Introduction to Estimation Theory
· Parameter: a numerical characteristic of a population 

· In ecology we might be interested in the diversity of plants in a habitat. Diversity is a parameter.
· In statistics we think of populations as being defined by probability distributions as in "a normally distributed population". 
· The formula for the normal density function is
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· Since a normal distribution is fully defined by two parameters, the mean [image: image2.png]


and the variance [image: image3.png]


, this would be an example of a two-parameter population.
· Typically, Greek letters are used to represent parameters. When we wish to focus on the parameters of a probability distribution we will specify the parameters as part of the notation for the density or probability mass function, e.g., [image: image4.png]


. Thus a normal density function would be written as [image: image5.png]flxipw o?)



. This is just notation and doesn't imply a joint distribution or anything of the sort. Depending on context we may use [image: image6.png]


to represent a scalar or a vector.
· Statistic: a numerical characteristic of a sample 

· In ecology we might lay out a series of quadrats and calculate the diversity of plants in each quadrat or over all quadrats using perhaps the Shannon-Wiener index. Diversity in this case is a statistic.
· If we take a sample of a random variable from a normally distributed population and calculate the mean of the random variable in the sample, this sample mean is a statistic.
· An estimator is a statistic (meaning that it is calculated from a sample) whose calculated value is used as an estimate (numerical surrogate) of a population parameter. Since an estimator is a function of the sample, it is a random variable. Each of the above examples of statistics are also estimators of the corresponding population quantity.
· A particular realization of the estimator (based on the particular sample we obtain) is called an estimate. 
· If [image: image7.png]


is the population parameter of interest, an estimator of [image: image8.png]


is denoted by [image: image9.png]


.
· We will use the symbol [image: image10.png]


both for the random variable (estimator) as well as a particular realization of the random variable (estimate). 
· Notation: If Greek letters are used for parameters, then typically the associated estimator of the parameter uses the equivalent Roman letter or, alternatively, the Greek letter with a carat (hat) on top. There are some exceptions to this rule
	Examples
	Parameter
	Estimator

	hat notation
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, generic parameter
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	Roman letter or hat notation
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, regression coefficient
	b or [image: image14.png]




	Nonstandard notation
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, population mean 
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, sample mean
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, sample median


Sampling Distributions and the Frequentist Interpretation of Statistics
· Statistics are random variables, i.e., they have uncertainty associated with them. More specifically, they have a probability distribution. We call the distribution of a sample statistic a sampling distribution. Since an estimator is a random variable based on a sample, it too has a sampling distribution. 
· Comments about sampling distributions 

· The reality of sampling distributions is obvious. If we take a second sample in exactly the same way we took the first sample, the statistics we calculate on the second sample will differ from those we calculated using the first sample. Sample statistics vary from sample to sample.
· Still, the sampling distribution is really only a theoretical construct. We generally don't take multiple samples. Hence our understanding of the nature of the sampling distribution of a particular statistic will derive from theoretical considerations or from computer simulations.
· The importance of the sampling distribution to us is that criteria for determining whether an estimator is good or not are based entirely on the characteristics of its sampling distribution.
· We always make the assumption that the sample was constructed using probabilistic methods. If this is not the case, the science of statistics has nothing constructive to say about the estimates we calculate from such a sample.
How Does One Choose an Estimator?
· A simple-minded approach is if a formula is used to calculate the population parameter, then use that same formula on the sample to construct an estimator. This approach is called the "method of moments". 

· For a finite population (of size N), the population mean of a random variable X is calculated from
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Therefore the method of moments estimator from a sample of size n would be
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· For a finite population (of size N), the population variance of a random variable is the average squared deviation of X about its mean and is calculated from
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Therefore the method of moments estimator for the population variance from a sample of size n would be
[image: image21.png]



But from your elementary statistics class you already know that this is not the estimator that is commonly used. We instead use the sample variance, because it turns out to be a better estimator.
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There is no theory to support using method of moments estimators in general, but they are often a good starting point in constructing an estimator.
· In some cases there are a number of sensible candidates for an estimator. For a normally distributed random variable, the population mean, median, and mode coincide. This would suggest that either the sample mean or sample median might be good choices (the sample mode would be nonsensical for a continuous variable). In fact, it can be shown that the sample mean in this case is a better estimator than the sample median.
Characteristics of Good Estimators
· Ideally we would like our estimate [image: image23.png]


to improve with sample size, i.e., as sample size goes up, [image: image24.png]


gets closer to the true value of [image: image25.png]


. Such an estimator is said to be consistent. 
· Our estimate should be neither to high nor two low. On average we want an estimator that is right on the true value. In terms of sampling distributions, we want an estimator whose sampling distribution is centered on the true population parameter value. Such an estimator is said to be unbiased. 

· Bias measures whether a statistic is consistently too low or too high in its estimate of a parameter. Formally it is defined as follows. [image: image26.png]Bias(0) = E(0) -0



. The E that appears in this expression is the expectation operator. For all intents and purposes you can think of [image: image27.png]


as the mean of the sampling distribution of [image: image28.png]


. [image: image29.png]


is said to be an unbiased estimator of [image: image30.png]


if [image: image31.png]


. 
· Precision: Our estimator should have low variability. Precision is a measure of the variation of the sampling distribution of our statistic. The more variable is our statistic, the less precise it is. If an estimator has low precision, then the estimate we actually obtain could be far away from the true population value just by chance. 

· The square root of the variance of an estimator is called its standard error.
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· More precisely, the standard error an estimator is the square root of the variance of its sampling distribution. Since this is a mouthful, we just say standard error.
· Good estimators have small standard errors.
Comparing estimators
· Suppose estimators [image: image33.png]


and [image: image34.png]


for [image: image35.png]


have the same precision. Suppose [image: image36.png]


is unbiased for [image: image37.png]


but [image: image38.png]


is not. In this situation [image: image39.png]


is clearly the best estimator. The diagram below illustrates sampling distributions for [image: image40.png]


and [image: image41.png]


that meet these conditions.
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· Suppose estimators [image: image43.png]


and [image: image44.png]


for [image: image45.png]


are both unbiased for [image: image46.png]


but [image: image47.png]


is more precise than is [image: image48.png]


. In this situation [image: image49.png]


is clearly the best estimator. The diagram below illustrates sampling distributions for [image: image50.png]


and [image: image51.png]


that meet these conditions.
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Choosing an estimator 

Usually the situation is not so clear cut. Suppose estimator [image: image53.png]


is biased for [image: image54.png]


while [image: image55.png]


is unbiased for [image: image56.png]


. Suppose also that [image: image57.png]


is more precise than is [image: image58.png]


. The diagram below illustrates sampling distributions for [image: image59.png]


and [image: image60.png]


that are consistent with the given conditions.
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In this situation the winner is not obvious. In a case such as this one solution might be to try to estimate the bias in [image: image62.png]


and then correct for it.
The sampling distribution of the sample mean
· The sample mean, [image: image63.png]


, is unbiased for the population mean, μ. In symbolic notation, [image: image64.png]


. In other words, the distribution of the sample mean is centered on the value we are trying to estimate. 

