process, the rate constant [image: image81.png]


is allowed to vary according to some distribution. Given a particular realization from this distribution, say [image: image82.png]


, the resulting random variable X will have a Poisson distribution with [image: image83.png]


. 

· We can express this formally using the notion of conditional probability. We write 
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· The fact that [image: image85.png]


has a distribution is a bit of a nuisance, because what we want is the unconditional (or marginal) probability [image: image86.png]P(X=k)



. But if we knew what the distribution of [image: image87.png]


was, we could obtain this marginal probability as follows. Recall from the definition of conditional probability that
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· If our interest is in [image: image89.png]


we can find it by summing out B in the joint distribution.
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or for continuous distributions by integration.
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· Thus for the nonhomogeneous Poisson process, if we knew what the distribution of [image: image92.png]


was, [image: image93.png]


say, we could calculate [image: image94.png]P(X=k)



as follows.
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· The function [image: image96.png]


that appears in the above integral is called a mixing distribution for the Poisson. What should we choose as the mixing distribution? Let's list the obvious requirements for such a density. 

1. Since the Poisson distribution is a model of counts and [image: image97.png]


is the mean of that distribution, we must have [image: image98.png]


> 0. Thus a distribution such as the normal distribution that allows both positive and negative values is clearly out.

2. Without any specific knowledge about how [image: image99.png]


might vary across subjects we should probably choose a function that is flexible, that can describe a wide range of possible distributions for [image: image100.png]


.

3. We should probably choose a function that will allow us to actually compute the integral above. Hence it needs to be "complementary" to the Poisson mass function that it multiplies in the integral. (Note: this last point is less important today with the availability of MCMC for estimating such integrals. We'll return to this point when we discuss Bayesian estimation.)

· One distribution that satisfies all three requirements is the gamma distribution. It turns out that if we carry out the above integration with a gamma distribution for the mixing distribution we obtain the ecologist's parameterization of the negative binomial distribution with α playing the role of θ. 

· Thus the marginal density of a nonhomogeneous Poisson process when the gamma distribution is used as a mixing distribution, is negative binomial with parameters μ and α. A negative binomial distribution constructed in this way is sometimes called a mixture distribution. In the spatial statistics literature, particularly in geography, the negative binomial is called a compound Poisson distribution. 