· Unlike the case with most other estimators, the precision of the sample mean is also known exactly. 
· Suppose the sample mean is based on a sample of size n. If the variance of the underlying population is σ2, then
[image: image65.png]


.

· Since we normally express precision in terms of standard errors, this can also be written as
[image: image66.png]


.

· Of course, the primary difficulty with these measures of precision is that σ is usually unknown to us.
· What is even more unusual is that in most cases we actually know the form of the sampling distribution of [image: image67.png]


. 

· Case 1: If the underlying population is normally distributed then the sampling distribution of the sample mean is also normally distributed with mean and variance as given above. In other words, if [image: image68.png]X ~N(u,0?)



, then [image: image69.png]


.
· Case 2: Suppose the distribution of the underlying population is unknown (except for the mean and variance), then if the sample size is big enough, it is still the case that the sample mean will be normally distributed as above. Symbolically, if
[image: image70.png]X ~ f(u,0?)



, then [image: image71.png]



for n large, where f is an arbitrary density function.
· Note: another way of writing this result is to say that 
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· How big n needs to be will depend upon f. The seat of pants rule that appears in elementary statistics books is that n > 30.
· Case 2 is a statement of the Central Limit Theorem. The central limit theorem is actually more general than this. It says any time a random variable can be expressed as a sum of independent quantities, then this random variable will tend to have a normal distribution when the sample size is large enough. The central limit theorem is the basis for much of standard parametric statistical inference.
· The major limitation with both of these two results is that they both involve the unknown parameter σ2. The following two cases deal with this.
· Case 2a: For n large, s2 can be used as an estimate for σ2. Symbolically, if [image: image73.png]X ~ f(u,0?)



, then [image: image74.png]


for n large.
· Case 3: If n is small and only an estimate of σ2 is available, but the unknown distribution f is at least symmetric and unimodal (although ideally normally distributed) then it follows that
[image: image75.png]



has a t-distribution with n – 1 degrees of freedom.
Confidence Intervals and their Interpretation
· Since statistics vary from sample to sample, a point estimate without a measure of variability is fairly worthless. One way of incorporating variability into the estimate is to report an interval estimate rather than a point estimate. One popular type of interval estimate is a confidence interval. 

· All confidence intervals are constructed in roughly the same way. I will consider a somewhat artificial example but the details will be roughly the same for more realistic cases.
· We assume that we have an underlying normal population with known variance [image: image76.png]


(this is the unrealistic part) but unknown mean [image: image77.png]


. We wish to construct an interval estimate for [image: image78.png]


using [image: image79.png]


as a point estimate. From the theory discussed last time we have 
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· The notation I'm using is the following: [image: image81.png]


is the quantile of a z-distribution such that there is an area of [image: image82.png]


to the right of this value. –[image: image83.png]


 is the quantile of a z-distribution such that there is an area of [image: image84.png]


to the left of this value. For example, if α = .05 then the corresponding quantiles would be 1.96 and –1.96.
· Algebraically we can manipulate this probability statement as follows.
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· Interpretation 

· In the very first probability statement, [image: image86.png]


is a random variable and the boundaries of the interval are fixed. Using the frequentist interpretation of probability, we expect that [image: image87.png]


, after the prescribed transformation, will lie in the given fixed interval [image: image88.png]100 % (1 —a)%



of the time.
· In the final probability statement [image: image89.png]


is still a random variable but it now defines the boundaries of the interval. Thus in the last statement it is the interval itself that is random. We expect that [image: image90.png]100 % (1 —a)%



of these intervals will contain the unknown population parameter [image: image91.png]


. 

· Before we observe [image: image92.png]


there is a [image: image93.png]100 % (1 —a)%



chance that any interval we construct will capture [image: image94.png]


.
· Once we observe [image: image95.png]


, there is no longer any randomness. The interval which was random becomes fixed. Either [image: image96.png]


is in this interval or it is not. 
· Thus, having observed the data, it is incorrect to say that there is a [image: image97.png]100 % (1 —a)%



chance that [image: image98.png]


is in the interval. But given that [image: image99.png]100 % (1 —a)%



of the intervals we might have constructed would have contained [image: image100.png]


, we feel confident that the interval we obtained is one of the "good ones". 

· How confident do we feel? Answer: [image: image101.png]100 % (1 —a)%



confident. 
· Thus we call [image: image102.png](F-2, T X2, )



a [image: image103.png]100 % (1 —a)%



confidence interval for [image: image104.png]


.
· Comments 

· This is the frequentist interpretation of confidence intervals. In the frequentist view population parameters are fixed in nature and have no probability distribution associated with them. As a result, we do not speak of the probability that [image: image105.png]


lies in the interval; we only speak of the level of confidence we have that our interval contains [image: image106.png]


.
· There is another point of view called the Bayesian view of statistics. In this view it is correct to think of confidence intervals as probability statements.
· Confidence intervals often take the form derived above for the sample mean [image: image107.png]


. A generic template for a confidence interval is the following.
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Hypothesis testing protocol
A general protocol
1. Formulate a null and alternative hypothesis
· I use a fairly silly hypothesis test to motivate the protocol, a one-sample test of two simple hypotheses.
· [image: image109.png]



· As an example, we might have μ0 = 0 and μa = 3.
· This test is perhaps not that silly. Suppose μa > μ0 then the more typical hypothesis test would be a one-sided test of the form
[image: image110.png]



· Specifying μa as the alternative might be reasonable if μa – μ0 is the smallest difference that has biological relevance. Detecting differences smaller than this would then be of no interest. 

· This test is also equivalent to
[image: image111.png]



because if reject μ = μ0 in favor μ = μa then we will also reject μ ≤ μ0 because these are all values of μ that are even further away from μa.

2. Pick an appropriate test statistic
· A natural estimator of the population mean μ is the sample mean [image: image112.png]


. This leads to a dilemma. 

· Because of sampling variability we don't expect [image: image113.png]


to equal μ0 even if the null hypothesis is true.
· So how deviant does [image: image114.png]


have to be before we should start to suspect that the population mean is not μ0 and hence the null hypothesis is false?
· The solution is to construct an appropriate test statistic.
· How should a test statistic be chosen? 

· The test statistic should relate to the hypothesis of interest. Typically it is a function of the measured statistic.
· The most important feature of a test statistic is that, unlike the measured statistic, it is chosen so that it has a known probability distribution. Using its distribution we can then tell if the observed value of the test statistic is an "unusual" value under the null hypothesis by carrying out a formal test.
· Parametric and rank-based nonparametric tests use test statistics with known distributions.
· Permutation tests on the other hand generate a reference distribution using only the sample data. As a result only the first criterion listed above is relevant in selecting a test statistic for a permutation test. We do sacrifice some generality in the process though.
· 3. Choose a significance level and decision rule
· Selection of α, the significance level, defines a tail probability of the reference distribution (the rejection region) and the critical value of our test statistic. 
· If tobs is the observed value of our test statistic and tcrit is the critical value of our test statistic, then our decision rule is: 
· One-sided test: Reject H0 if tobs > tcrit. (Upper-tailed test)
· Two-sided test: Reject H0 if tobs > tcrit or tobs < –tcrit.
· If we it turns out that tobs < tcrit (upper-tailed test) or –tcrit < tobs < tcrit (for a two-sided test) then we would fail to reject H0. Following Popper, we don't accept H0 we just fail to reject it. In reality, we have found some support for H0 but the extent of this support depends on how well the study was designed. Assessing this involves the issue of statistical power.
Potential errors in hypothesis testing
· H0 could be true even though we observe tobs > tcrit because tobs is not an impossible value under H0, just an unlikely one. So if we reject H0 when H0 is true we've made an error. It's called a Type I error. 

· The significance level α defines the probability of making this error.
· P(Type I error) = α.
· Alternatively, we could observe tobs < tcrit and hence fail to reject H0 (upper-tailed test). This could also be a mistake. So if we fail to reject H0 when in fact H0 is false, we have made an error. This error is called a Type II error. 

· The probability of a Type II error depends on the true state of nature.
· P(Type II error) = β.
· The table below summarizes these two types of errors.
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· α and β can be visualized graphically. The figure below illustrates them in terms of the unknown parameter and its measured estimate for an upper-tailed test.
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· Observe that both errors are defined in terms of the critical value. For an upper-tailed test: 

· α is the area under the H0 curve to the right of the critical value.
· β is the area under the Ha curve to the left of the critical value.
· From the diagram we see that the errors are inversely related. If we try to reduce α by choosing a larger critical value, we will perforce increase β. If we choose a smaller critical value, β will be reduced, but α will increase.
Computing p-values
· A p-value is defined as the probability of observing a value as extreme or more extreme as the one we observed. It's also referred to as the observed significance level.
· Hypothesis tests can be formulated in terms of p-values. 
· For a one-tailed test we fail to reject H0 if tobs < tcrit or equivalently p > α. 
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· For a one-tailed test we reject H0 if tobs > tcrit or equivalently p < α. 
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· For two-tailed tests we double the one-tailed p-value (for symmetric reference distributions).
Hypothesis testing examples
Example 1
Body temperatures were obtained by University of Maryland researchers of 106 healthy adults. Test the claim that the mean body temperature of healthy adults is equal to 98.6 degrees F. Sample data indicates n = 106, [image: image119.png]


= 98.2 degrees, s = 0.62.
· [image: image120.png]


= average body temperature of healthy adults
· Hypotheses
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· Choose [image: image122.png]


= 0.05 as our significance level by convention.
· The sample mean [image: image123.png]


is 98.2. Is this significantly different from 98.6? Without some metric it's hard to judge whether this difference is real or due to just normal variation. 
· Since the sample size is large [image: image124.png]


will have an approximate normal distribution. Thus if we standardize and measure the standardized difference against a standard normal distribution we will have the metric we need to assess the magnitude of the observed difference.
· Test statistic: 
[image: image125.png]



· Critical region: The appropriate rejection region for a two-sided test is a two-tailed region. With [image: image126.png]


= 0.05 we have[image: image127.png]Zos=1.96



. This is the upper critical value of our test. We will reject [image: image128.png]


if we observe z > 1.96 or z < –1.96. The total area of these two regions is .05.
· Calculated value of our test statistic
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· Since –6.64 < –1.96, the observed value of our test statistic falls in the rejection region. Thus we reject [image: image130.png]


and conclude that the body temperature of healthy adults is not equal to 98.6.
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· The p-value for this two-tailed test is given by [image: image132.png]2P(7Z <—6.64)



. Using R the observed significance level is p = 2*pnorm(–6.64) = 3.137E–11. Thus we have very strong evidence that the mean is not 98.6. A 95% confidence interval for the mean body temperature based on this sample is (98.1, 98.3). Since 98.6 is not in this interval, the confidence interval is consistent with our test results, as it should be.
Example 2
The Jack Wilson Health Club claims in advertisements that "you will lose weight after only two days of the Jack Wilson diet and exercise program." The Dade County Bureau of Consumer Affairs conducts a test of that claim by randomly selecting 33 people who have signed up for the program. It was found that the 33 people lost an average of 0.37 lb, with a standard deviation of 0.98 lb. Use a 0.05 level of significance to test the advertised claim.
· [image: image133.png]


= average weight loss experienced after two days by members of a health club
· Hypotheses:
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· Choose [image: image135.png]


= 0.05 as our significance level.
· The sample mean [image: image136.png]


is 0.37. Is this significantly different from 0? Without some metric it's hard to judge whether this difference is real or a result of normal sampling variation. 
· Since the sample size is large (n = 33) the sample mean,[image: image137.png]


, has an approximate normal distribution. Thus if we standardize and measure this difference against a standard normal distribution we will have the metric we need to assess the magnitude of the observed difference.
· Test statistic: 
[image: image138.png]



· Critical region: Since [image: image139.png]


and this is an upper one-sided test, we construct a one-tailed rejection region. We will reject [image: image140.png]


if we observe Z > 1.645.
· The calculated value of our test statistic is
[image: image141.png]



· Since 2.17 > 1.645, the observed value of our test statistic falls in the rejection region. Thus we reject [image: image142.png]


and conclude that a significant weight loss has occurred.
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· The p-value for this upper-tailed test is given by p = P(Z > 2.17). Using R the observed significance level is 1–pnorm(2.17) = 0.015. Thus we have moderate evidence that the mean weight loss is greater than 0. A 95% confidence interval for the mean weight loss based on this sample is (0.09, 0.65). This is consistent with our test results because 0 is not in the interval and hence not a likely value for [image: image144.png]


.
Note: in both of these examples s2 was used to estimate the population variance σ2. Technically then use of a t-distribution rather than a standard normal distribution should be more accurate. Doing so in the first example yields the following p-value.
2*pt(–6.64,105 ) = 1.4198e–09. 
In example 2, the p–value turns out to be 1–pt(2.17,32) = 0.01877. As can be seen in both cases the error in using the normal approximation is fairly trivial.

Hypothesis testing flowcharts
One sample test


[image: image145.emf]
Two sample test flowchart


[image: image146.emf]

[image: image147.emf]Note: The flowcharts are set up assuming that the user will be doing hand calculations. This is apparent in the recommendation to use the z-test when sample sizes are large and the population variance is unknown. 

· When using software to do the calculations the distinction between z-tests and t-tests becomes irrelevant. If s2 is being used to estimate σ2, use a t-test.
· Still, the distinction between large and small samples is useful in considering the assumptions of the test. In particular, the assumption of normality becomes largely irrelevant when dealing with large samples.
Hypothesis test assumptions 

· The standard two-sample hypothesis tests make three basic assumptions
1. Independence: the two samples are independent random samples from their underlying populations.
2. Normality: the populations from which the samples are drawn are normally distributed.
3. Equal variances: the populations from which the samples are drawn have the same variance.
· Of the three basic tests listed on the flowcharts—parametric tests (t- and z-tests), rank-based nonparametric tests (Wilcoxon tests), and permutation tests—all three assume independence and equal variance
· The rank-based nonparametric tests and permutation tests do not assume normality. The t-test (when sample sizes are small) does require normality.
Robustness and resistance
· A test is said to be robust if it is valid even when its assumptions are not met.
· A test is said to be resistant if the results of the test don't change much when a small part of the data set is changed (even drastically).
Independence
· None of the tests are robust to a lack of independence.
· Independence is violated if the sample values exhibit serial effects or cluster effects. 

· Cluster effects occur when data are collected in subgroups. Typically the members of subgroups are more similar to each other than they are to randomly sampled members of the population or members of other subgroups.
· Serial effects can occur if observations are taken successively over time or in space. Observations taken close together in time tend to be more alike than those sampled more distantly in time. Similarly, observations that are collected near each other spatially tend to be more similar than randomly chosen observations.
· There is no cure for dependent data except to incorporate the dependence explicitly in the method of analysis.
Normality
· The Wilcoxon and permutation tests do not assume normality. The t-test, when sample sizes are small, does assume normality of the underlying populations. 

· Unfortunately when sample sizes are small the normality of the underlying populations is difficult to assess from looking at a small sample of data.
· Fortunately, the t-test is fairly robust to the assumption of normality. How robust it is depends on other features of the sample and is dealt with further below.
· Normality of the underlying populations is only an issue for the t-test when sample sizes are small. When sample sizes are large the central limit theorem guarantees that the sampling distribution of the sample mean is approximately normal. 
· How small is too small a sample depends a lot on how deviant the population distributions are.
Equal variances
· All three tests assume equal variances in the two groups being compared. 
· Converting observation values to ranks tends to mitigate the effects of extreme observations. Thus rank-based tests are less affected by unequal variances than are parametric and permutation tests. A permutation test using ranked data is essentially equivalent to the Wilcoxon test.
Transformations
· Transformations of the data can be used to achieve normality or to make sample variances rougly equal. Standard choices are the log, square root, and reciprocal transformations. The first two require positive data. 

· Log transformations tend to draw in long upper tails and spread out data near zero. Thus they tend to work well on skewed data. A lot of biological data closely approximates a lognormal distribution, which by definition is a distribution for which the log of the observation values is normally distributed. Such data can be normalized by log transforms.
· If a data set contains zero values, then an arbitrary constant will need to be added to each observation before taking the log transform. Typical choices are 1 or 0.5.
· The log transform is especially appealing in experimental designs if it is thought that the underlying processes operate on a multiplicative scale. Taking logs then places them on an additive scale, a scale that is more appropriate for the standard linear models that are used to analyze such designs.
· Square roots are commonly applied to count data and area data.
· Reciprocals are often used for waiting time data.
· Proportions are typically transformed with the arcsine square root transform or the logit transform.
· Note: ranking data can be viewed as a transformation of a particular severe and irreversible kind.
Robustness of the t-test
· How robust the t-test is to lack of normality and unequal variances depends on specific details of the violation.
· The worst-case scenario occurs with non-normal populations, unequal variances, and unequal sample sizes. If the samples are roughly the same size, the t-test is far more robust to distributional and variance violations.
· Long-tailed distributions tend to have the greatest negative impact on t-tests but even these are somewhat mitigated by equal variances and sample sizes.
· If sample sizes are equal even variances in a 10:1 ratio are not severe enough to invalidate the t-test.
· If sample sizes are unequal then skewness can severely undermine the validity of the t-test.
Resistance
· Any test based on sample means or sums will not be resistant. Thus the t-test and various flavors of the permutation test are not resistant.
· The Wilcoxon test is a highly resistant test. Ranking data effectively eliminates the impact of outliers.
Introduction to Simple Linear Regression
The basic setting 

· We observe two variables for each observation. We believe the variables may be causally related. One, called the predictor, we denote by x. The other, called the response, we denote by y. So our data are of the form: (x1, y1), (x2, y2), ... , (xn, yn).
· A typical first step, if there is no theory to guide us, is to look for a linear relationship between x and y. 

· For a deterministic relation this would take the form: y = β0 + β1x.
· For a stochastic relation we typically write for the ith observation in our sample: yi = β0 + β1xi + εi . 

· Here β0 is the population intercept, β1 is the population slope, and εi is the random error, the difference between the population mean for a given x and the observed y.
· Another way of writing this is as yi = μi + εi. The implication is that the mean changes with i. In reality, μi = β0 + β1xi.
· Yet another way of writing this model is as [image: image148.png]



· Essentially then the regression model says the mean of y changes linearly with x. In testing this we'll contrast this with the statement [image: image149.png]


, i.e., the mean is a constant that does not depend upon x.
· Not surprising then to test whether y and x are linearly related we compare the fit of two different models:
[image: image150.png]



· One way to compare these two models would be to look at the relative magnitudes of [image: image151.png]


and [image: image152.png]


.
· Note: if β1 = 0 in model (2), the two models turn out to be identical. The ordinary least squares estimate of β0 in this case is[image: image153.png]


.
· For sample data we obtain estimates of these quantities. We write the estimated equation as 
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, 
or alternatively as
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· Here [image: image156.png]


is called the predicted value and ei is the residual (which estimates the error term in the population model). 

Assessing the significance of a regression
· The relationships between these various quantities are shown in the following diagram.
[image: image157.jpg]



· If we ignore x altogether, then our best estimate of y is [image: image158.png]


. If the linear regression estimate [image: image159.png]


of yi is to be considered an improvement over just using [image: image160.png]


, it should be the case that [image: image161.png]


is closer to yi than yi is to [image: image162.png]


(as in the diagram). Thus on average we would expect to find that the ratio [image: image163.png]


is small.
· But if [image: image164.png]


is closer to yi than yi is to [image: image165.png]


then it follows that [image: image166.png]


is further away from [image: image167.png]


than yi is to [image: image168.png]


and hence on average we would expect the ratio [image: image169.png]


to be large.
· But if the first ratio is small and the second ratio is large it follows that the ratio [image: image170.png]


must also on average be large. It is this latter quantity (or at least its square) than turns out to be the chosen metric in assessing the statistical significance of a regression line.
Methods of Estimation—Ordinary Least Squares
· In the method of least squares we find the line that minimizes the sum of the squared vertical deviations about that line. In the figure above, the vertical deviation of an observation from the line is called a residual, thus least squares finds the line that minimizes the residual sum of squares (RSS).
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· The method of least squares finds β0 and β1 that make RSS the smallest.
· This turns out to be an easy calculus problem. One of the attractions historically of the method of least squares for simple linear regression is that we can find an exact solution algebraically. This is not the case for other methods we'll consider where finding a solution requires numerical approximations. 

The solution using calculus 
· We find the partial derivatives of RSS with respect to β0 and β1 and set the results equal to zero.
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· Dividing both sides by –2 and moving the summation through the parentheses yields
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· Moving the terms the terms involving β0 and β1 to the right hand side and factoring β0 and β1 out of the summations yields the following, which are known as the normal equations. 

[image: image174.png]



· This system of two equations in two unknowns can be written as a matrix equation.
[image: image175.png]



· If the matrix A is invertible, which it will always be except for very unusual xis, we can write down the exact solution as
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· There are two important take-home messages from what we've done so far. 

· The least squares solution to the simple linear regression problem has an exact solution that can be succinctly expressed using matrix algebra.
· To obtain the solutions [image: image177.png]


and [image: image178.png]


no assumptions were necessary. If you go over the derivation of the least squares solution above, at no point did I make any assumption at all about the data.
· To get anywhere beyond this point we will need to make some assumptions. In particular, if we want standard errors of these estimates, confidence intervals, or want to carry out hypothesis tests we will need to make some assumptions. We look at these assumptions next.
The Assumptions of Ordinary Least Squares Regression 

· To obtain the least squares estimates of the slope and intercept of the regression line, no assumptions are necessary. To obtain standard errors and carry out statistical tests we need to make assumptions.
· The basic assumptions are contained in the following statement. For each xi, the yi are independent, normally distributed random variables with mean μi (which varies linearly with x) and constant variance σ2 (which does not vary). Note: implicit in this statement is that the xi are not random and hence do not have a distribution associated with them. It is assumed the x-values are without error. 

· This statement translates into five assumptions: (1) independent observations, (2) the mean of the response is linearly related to x, (3) the responses are normally distributed with different means depending on x, (4) each normal distribution has the same variance, (5) the x-values are fixed and known without error.
· These assumptions can also be stated in terms of the errors. For each xi, the errors εi are independent, normally distributed random variables with mean 0 and variance σ2.
· These assumptions can be visualized in the following graph. In the graph we see that at each x-value we have the same normal curve describing the distribution of y's. These normal curves differ only in that their means are translated along the regression line.
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· Why do we make these assumptions rather than some others? If you make these assumptions, then the ordinary least squares estimates for the slope and intercept are the best estimates possible, i.e., they are BLUE—best linear unbiased estimates.
Maximum Likelihood Estimation of the Regression Line 

· Instead of tacking on ad hoc assumptions as we did in least squares, we can make the assumptions up front and build them explicitly into the model. This is the maximum likelihood approach.
· Thus if we parallel the assumptions of ordinary least squares we would begin with the following probability model.
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i.e., each observed response is an independent normally distributed random variable with probability density given by
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· If we obtain a random sample of size n, then, by independence, the joint density can be written as a product of the n marginal densities.
[image: image182.png]



· Hence the likelihood of our data is given by
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· and the loglikelihood is
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· Observe that the summation term in the loglikelihood is just the residual sum of squares that we minimized in ordinary least squares.
· To maximize the loglikelihood formally we would next proceed to find the partial derivatives of the loglikelihood with respect to each of the three parameters and set the results equal to zero. Notice for β0 and β1 we would have
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and similarly for β1
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· These are essentially the same two equations we started with in the method of ordinary least squares. Since minimizing the residual sum of squares with respect to β0 and β1 is exactly the same as maximizing the negative of the residual sum of squares with respect to β0 and β1, the maximum likelihood estimates for β0 and β1 will be identical to the ordinary least square estimates. Thus it doesn't matter which method we use. Maximum likelihood estimation assuming a normal probability model yields estimates for the regression parameters that are identical to those obtained by ordinary least squares.
· There is one difference though. The equation
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did not appear in ordinary least squares. In ordinary least squares we use an ad hoc estimate of σ2 based on the assumptions we made. In the maximum likelihood approach the estimate arises as part of the estimation process. 
· It's worth noting that the estimates of σ2 are not the same in the two methods. The estimate used in ordinary least squares is an unbiased estimate while the one obtained by maximum likelihood estimation is biased.
Presentation of the Results of Regression 

· The three quantities, [image: image188.png]


, that we considered in the last lecture as being related to how well the regression line fits the data loom large in summarizing the results of regression.
· Typically, each of these is squared and summed over all observations to obtain what are called sums of squares. Each sum of squares has its own name and interpretation. 

· SSTotal = [image: image189.png]


= total variation about the sample mean
· SSError = [image: image190.png]Sr-5)



= total variation about the regression line. Also called SSResidual.
· SSReg = [image: image191.png]


= total variation of the predicted values about the sample mean.
· These quantities generally are presented in an ANOVA (analysis of variance) table like the one shown below.
	Source
	df
	SS
	MS
	F

	Regression
	1
	SSReg
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	Residual (Error)
	n – 2
	SSError
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	Total
	n – 1
	SSTotal
	
	


· The column labeled Source identifies the source of variation being considered in each row.
· The column labeled df indicates the degrees of freedom for each source of variation. The general interpretation of degrees of freedom is that it is the number of things that can freely vary. In a geometric interpretation of regression it also turns out that each of the degrees of freedom corresponds to the dimension of a particular subspace of n-dimensional space. We'll explore this interpretation a little bit next time.
· The SS column contains the sums of squares defined above.
· The MS, or mean square column, is the sum of squares divided by its corresponding degrees of freedom. A mean square is not calculated for Total.
· The F column contains the ratio of the two mean squares. The F statistic has an F distribution with degrees of freedom 1 and n – 2. The F statistic tests whether the slope of the regression line is different from zero.
Some basic ideas from linear algebra
Linear combinations and linear independence 

· A vector in the plane can be thought of as an ordered pair or as an arrow emanating from the origin. In the arrow interpretation it is natural to think of vectors being added together to form other vectors. As shown below, the vector (2, 3) can be written as a vector sum of what are called the standard basis vectors, (1, 0) and (0, 1). The picture to the right shows another way of expressing the vector (2, 3) as a sum of two vectors.
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· In the left hand figure, the vector (2, 3) has been written as a linear combination of the two basis vectors. Formally, a linear combination of two vectors u and v is an expression of the form c1u + c2v where c1 and c2 are scalars (numbers).
· If we form the linear combination [image: image196.png]


and let the scalars c1 and c2 vary over all possible real numbers then we obtain all possible points in the x-y plane. This would also be true if we considered all linear combinations of the form [image: image197.png]


. The reason this happens is that in both cases the vectors are not collinear (they are not multiples of each other). Formally, two nonzero, noncollinear vectors are said to form a linearly independent set of vectors.
· All of these ideas carry over to vectors with more than two components. For example, for vectors with n components we could consider all linear combinations of the form
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· Since these two vectors are not multiples of each other they are not collinear. Hence they form a linearly independent set. Strictly analogous to the situation in two dimensions, we would describe the set of points generated by taking all possible linear combinations of these two vectors as being a plane in n-dimensional space. These vectors are called a generating set (also termed a spanning set) for the plane.
Length of a vector, vector differences, and projections
· The length of vector in the x-y plane can be computed by applying the Pythagorean theorem with the vector in question forming the hypotenuse of a right triangle. The double bar notation [image: image199.png]


is used to denote length (also called norm).
[image: image200.jpg]V [+




· If the vector has n components we define its length analogously. If [image: image201.png]


, then we have [image: image202.png]R C R R



. 

· A difference of two vectors can be defined by appealing to the definition of vector addition. The vector u – v is the vector which when added to v yields the vector u. With this in mind, the vector u – v can be constructed by drawing an arrow that extends from the tip of v to the tip of u. 
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· From the figure it clearly makes sense to define the distance between two vectors u and v as being [image: image204.png]|u=v]



. This is usually referred to as the Euclidean distance between the vectors because it reduces to the usual distance formula between two points.
· Lastly, we can project vectors onto vectors or planes by dropping a perpendicular from the tip of the vector "down" to the vector or plane we wish to project onto. The figure at the beginning of this document illustrated the projection of the vector (2, 3) onto the vector (1, 0) as well as onto the vector (0, 1). 

Geometry and Statistics
Simple linear regression as projection onto a plane 

· Suppose we have n points: (x1, y1), (x2, y2), ... , (xn, yn) and we wish to find a line such that the sum of the squared vertical deviations from that line is the smallest possible. The corresponding points on the line are denoted by [image: image205.png]


. If we let [image: image206.png]


and [image: image207.png]


be the intercept and slope of this best fit line, then the y-coordinates of the points on the line are given by the equations:
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· These equations can be written as a single vector equation as shown below.
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· Thus we see that when viewed as a vector in n-dimensional space, the vector of predicted values [image: image210.png]


lies in a plane, the plane spanned by a vector of consisting of only ones, 1, and a vector containing the x-values, x. The estimated intercept and slope are the scalars needed to multiply 1 and x by to generate [image: image211.png]


. 
· How does the vector y relate to this plane? Recall that the least squares solution is obtained by minimizing the so-called residual sum of squares (RSS), that is, we minimize
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· As we see the residual sum of squares is just the squared length of a vector that extends from the tip of [image: image213.png]


to the tip of y. Since [image: image214.png]


is a vector in the plane spanned by 1 and x, minimizing RSS is equivalent to finding the vector [image: image215.png]


in this plane that is closest to y in terms of Euclidean distance.
· A little reflection will suggest what the vector [image: image216.png]


must be. Geometrically the vector in the plane that is closest to y is obtained by dropping a perpendicular from the tip of y onto the plane. Where that perpendicular touches the plane defines the tip of [image: image217.png]


. The figure below shows the details.
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· Planes are examples of mathematical structures called subspaces. Thus in the figure above I refer to the plane containing 1 and x as the model subspace. (It is useful to have a general term such as subspace. When we consider the multiple regression problem, the model subspace will no longer be a plane.)
· Ordinary linear regression divides the n-dimensional world of the observation vector y into two subspaces: the model subspace of dimension 2 and the subspace orthogonal (perpendicular) to it, the error subspace. Since together the model subspace and the error subspace generate the observation vector, it must be the case that the error subspace is of dimension n – 2. 
· Recall that in the ANOVA table the degrees of freedom for error is also n – 2. It is always the case that the degrees of freedom in ANOVA tables correspond to the dimension of an appropriate subspace in n-dimensional space. 
· The layperson's definition of 3-dimensional space is that in it one has three perpendicular directions in which to move. This is completely analogous to saying one has 3 degrees of freedom to move.
· Recall that a measure of the utility of a regression is the coefficient of determination, or R2. It's defined as
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and is interpreted as the proportion of the variability in y that is explained by its linear relationship to x.
· The relative magnitudes of different R2 values can be visualized geometrically. Essentially, the smaller the angle between the observation vector y and the regression plane, the higher the R2. The figure below illustrates the two extremes.
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Geometrical interpretations of significance tests 
· Consider again the paired t-test. The typical null hypothesis is that the average of the paired differences is zero versus the alternative that the average of the paired differences is different from zero, say equal to a value μ. 
· Suppose we have n pairs in our study. If we were to repeat the experiment many times (each time with a new n pairs), we would expect to obtain an average paired difference near 0 if the null hypothesis test is true. As a result the average paired differences obtained from our repeated experiments should cluster around the origin in n-dimensional space. 
· On the other hand, if the alternative hypothesis is true we would expect the average paired differences to cluster around the point μ1, the point all of whose coordinates are μ, in n-dimensional space. (Each pair is expected to exhibit a difference μ on average.)
· The figure below displays this scenario except that instead of n-dimensional space I display 2-dimensional space, as if we only had two pairs in each repeated experiment.
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· Of course we have only a single observation vector not a cloud of points as in the figure, but this suggests a statistical test. Project the observation vector onto n orthogonal directions in n dimensional space where one of the directions is along the vector 1. 

· If the mean is truly zero then none of these directions should be favored (as in the scatter of points about 0 in the figure).
· If on the other hand the mean is different from 0, then, as in the figure, the projection along the vector 1 will be longer than the projection in any other direction.
· Since there are n – 1 other directions orthogonal to 1, we should calculate the lengths of the projection in each of these other directions, average them, and compare the average to the length of the projection along 1. Equivalently we could compare the average squared lengths of these projections to the squared length of the projection along 1.
· The projection of the observation vector y onto 1 turns out to be [image: image222.png]


. 
· Because the Pythagorean theorem tells us [image: image223.png]lylP=l3F+|y-¥|



, the average squared length of the projections on the other n – 1 directions orthogonal to 1 turns out to be
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· Our test statistic then is
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· It may not be obvious because of the vector notation we are using but this quantity is simply the square of the ordinary t-statistic for conducting a paired t-test. The n – 1 degrees of freedom of the associated t distribution comes from the fact that the error subspace for this problem has geometric dimension n – 1.
· The global F-test of ordinary linear regression can be viewed in a similar light. 
· Since there is generally no interest in testing β0, the projection is not onto 1, or the whole plane for that matter, but onto the vector [image: image226.png]


, which is perpendicular to 1 but still in the regression plane (the model subspace). 
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· The length of this projection is compared to the average of the projection lengths in the remaining n – 2 directions.
· As with the t-test we actually work with squared lengths so we look at the ratio of the square of the length of the projection of y onto [image: image228.png]


with the average of the squared projections of y onto the remaining n – 2 orthogonal directions.
· While it may not be obvious this is exactly the same as the F test in ordinary linear regression.
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· If you find this geometric approach to statistics interesting see Saville & Wood (1996) and Draper & Smith (1998), p. 427–460.
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The Assumption of Ordinary Least Squares Regression
The assumptions 

· In ordinary least squares regression we assume we have an independent set of response variables, y1, y2, ... , yn, such that for a fixed xi, the response yi has a normal distribution with mean β0 + β1xi and variance σ2.

· This statement is equivalent to the five following assumptions. 

1. Observations are independent.
2. The relationship between x and y is linear.
3. The distribution of y for each fixed x is normal.
4. The variance of y is the same at each value of x. This condition is called homoscedasticity. The case where the variance changes with different values of x is called heteroscedasticity.
5. The x-values are fixed by design.
· What are the consequences of violating these assumptions? 

1. If observations are not independent, the estimates will still be unbiased but the standard errors will be wrong.
2. If the true relationship is not linear then the entire enterprise is flawed because the wrong model is being used. Alternatively it may be that a linear model is appropriate for much of the data except for one or more outliers that apparently derive from a different distribution.
3. Normality is not a particularly important assumption in most cases. Both the estimates and their standard errors are robust to the normality assumption. Violation of this assumption is most serious when sample sizes are small and the true distribution is highly skewed.
4. Heteroscedasticity does not bias the estimates, but the standard errors and confidence intervals are wrong.
5. If x and y are random so that their values are subject to uncertainty, then the estimates of the slope and intercept are biased. The slope tends to be smaller in magnitude (closer to zero) than it should be. 
· Violations of these assumptions can be assessed by looking at various graphical displays of the y's, or equivalently, looking at graphical displays of the residuals. Patterns, or lack thereof, are often easier to see when examining residuals than when examining the y's
· We'll consider each assumption in turn but first I'll list the standard "fixes" suggested in elementary statistics books when assumptions are not met.
Standard advice from textbooks when there are obvious departures from these assumptions 

· The advice given here is taken from Ramsey and Schafer (1997) but is typical of what is seen in many textbooks. Following their approach I list five possible scenarios and what their recommendation is in each case.
· Case 1: The relationship between y and x is monotonic (i.e., it is increasing or decreasing) but not linear and the variability about the regression line is the same at all locations along the line. So we have nonlinearity and homoscedasticity. 

· As an example, the relationship might increase linearly initially but then it reaches a plateau and levels out.
· Recommendation: Try transforming x (not y). Try log, square root, etc. so that relationship appears linear on the new scale.
· Case 2: The relationship between y and x is not monotonic and not linear but the variability about the regression line is the same at all locations along the line. So we have a more serious form of nonlinearity than in Case 1, but we still have homoscedasticity. 

· As an example, perhaps the relationship is increasing initially but later decreases.
· Recommendation: Incorporate polynomial terms: x2, x3, etc. This then becomes an example of multiple regression (discussed in Chapter 6).
· Case 3: The relationship between y and x is monotonic (i.e., it is increasing or decreasing) but not linear and the variability about the regression line is not the same at all locations along the line. So we have nonlinearity and heteroscedasticity. 

· A scatter plot will show a funnel shaped pattern with the spread of points about the regression line changing from left to right. Typically the spread is observed to increase. In addition, there is a curvature to the funnel cloud.
· Recommendation: Try transforming y. A square root, log, or reciprocal transformation are often recommended. The order given is for increasing severity in the spread (square root for least severe, reciprocal for most severe). Transforming y can sometimes cure both heteroscedasticity and nonlinearity at the same time.
· Case 4: The relationship between y and x is linear and the variability about the regression line is the same at all locations along the line, but the distribution of y is not normal. Instead it is highly skewed with outliers at different values of x. So we have linearity, homoscedasticity, but an absence of normality. 

· Recommendation: Do nothing but report the skewness and deviant values.
· Case 5: The relationship between y and x is linear but the variability about the regression line is not the same at all locations along the line. So we have linearity and heteroscedasticity. 

· This may be hard to distinguish from case 3.
· Recommendation: Do a weighted regression. The weights should reflect the changing precision of the y's and are often the reciprocal of an estimate of the variance at each x.
· Some remarks. 

· The recommendations above are a bit dated. They have their origin in a time when ordinary least squares (OLS) was the only game in town. Therefore every problem had to be reduced to OLS in order for there to be a solution. This Procrustean approach to regression is no longer necessary. Alternative tactics will be outlined in subsequent lectures. 

· Having said this there's nothing wrong with following Ramsey and Schafer's recommendations. In particular, weighted least squares is an approach to be recommended in many situations. But the use of transformations solely to meet the assumptions of the analysis and without regard for biology seems a bit muleheaded. The analysis of hard to interpret variables, even if correct, is not very enlightening. 
· To talk about an association between, say, reciprocal bird abundance and the square root of canopy cover is a bit difficult to grasp, unlike working on the original scale of the variables.
· In fact, given a choice, it's almost always preferable to work in the original scale of the variables than a transformed one.
· The one exception may be the logarithm. If the underlying biological process is multiplicative, then log transforming the response and fitting an additive linear model better reflects the underlying biology. If a process is multiplicative on its ordinary scale then it becomes additive on a log scale.
Violations of the Assumption of Independence 

Some general recommendations 

· As was the case with two-sample comparisons, violations of the independence assumption typically take one of two forms: lack of independence due to cluster effects or lack of independence due to serial correlation.
· With cluster effects the best approach is to use special regression techniques for clustered data. 

· These can involve hierarchical or multilevel models that capture the structure of the data explicitly.
· Alternatively use spatial regression models.
· With serial correlation the options differ depending upon how much data you have. 

· Time series analysis 

· Time series methods have a long history in the economics literature. 
· These models incorporate lagged values of the response as predictors. 
· Because they require at least 50 or more time observations (more than 100 is better), they are rarely used in ecology.
· Longitudinal data analysis 

· These methods work with an intermediate level of time data.
· These are a diverse assemblage and fairly recent in genesis. Typically the temporal correlation is explicitly parameterized.
· Repeated measures analysis 

· This is really a special case of longitudinal data analysis when the number of time observations is fairly small: 2–5.
· There are many techniques in the literature that are now of really only historical interest but still get recommended in elementary textbooks.
· Under certain circumstances it may be possible to include time explicitly as a predictor. The problem then becomes a multiple regression problem. 
A shortcut solution when the lack of independence arises from subsampling 

· Subsampling is extremely common in ecology. Typically there is a shortage of true replicates and to compensate for this, a single observational unit is sampled repeatedly. The true replicates and the subsamples are then treated as being equivalent and the hierarchical nature of the sample is ignored.
· Often the subsampling is not especially blatant or egregious. Some examples: 

· Different lakes are selected and then each is sampled at various times during the season or at different places in the lake. All of the different samples are treated as being equivalent.
· Different streams are selected and then each is sampled at different locations along the length of the stream. In the analysis multiple samples on the same stream are not treated differently from different samples on different streams.
· The basic problem is that replication is taking place at more than one level and the multiple levels are not equivalent. 

· In the stream example for instance, taking 13 observations on a total of 5 different streams (so that some streams are sampled more than once) is not the same as taking 13 observations on 13 different streams. 
· In the latter case we can probably assume the observations are independent. In the former case there is a correlation structure to our data whereby observations made on the same stream are more similar (more than likely) than observations made on different streams.
· The best approach to such data is to model the correlation structure explicitly, but it is often the case that there are insufficient data to do so. A poor-man's solution is to analyze two extreme situations and compare the results. 

· In one scenario the entire set of samples and subsamples is treated as if it's a random sample. The analysis then proceeds with this clearly inflated sample size.
· In the second scenario the subsamples are averaged and only the averages for each sample are analyzed. The analysis proceeds with the resultant depauperate sample size.
· If the regression results are comparable in the two methods, the observed association is probably worth treating as being real. 
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Use the test statistic


F =
s1
2


s2
2


This has a standard normal distribution if 


n1 –1


which has an F 
distribution with  


2
n – 1and


degrees of freedom.


d = x1 – x2


t =
d – d0
sd


n


†


d sd


z=
x 1 – x 2( )– d0


n1
+ n2


z=
x 1 – x 2( )– d0
s1
2


n1
+ s2


2


n2


or


standard normal distribution.


z=
p1 – p2( ) – d0


p(1 – p)
1
n1


+ 1
n2


 
  


 
  


 p
1 – 2


p1 =
x1
n1
, p2 =


x2
n2
, p=


x1 + x2
n1 + n2


.where


n1 p 1


 p


^ ^


^


^ ^ ^


^


^ ^


^^


‡


‡Other variance tests include
Levene’s, Ansari–Bradley,
Fligner, Bartlett, and Mood tests.


 d  is the value of the difference
specified in the null  hypothesis.
If a test of equality of groups is
desired, take d  = 0.
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yes


which has a t-distribution with ν degrees of freedom where ν is  obtained from        


ν =
s1
2 n1 + s2


2 n2( )2


s1
2 n1( )2
n1 − 1


+
s2
2 n2( )2
n2 − 1


rounded to the nearest integer.
†


†  This is Satterthwaite’s solution to what has become known as the Behrens-Fisher problem. Other solutions exist.  


Use the z-test with test statistic


z=
x 1 − x 2( ) − d0
σ1
2


n1
+ σ2


2


n2
which has a standard normal distribution. For this case it is 
not correct to   use s1


2  and s2
2 as estimates of σ1


2and σ2
2 .


Do a t-test with test statistic  


sp2
which hasa t-distribution with                     degrees of 
freedom.    is called the pooled variance and is 
calculated from


n1 + n2 − 2


sp
2 =


(n1 − 1)s12 + (n2 − 1)s22


n1 + n2 − 2


t =
x 1 − x 2( ) − d0


sp
2 1
n1


+
1
n2


 
  


 
  


Use a t-test with test statistic  


no


Continued 
from 


previous 
page


 
both known?
Are σ12  and σ2


2


 


t =
x 1 − x 2( ) − d0
s1
2


n1
+
s2
2


n2


yes


no


Can we assume
σ1
2 = σ2


2?  
(Check graphically or with
a variance test, p. 1)
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yes
Use the normal distribution 
with


Use s if σ is not known.


yes


Is the 
value of σ 
known?


no


yes


Use a t distribution with n – 1 
degrees of freedom.  


no


no


Use a transformation. 
Alternatively, consider the
Wilcoxon signed rank or
permutation tests. These 
methods don’t assume a
normal distribution.


Does the 
population 


have a normal 
distribution?
(test this!)


Is the 
sample 
size large 
(n > 30)?


Which 
population 
parameter is 


being 
tested?


Mean (µ)


Proportion
 (p)


Standard 
deviation 
(σ) 


Use the normal distribution 
with


z=
x  − µ0
σ


n


where p= xn
np ≥ 5 and n(1 – p) ≥ 5.


Use a Chi-square 
distribution with 
n – 1 degrees of 
freedom.


χ2 =
(n −1)s2


σ 0
2


or variance 
(σ 2 )


Use the normal distribution 
with


z=
x − µ0
σ


n
(This case is rare.)


t =
x  − µ0
s
n


A  Flowchar t for  Choosing a One-Sample Standard Hypothesis Test   †


†


values specified in the 
null  hypothesis.


µ
0 ,  p0 ,andσ0


2
are the


z=
p− p0
p
0 (1− p0 )
n
. This requires


^


^


^ ^


     






